Increased Secreted Frizzled-Related Protein 5 mRNA Expression in the Adipose Tissue of Women with Nonalcoholic Fatty Liver Disease Associated with Obesity
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of the Patients
2.2. Evaluation of Relative mRNA Abundance of SFRP5, WNT5A and PPARγ in SAT and VAT
2.3. Evaluation of Relative mRNA Abundance of SFRP5,WNT5A and PPARγ according to the BMI
2.4. Evaluation of Relative mRNA Abundance of SFRP5, WNT5A and PPARγ according to NAFLD Presence
2.5. Evaluation of SFRP5, WNT5A and PPARγ Relative mRNA Abundance in Relation to NAFLD Grades
2.6. Evaluation of Relative mRNA Abundance of SFRP5, WNT5A and PPARγ according to Metabolic Syndrome Parameters
2.7. Correlations with SFRP5, WNT5A and PPARγ mRNA Expression in SAT and VAT of MO Cohort
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Hepatic Histological Evaluation
4.3. Sample Size
4.4. Biochemical Analyses
4.5. Gene Expression Analysis
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pappachan, J.M.; Babu, S.; Krishnan, B.; Ravindran, N.C. Non-Alcoholic Fatty Liver Disease: A Clinical Update. J. Clin. Transl. Hepatol. 2017, 5, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Cotter, T.G.; Rinella, M. Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology 2020, 158, 1851–1864. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Fernández-Galilea, M.; Martínez-Fernández, L.; González-Muniesa, P.; Pérez-Chávez, A.; Martínez, J.A.; Moreno-Aliaga, M.J. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients 2019, 11, 872. [Google Scholar] [CrossRef] [PubMed]
- Manne, V.; Handa, P.; Kowdley, K.V. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2018, 22, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and Diabetes Mellitus. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 32–42. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Koutaki, D.; Michos, A.; Bacopoulou, F.; Charmandari, E. The Emerging Role of Sfrp5 and Wnt5a in the Pathogenesis of Obesity: Implications for a Healthy Diet and Lifestyle. Nutrients 2021, 13, 2459. [Google Scholar] [CrossRef]
- Yazıcı, D.; Sezer, H. Insulin Resistance, Obesity and Lipotoxicity. In Obesity and Lipotoxicity; Engin, A.B., Engin, A., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 960, pp. 277–304. ISBN 978-3-319-48380-1. [Google Scholar]
- Biobaku, F.; Ghanim, H.; Batra, M.; Dandona, P. Macronutrient-Mediated Inflammation and Oxidative Stress: Relevance to Insulin Resistance, Obesity, and Atherogenesis. J. Clin. Endocrinol. Metab. 2019, 104, 6118–6128. [Google Scholar] [CrossRef]
- Nicholls, D.G.; Locke, R.M. Thermogenic Mechanisms in Brown Fat. Physiol. Rev. 1984, 64, 1–64. [Google Scholar] [CrossRef]
- Cinti, S. The Adipose Organ at a Glance. Dis. Models Mech. 2012, 5, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M. Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Kim, Y.J.; Kim, D.H.; Kim, W.; Jung, Y.J.; Yoon, J.H.; Kim, C.Y.; Cho, Y.M.; Kim, S.H.; Lee, K.B.; et al. Visceral Adipose Tissue Area Is an Independent Risk Factor for Hepatic Steatosis. J. Gastroenterol. Hepatol. 2008, 23, 900–907. [Google Scholar] [CrossRef] [PubMed]
- van der Poorten, D.; Milner, K.-L.; Hui, J.; Hodge, A.; Trenell, M.I.; Kench, J.G.; London, R.; Peduto, T.; Chisholm, D.J.; George, J. Visceral Fat: A Key Mediator of Steatohepatitis in Metabolic Liver Disease. Hepatology 2008, 48, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.M.; Guan, Y.; Gao, B. Targeting Adipose Tissue to Tackle NASH: SPARCL1 as an Emerging Player. J. Clin. Investig. 2021, 131, e153640. [Google Scholar] [CrossRef]
- Osorio-Conles, Ó.; Vega-Beyhart, A.; Ibarzabal, A.; Balibrea, J.M.; Graupera, I.; Rimola, J.; Vidal, J.; de Hollanda, A. A Distinctive NAFLD Signature in Adipose Tissue from Women with Severe Obesity. Int. J. Mol. Sci. 2021, 22, 10541. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Liang, G.; Sun, J.; Lin, Z.; Hu, R.; Chen, P.; Zhang, Z.; Zhou, L.; Li, Y. Recombinant SFRP5 Protein Significantly Alleviated Intrahepatic Inflammation of Nonalcoholic Steatohepatitis. Nutr. Metab. 2017, 14, 56. [Google Scholar] [CrossRef]
- Zhao, A.; Jiang, F.; Yang, G.; Liu, H.; Li, L. Sfrp5 Interacts with Slurp1 to Regulate the Accumulation of Triglycerides in Hepatocyte Steatosis Model. Biochem. Biophys. Res. Commun. 2019, 512, 256–262. [Google Scholar] [CrossRef]
- Azzu, V.; Vacca, M.; Virtue, S.; Allison, M.; Vidal-Puig, A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020, 158, 1899–1912. [Google Scholar] [CrossRef]
- Chatani, N.; Kamada, Y.; Kizu, T.; Ogura, S.; Furuta, K.; Egawa, M.; Hamano, M.; Ezaki, H.; Kiso, S.; Shimono, A.; et al. Secreted Frizzled-Related Protein 5 (Sfrp5) Decreases Hepatic Stellate Cell Activation and Liver Fibrosis. Liver Int. 2015, 35, 2017–2026. [Google Scholar] [CrossRef]
- de Winter, T.J.J.; Nusse, R. Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis. Front. Cell Dev. Biol. 2021, 9, 627429. [Google Scholar] [CrossRef]
- Liu, L.-B.; Chen, X.-D.; Zhou, X.-Y.; Zhu, Q. The Wnt Antagonist and Secreted Frizzled-Related Protein 5: Implications on Lipid Metabolism, Inflammation, and Type 2 Diabetes Mellitus. Biosci. Rep. 2018, 38, BSR20180011. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, D.P.; Nishii, A.; Li, Z.; DelProposto, J.B.; Corsa, C.A.; Mori, H.; Hardij, J.; Learman, B.S.; Lumeng, C.N.; MacDougald, O.A. Wnt/β-Catenin Signaling Regulates Adipose Tissue Lipogenesis and Adipocyte-Specific Loss Is Rigorously Defended by Neighboring Stromal-Vascular Cells. Mol. Metab. 2020, 42, 101078. [Google Scholar] [CrossRef]
- Wang, X.; Rao, H.; Liu, F.; Wei, L.; Li, H.; Wu, C. Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Cells 2021, 10, 3300. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Prestwich, T.C.; Reid, M.A.; Longo, K.A.; Gerin, I.; Cawthorn, W.P.; Susulic, V.S.; Krishnan, V.; Greenfield, A.; MacDougald, O.A. Secreted Frizzled-Related Protein 5 Suppresses Adipocyte Mitochondrial Metabolism through WNT Inhibition. J. Clin. Investig. 2012, 122, 2405–2416. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Higuchi, A.; Ohashi, K.; Oshima, Y.; Gokce, N.; Shibata, R.; Akasaki, Y.; Shimono, A.; Walsh, K. Sfrp5 Is an Anti-Inflammatory Adipokine That Modulates Metabolic Dysfunction in Obesity. Science 2010, 329, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yin, S.; Wu, K.; Lee, A.; Liu, Y.; Li, H.; Song, S. Downregulation of Sfrp5 in Insulin Resistant Rats Promotes Macrophage-Mediated Pulmonary Inflammation through Activation of Wnt5a/JNK1 Signaling. Biochem. Biophys. Res. Commun. 2018, 505, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Pérez-Hernández, A.I.; Gurbindo, J.; Ramírez, B.; Méndez-Giménez, L.; Rotellar, F.; Valentí, V.; Moncada, R.; et al. Activation of Noncanonical Wnt Signaling Through WNT5A in Visceral Adipose Tissue of Obese Subjects Is Related to Inflammation. J. Clin. Endocrinol. Metab. 2014, 99, 1407–1417. [Google Scholar] [CrossRef]
- Lecarpentier, Y.; Schussler, O.; Hébert, J.-L.; Vallée, A. Multiple Targets of the Canonical WNT/β-Catenin Signaling in Cancers. Front. Oncol. 2019, 9, 1248. [Google Scholar] [CrossRef]
- Gustafson, B.; Smith, U. Activation of Canonical Wingless-Type MMTV Integration Site Family (Wnt) Signaling in Mature Adipocytes Increases β-Catenin Levels and Leads to Cell Dedifferentiation and Insulin Resistance. J. Biol. Chem. 2010, 285, 14031–14041. [Google Scholar] [CrossRef]
- Wang, Q.A.; Zhang, F.; Jiang, L.; Ye, R.; An, Y.; Shao, M.; Tao, C.; Gupta, R.K.; Scherer, P.E. Peroxisome Proliferator-Activated Receptor γ and Its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated Insulin Sensitization. Mol. Cell. Biol. 2018, 38, e00677-17. [Google Scholar] [CrossRef] [Green Version]
- Stienstra, R.; Duval, C.; Müller, M.; Kersten, S. PPARs, Obesity, and Inflammation. PPAR Res. 2007, 2007, 95974. [Google Scholar] [CrossRef] [PubMed]
- Corbett, L.; Mann, J.; Mann, D.A. Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells. PLoS ONE 2015, 10, e0142794. [Google Scholar] [CrossRef]
- Beljaars, L.; Daliri, S.; Dijkhuizen, C.; Poelstra, K.; Gosens, R. WNT-5A Regulates TGF-β-Related Activities in Liver Fibrosis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2017, 312, G219–G227. [Google Scholar] [CrossRef] [PubMed]
- Rauch, A.; Mandrup, S. Lighting the Fat Furnace without SFRP5. J. Clin. Investig. 2012, 122, 2349–2352. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tian, M.; Yang, M.; Yang, G.; Chen, J.; Wang, H.; Liu, D.; Wang, H.; Deng, W.; Zhu, Z.; et al. Central Sfrp5 Regulates Hepatic Glucose Flux and VLDL-Triglyceride Secretion. Metabolism 2020, 103, 154029. [Google Scholar] [CrossRef]
- Hu, W.; Li, L.; Yang, M.; Luo, X.; Ran, W.; Liu, D.; Xiong, Z.; Liu, H.; Yang, G. Circulating Sfrp5 Is a Signature of Obesity-Related Metabolic Disorders and Is Regulated by Glucose and Liraglutide in Humans. J. Clin. Endocrinol. Metab. 2013, 98, 290–298. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Li, L.; Yan, Q.; Li, J.; Xu, T. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Liver Fibrosis. Gene 2018, 674, 57–69. [Google Scholar] [CrossRef]
- Oseini, A.M.; Sanyal, A.J. Therapies in Non-Alcoholic Steatohepatitis (NASH). Liver Int. 2017, 37, 97–103. [Google Scholar] [CrossRef]
- Schulte, D.M.; Müller, N.; Neumann, K.; Oberhäuser, F.; Faust, M.; Güdelhöfer, H.; Brandt, B.; Krone, W.; Laudes, M. Pro-Inflammatory Wnt5a and Anti-Inflammatory SFRP5 Are Differentially Regulated by Nutritional Factors in Obese Human Subjects. PLoS ONE 2012, 7, 32437. [Google Scholar] [CrossRef]
- Gutiérrez-Vidal, R.; Vega-Badillo, J.; Reyes-Fermín, L.M.; Hernández-Pérez, H.A.; Sánchez-Muñoz, F.; López-Álvarez, G.S.; Larrieta-Carrasco, E.; Fernández-Silva, I.; Méndez-Sánchez, N.; Tovar, A.R.; et al. SFRP5 Hepatic Expression Is Associated with Non-Alcoholic Liver Disease in Morbidly Obese Women. Ann. Hepatol. 2015, 14, 666–674. [Google Scholar] [CrossRef]
- Takada, I.; Kouzmenko, A.P.; Kato, S. Wnt and PPARγ Signaling in Osteoblastogenesis and Adipogenesis. Nat. Rev. Rheumatol. 2009, 5, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Free. Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, F.; Zhang, Y.; Zhang, X.; Chen, J.; Jiang, Y. PPARγ Attenuates Hepatic Inflammation and Oxidative Stress of Non-alcoholic Steatohepatitis via Modulating the MiR-21-5p/SFRP5 Pathway. Mol. Med. Rep. 2021, 24, 823. [Google Scholar] [CrossRef] [PubMed]
- Bertran, L.; Portillo-Carrasquer, M.; Aguilar, C.; Porras, J.A.; Riesco, D.; Martínez, S.; Vives, M.; Sabench, F.; Gonzalez, E.; Del Castillo, D.; et al. Deregulation of Secreted Frizzled-Related Protein 5 in Nonalcoholic Fatty Liver Disease Associated with Obesity. Int. J. Mol. Sci. 2021, 22, 6895. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Zuriaga, M.A.; Fuster, J.J.; Farb, M.G.; MacLauchlan, S.; Bretón-Romero, R.; Karki, S.; Hess, D.T.; Apovian, C.M.; Hamburg, N.M.; Gokce, N.; et al. Activation of Non-Canonical WNT Signaling in Human Visceral Adipose Tissue Contributes to Local and Systemic Inflammation. Sci. Rep. 2017, 7, 17326. [Google Scholar] [CrossRef]
- Fuster, J.J.; Zuriaga, M.A.; Ngo, D.T.-M.; Farb, M.G.; Aprahamian, T.; Yamaguchi, T.P.; Gokce, N.; Walsh, K. Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion. Diabetes 2015, 64, 1235–1248. [Google Scholar] [CrossRef]
- Lagathu, C.; Christodoulides, C.; Virtue, S.; Cawthorn, W.P.; Franzin, C.; Kimber, W.A.; Nora, E.D.; Campbell, M.; Medina-Gomez, G.; Cheyette, B.N.R.; et al. Dact1, a Nutritionally Regulated Preadipocyte Gene, Controls Adipogenesis by Coordinating the Wnt/β-Catenin Signaling Network. Diabetes 2009, 58, 609–619. [Google Scholar] [CrossRef]
- Koza, R.A.; Nikonova, L.; Hogan, J.; Rim, J.-S.; Mendoza, T.; Faulk, C.; Skaf, J.; Kozak, L.P. Changes in Gene Expression Foreshadow Diet-Induced Obesity in Genetically Identical Mice. PLoS Genet. 2006, 2, e81. [Google Scholar] [CrossRef]
- Okada, Y.; Sakaue, H.; Nagare, T.; Kasuga, M. Diet-Induced Up-Regulation of Gene Expression in Adipocytes without Changes in DNA Methylation. Kobe J. Med. Sci. 2009, 54, E241–E249. [Google Scholar]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ Signaling and Metabolism: The Good, the Bad and the Future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.; Wang, X.; Chu, H.; Liu, H.; Yi, X.; Xiao, Y. SFRP5 Correlates with Obesity and Metabolic Syndrome and Increases after Weight Loss in Children. Clin. Endocrinol. 2014, 81, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Wang, J. Wnt/β-Catenin Signaling and Obesity. Front. Physiol. 2018, 9, 792. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.A.; Tao, C.; Gupta, R.K.; Scherer, P.E. Tracking Adipogenesis during White Adipose Tissue Development, Expansion and Regeneration. Nat. Med. 2013, 19, 1338–1344. [Google Scholar] [CrossRef]
- Klimcakova, E.; Kovacikova, M.; Stich, V.; Langin, D. Adipokines and Dietary Interventions in Human Obesity: Adipokines and Dieting. Obes. Rev. 2010, 11, 446–456. [Google Scholar] [CrossRef]
- Monzillo, L.U.; Hamdy, O.; Horton, E.S.; Ledbury, S.; Mullooly, C.; Jarema, C.; Porter, S.; Ovalle, K.; Moussa, A.; Mantzoros, C.S. Effect of Lifestyle Modification on Adipokine Levels in Obese Subjects with Insulin Resistance. Obes. Res. 2003, 11, 1048–1054. [Google Scholar] [CrossRef]
- Torres, J.-L.; Usategui-Martín, R.; Hernández-Cosido, L.; Bernardo, E.; Manzanedo-Bueno, L.; Hernández-García, I.; Mateos-Díaz, A.-M.; Rozo, O.; Matesanz, N.; Salete-Granado, D.; et al. PPAR-γ Gene Expression in Human Adipose Tissue Is Associated with Weight Loss After Sleeve Gastrectomy. J. Gastrointest. Surg. 2022, 26, 286–297. [Google Scholar] [CrossRef]
- Sato, H.; Sugai, H.; Kurosaki, H.; Ishikawa, M.; Funaki, A.; Kimura, Y.; Ueno, K. The Effect of Sex Hormones on Peroxisome Proliferator-Activated Receptor Gamma Expression and Activity in Mature Adipocytes. Biol. Pharm. Bull. 2013, 36, 564–573. [Google Scholar] [CrossRef]
- Ruschke, K.; Fishbein, L.; Dietrich, A.; Klöting, N.; Tönjes, A.; Oberbach, A.; Fasshauer, M.; Jenkner, J.; Schön, M.R.; Stumvoll, M.; et al. Gene Expression of PPARγ and PGC-1α in Human Omental and Subcutaneous Adipose Tissues Is Related to Insulin Resistance Markers and Mediates Beneficial Effects of Physical Training. Eur. J. Endocrinol. 2010, 162, 515–523. [Google Scholar] [CrossRef]
- Redonnet, A.; Bonilla, S.; Noël-Suberville, C.; Pallet, V.; Dabadie, H.; Gin, H.; Higueret, P. Relationship between Peroxisome Proliferator-Activated Receptor Gamma and Retinoic Acid Receptor Alpha Gene Expression in Obese Human Adipose Tissue. Int. J. Obes. 2002, 26, 920–927. [Google Scholar] [CrossRef]
- Kosaka, K.; Kubota, Y.; Adachi, N.; Akita, S.; Sasahara, Y.; Kira, T.; Kuroda, M.; Mitsukawa, N.; Bujo, H.; Satoh, K. Human Adipocytes from the Subcutaneous Superficial Layer Have Greater Adipogenic Potential and Lower PPAR-γ DNA Methylation Levels than Deep Layer Adipocytes. Am. J. Physiol.-Cell Physiol. 2016, 311, C322–C329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Wang, H.; Li, Y.; Wang, J.; Lai, Y.; Gao, L.; Lei, L.; Yang, G.; Liao, X.; Fang, X.; et al. Plasma Sfrp5 Levels Correlate with Determinants of the Metabolic Syndrome in Chinese Adults. Diabetes Metab. Res. Rev. 2017, 33, e2896. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hong, J.; Liu, R.; Chen, M.; Xu, M.; Gu, W.; Zhang, Y.; Ma, Q.; Wang, F.; Shi, J.; et al. SFRP5 Acts as a Mature Adipocyte Marker but Not as a Regulator in Adipogenesis. J. Mol. Endocrinol. 2014, 53, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.S.; Duseja, A.; Kalra, N.; Das, A.; Dhiman, R.K.; Chawla, Y.K. Correlation of Adipose Tissue with Liver Histology in Asian Indian Patients with Nonalcoholic Fatty Liver Disease (NAFLD). Ann. Hepatol. 2012, 11, 478–486. [Google Scholar] [CrossRef]
- Yu, S.J.; Kim, W.; Kim, D.; Yoon, J.-H.; Lee, K.; Kim, J.H.; Cho, E.J.; Lee, J.-H.; Kim, H.Y.; Kim, Y.J.; et al. Visceral Obesity Predicts Significant Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Medicine 2015, 94, e2159. [Google Scholar] [CrossRef]
- Idilman, I.S.; Low, H.M.; Gidener, T.; Philbrick, K.; Mounajjed, T.; Li, J.; Allen, A.M.; Yin, M.; Venkatesh, S.K. Association between Visceral Adipose Tissue and Non-Alcoholic Steatohepatitis Histology in Patients with Known or Suspected Non-Alcoholic Fatty Liver Disease. J. Clin. Med. 2021, 10, 2565. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, C.; Zhang, Y.; Dai, M.; Jiang, Y.; Wang, H.; Yu, M.; Jing, W.; Tian, W. Wnt5a Regulates the Cell Proliferation and Adipogenesis via MAPK-Independent Pathway in Early Stage of Obesity: Wnt5a Involves Proliferation and Adipogenesis. Cell Biol. Int. 2018, 42, 63–74. [Google Scholar] [CrossRef]
- Das, B.; Das, M.; Kalita, A.; Baro, M.R. The Role of Wnt Pathway in Obesity Induced Inflammation and Diabetes: A Review. J. Diabetes Metab. Disord. 2021, 20, 1871–1882. [Google Scholar] [CrossRef]
- Garg, A.; Misra, A. Hepatic Steatosis, Insulin Resistance, and Adipose Tissue Disorders. J. Clin. Endocrinol. Metab. 2002, 87, 3019–3022. [Google Scholar] [CrossRef]
- Ye, D.; Rong, X.; Xu, A.; Guo, J. Liver-Adipose Tissue Crosstalk: A Key Player in the Pathogenesis of Glucolipid Metabolic Disease. Chin. J. Integr. Med. 2017, 23, 410–414. [Google Scholar] [CrossRef]
- Prats-Puig, A. Balanced Duo of Anti-Inflammatory SFRP5 and Proinflammatory WNT5A in Children. Pediatr. Res. 2014, 75, 793–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.M.; Staels, B. Peroxisome Proliferator-Activated Receptor γ and Adipose Tissue—Understanding Obesity-Related Changes in Regulation of Lipid and Glucose Metabolism. J. Clin. Endocrinol. Metab. 2007, 92, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Christodoulides, C.; Lagathu, C.; Sethi, J.K.; Vidal-Puig, A. Adipogenesis and WNT Signalling. Trends Endocrinol. Metab. 2009, 20, 16–24. [Google Scholar] [CrossRef]
- Manolopoulos, K.N.; Karpe, F.; Frayn, K.N. Gluteofemoral Body Fat as a Determinant of Metabolic Health. Int. J. Obes. 2010, 34, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Guiu-Jurado, E.; Auguet, T.; Berlanga, A.; Aragonès, G.; Aguilar, C.; Sabench, F.; Armengol, S.; Porras, J.; Martí, A.; Jorba, R.; et al. Downregulation of de Novo Fatty Acid Synthesis in Subcutaneous Adipose Tissue of Moderately Obese Women. Int. J. Mol. Sci. 2015, 16, 29911–29922. [Google Scholar] [CrossRef] [PubMed]
- Jarrar, M.H.; Baranova, A.; Collantes, R.; Ranard, B.; Stepanova, M.; Bennett, C.; Fang, Y.; Elariny, H.; Goodman, Z.; Chandhoke, V.; et al. Adipokines and Cytokines in Non-Alcoholic Fatty Liver Disease: Adipokines and Cytokines in Nafld. Aliment. Pharmacol. Ther. 2007, 27, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Morales, J.M.G.; Puig, L.; Daudén, E.; Cañete, J.D.; Pablos, J.L.; Martín, A.O.; Juanatey, C.G.; Adán, A.; Montalbán, X.; Borruel, N.; et al. Critical Role of Interleukin (IL)-17 in Inflammatory and Immune Disorders: An Updated Review of the Evidence Focusing in Controversies. Autoimmun. Rev. 2020, 19, 102429. [Google Scholar] [CrossRef]
- Sabat, R.; Ouyang, W.; Wolk, K. Therapeutic Opportunities of the IL-22–IL-22R1 System. Nat. Rev. Drug Discov. 2014, 13, 21–38. [Google Scholar] [CrossRef]
- Rutz, S.; Wang, X.; Ouyang, W. The IL-20 Subfamily of Cytokines—From Host Defence to Tissue Homeostasis. Nat. Rev. Immunol. 2014, 14, 783–795. [Google Scholar] [CrossRef]
- Rolla, S.; Alchera, E.; Imarisio, C.; Bardina, V.; Valente, G.; Cappello, P.; Mombello, C.; Follenzi, A.; Novelli, F.; Carini, R. The Balance between IL-17 and IL-22 Produced by Liver-Infiltrating T-Helper Cells Critically Controls NASH Development in Mice. Clin. Sci. 2016, 130, 193–203. [Google Scholar] [CrossRef]
- Acquarone, E.; Monacelli, F.; Borghi, R.; Nencioni, A.; Odetti, P. Resistin: A Reappraisal. Mech. Ageing Dev. 2019, 178, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Murad, A.; Hassan, H.; Husein, H.; Ayad, A. Serum Resistin Levels in Nonalcoholic Fatty Liver Disease and Their Relationship to Severity of Live. J. Endocrinol. Metab. Diabetes S. Afr. 2010, 15, 53–56. [Google Scholar] [CrossRef]
- Mavilia, M.G.; Wu, G.Y. Liver and Serum Adiponectin Levels in Non-alcoholic Fatty Liver Disease. J. Dig. Dis. 2021, 22, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Toulis, K.A.; Goulis, D.G.; Zavos, C.; Kountouras, J. Serum Total Adiponectin in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolism 2011, 60, 313–326. [Google Scholar] [CrossRef]
- Ziegler, A.K.; Damgaard, A.; Mackey, A.L.; Schjerling, P.; Magnusson, P.; Olesen, A.T.; Kjaer, M.; Scheele, C. An Anti-Inflammatory Phenotype in Visceral Adipose Tissue of Old Lean Mice, Augmented by Exercise. Sci. Rep. 2019, 9, 12069. [Google Scholar] [CrossRef]
- Mittal, B. Subcutaneous Adipose Tissue & Visceral Adipose Tissue. Indian J. Med. Res. 2019, 149, 571. [Google Scholar] [CrossRef]
- Foster, M.T.; Pagliassotti, M.J. Metabolic Alterations Following Visceral Fat Removal and Expansion: Beyond Anatomic Location. Adipocyte 2012, 1, 192–199. [Google Scholar] [CrossRef]
- Mirea, A.-M.; Tack, C.J.; Chavakis, T.; Joosten, L.A.B.; Toonen, E.J.M. IL-1 Family Cytokine Pathways Underlying NAFLD: Towards New Treatment Strategies. Trends Mol. Med. 2018, 24, 458–471. [Google Scholar] [CrossRef]
- Fuchs, A.; Samovski, D.; Smith, G.I.; Cifarelli, V.; Farabi, S.S.; Yoshino, J.; Pietka, T.; Chang, S.-W.; Ghosh, S.; Myckatyn, T.M.; et al. Associations Among Adipose Tissue Immunology, Inflammation, Exosomes and Insulin Sensitivity in People With Obesity and Nonalcoholic Fatty Liver Disease. Gastroenterology 2021, 161, 968–981.e12. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvoll, M.; et al. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity. PLoS ONE 2015, 10, e0121971. [Google Scholar] [CrossRef]
- Machado, M.V.; Yang, Y.; Diehl, A.M. The Benefits of Restraint: A Pivotal Role for IL-13 in Hepatic Glucose Homeostasis. J. Clin. Investig. 2013, 123, 115–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanda, H. MCP-1 Contributes to Macrophage Infiltration into Adipose Tissue, Insulin Resistance, and Hepatic Steatosis in Obesity. J. Clin. Investig. 2006, 116, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Setyaningsih, W.A.W. Liver Fibrosis Associated with Adipose Tissue and Liver Inflammation in an Obesity Model. Med. J. Malays. 2021, 76, 7. [Google Scholar]
- Bhagwandin, C.; Ashbeck, E.L.; Whalen, M.; Bandola-Simon, J.; Roche, P.A.; Szajman, A.; Truong, S.M.; Wertheim, B.C.; Klimentidis, Y.C.; Ishido, S.; et al. The E3 Ubiquitin Ligase MARCH1 Regulates Glucose-Tolerance and Lipid Storage in a Sex-Specific Manner. PLoS ONE 2018, 13, e0204898. [Google Scholar] [CrossRef] [PubMed]
- Rauschert, S.; Uhl, O.; Koletzko, B.; Mori, T.A.; Beilin, L.J.; Oddy, W.H.; Hellmuth, C. Sex Differences in the Association of Phospholipids with Components of the Metabolic Syndrome in Young Adults. Biol. Sex Differ. 2017, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Gürdoğan, M.; Altay, S. The Relationship Between Gender Differences and Abnormal Adipokine Profile for Cardiometabolic Risk Indicators. Balkan Med. J. 2019, 36, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.-C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic Steatohepatitis: A Proposal for Grading and Staging The Histological Lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef]
NW (n = 15) | MO (n = 60) | |||
---|---|---|---|---|
Variables | NL (n = 20) | SS (n = 21) | NASH (n = 19) | |
Weight (kg) | 57 (52–62) | 119 (108–134) * | 115 (111–129) * | 110 (104–121) * |
BMI (kg/m2) | 22.47 (21.59–24.19) | 43.62 (41.56–48.83) * | 44.94 (42.07–46.85) * | 44.54 (40.95–47.29) * |
SBP (mmHg) | 117 (110–125) | 120 (100–132) | 116 (108–127) | 117 (105–132) |
DBP (mmHg) | 70 (66–75) | 63 (58–71) | 62 (59–73) | 68 (60–78) |
HOMA1-IR | 1.30 (0.85–2.17) | 2.07 (1.22–3.45) | 2.44 (1.27–3.05) * | 1.90 (1.45–6.16) * |
Glucose (mg/dL) | 83.50 (64.75–94.25) | 85.50 (77.50–92.75) | 93.00 (88.00–106.00) *,$ | 99.00 (82.25–109.75) *,$ |
Insulin (mUI/L) | 7.00 (4.90–9.62) | 9.70 (5.59–16.21) | 9.80 (6.94–14.10) * | 9.54 (5.68–26.02) * |
HbA1c (%) | 5.10 (4.70–5.40) | 5.60 (5.30–5.75) * | 5.55 (5.30–5.85) * | 5.80 (5.28–6.43) * |
TG (mg/dL) | 86.00 (57.25–110.25) | 106.00 (93.00–136.00) * | 117.50 (84.00–165.50) * | 130.50 (99.25–187.50) * |
Cholesterol (mg/dL) | 183.25 (163.53–209.50) | 170.00 (150.15–214.50) | 165.70 (132.75–189.50) * | 162.00 (150.50–213.25) |
HDL-C (mg/dL) | 62.40 (48.45–73.00) | 40.20 (31.50–48.50) * | 43.50 (33.25–46.75) * | 38.00 (34.50–44.00) * |
LDL-C (mg/dL) | 112.20 (89.90–130.00) | 108.80 (95.20–141.80) | 103.10 (70.20–124.85) | 93.40 (79.30–126.83) |
AST (UI/L) | 20.00 (16.00–26.00) | 19.50 (15.00–36.25) | 21.00 (17.00–31.00) * | 30.00 (18.00–43.50) * |
ALT (UI/L) | 17.00 (12.50–25.00) | 21.00 (16.00–37.00) | 29.50 (22.00–35.00) * | 33.50 (18.75–41.00) * |
GGT (UI/L) | 14.00 (10.00–31.00) | 17.00 (13.00–23.00) | 21.00 (16.25–32.75) | 26.00 (19.75–34.00) *,$ |
ALP (UI/L) | 65.00 (51.50–88.00) | 57.50 (47.75–71.75) | 73.50 (62.00–86.00) $ | 61.00 (53.25–74.50) a |
Variables | SAT | VAT | ||||
---|---|---|---|---|---|---|
SFRP5 | WNT5A | PPARγ | SFRP5 | WNT5A | PPARγ | |
IL-1β (pg/mL) | ns | 0.370 * | ns | 0.404 * | ns | ns |
IL-8 (pg/mL) | 0.413 * | ns | ns | ns | ns | ns |
IL-13 (pg/mL) | ns | ns | ns | 0.445 ** | 0.345 * | ns |
IL-17 (pg/mL) | 0.435 * | ns | ns | 0.362 * | ns | ns |
IL-22 (pg/mL) | 0.366 * | ns | ns | ns | ns | ns |
Resistin (ng/mL) | −0.413 * | ns | ns | ns | ns | ns |
Adiponectin (ng/mL) | −0.346 * | 0.375 * | ns | ns | ns | ns |
PAI (ng/mL) | ns | ns | ns | 0.342 * | ns | ns |
MCP-1 (pg/mL) | ns | ns | ns | ns | −0.377 * | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertran, L.; Portillo-Carrasquer, M.; Barrientos-Riosalido, A.; Aguilar, C.; Riesco, D.; Martínez, S.; Culebradas, A.; Vives, M.; Sabench, F.; Castillo, D.D.; et al. Increased Secreted Frizzled-Related Protein 5 mRNA Expression in the Adipose Tissue of Women with Nonalcoholic Fatty Liver Disease Associated with Obesity. Int. J. Mol. Sci. 2022, 23, 9871. https://doi.org/10.3390/ijms23179871
Bertran L, Portillo-Carrasquer M, Barrientos-Riosalido A, Aguilar C, Riesco D, Martínez S, Culebradas A, Vives M, Sabench F, Castillo DD, et al. Increased Secreted Frizzled-Related Protein 5 mRNA Expression in the Adipose Tissue of Women with Nonalcoholic Fatty Liver Disease Associated with Obesity. International Journal of Molecular Sciences. 2022; 23(17):9871. https://doi.org/10.3390/ijms23179871
Chicago/Turabian StyleBertran, Laia, Marta Portillo-Carrasquer, Andrea Barrientos-Riosalido, Carmen Aguilar, David Riesco, Salomé Martínez, Amada Culebradas, Margarita Vives, Fàtima Sabench, Daniel Del Castillo, and et al. 2022. "Increased Secreted Frizzled-Related Protein 5 mRNA Expression in the Adipose Tissue of Women with Nonalcoholic Fatty Liver Disease Associated with Obesity" International Journal of Molecular Sciences 23, no. 17: 9871. https://doi.org/10.3390/ijms23179871
APA StyleBertran, L., Portillo-Carrasquer, M., Barrientos-Riosalido, A., Aguilar, C., Riesco, D., Martínez, S., Culebradas, A., Vives, M., Sabench, F., Castillo, D. D., Richart, C., & Auguet, T. (2022). Increased Secreted Frizzled-Related Protein 5 mRNA Expression in the Adipose Tissue of Women with Nonalcoholic Fatty Liver Disease Associated with Obesity. International Journal of Molecular Sciences, 23(17), 9871. https://doi.org/10.3390/ijms23179871