Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity
Abstract
:1. Introduction
2. Results
2.1. Body Weight and Food Intake
2.2. Epididymal Fat, Liver, and Lipids
2.3. Glucose Metabolism
2.4. Adipokines and Other Inflammatory Factors
3. Discussion
4. Materials and Methods
4.1. Animals and Study Design
4.2. Intraperitoneal Glucose Tolerance Test
4.3. Blood Samples and Analyses
4.4. RNA Extraction
4.5. Reverse Transcription–Polymerase Chain Reaction (RT–PCR)
4.6. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- Schoettl, T.; Fischer, I.P.; Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 2018, 221, 162958. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Baker, R.D.; Bhatia, T.; Zhu, L.; Baker, S.S. Pathogenesis of nonalcoholic steatohepatitis. Cell. Mol. Life Sci. 2016, 73, 1969–1987. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Marra, F.; Lotersztajn, S. Pathophysiology of NASH: Perspectives for a Targeted Treatment. Curr. Pharm. Des. 2013, 19, 5250–5269. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic Acids in Berries, Fruits, and Beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Phytochemical Properties and Antioxidant Activities of Extracts from Wild Blueberries and Lingonberries. Plant Foods Hum. Nutr. 2017, 72, 360–364. [Google Scholar] [CrossRef]
- Mena, P.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Baenas, N.; García-Viguera, C.; Villaño, D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life 2014, 66, 745–758. [Google Scholar] [CrossRef]
- Chan, S.W.; Tomlinson, B. Effects of Bilberry Supplementation on Metabolic and Cardiovascular Disease Risk. Molecules 2020, 25, 1653. [Google Scholar] [CrossRef] [Green Version]
- Chau, Y.Y.; Bandiera, R.; Serrels, A.; Martínez-Estrada, O.M.; Qing, W.; Lee, M.; Slight, J.; Thornburn, A.; Berry, R.; Mchaffie, S.; et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 2014, 16, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rabearivony, A.; Zhang, W.; Chen, S.; An, X.; Liu, C. Chronopharmacology of simvastatin on hyperlipidaemia in high-fat diet-fed obese mice. J. Cell. Mol. Med. 2020, 24, 11024–11029. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zheng, N.; He, J.; Liu, C.; Feng, J.; Jia, W.; Li, H. Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice. J. Proteome Res. 2017, 16, 1900–1910. [Google Scholar] [CrossRef] [PubMed]
- Tonstad, S.; Després, J.-P. Treatment of lipid disorders in obesity. Expert Rev. Cardiovasc. Ther. 2011, 9, 1069–1080. [Google Scholar] [CrossRef]
- Podrini, C.; Cambridge, E.L.; Lelliott, C.J.; Carragher, D.M.; Estabel, J.; Gerdin, A.-K.; Karp, N.A.; Scudamore, C.L.; Sanger Mouse Genetics Project; Ramirez-Solis, R.; et al. High-fat feeding rapidly induces obesity and lipid derangements in C57BL/6N mice. Mamm. Genome 2013, 24, 240–251. [Google Scholar] [CrossRef]
- Guo, J.; Jou, W.; Gavrilova, O.; Hall, K.D. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS ONE 2009, 4, e5370. [Google Scholar] [CrossRef]
- Biddinger, S.B.; Almind, K.; Miyazaki, M.; Kokkotou, E.; Ntambi, J.M.; Kahn, C.R. Effects of diet and genetic background on sterol regulatory element-binding protein-1c, stearoyl-CoA desaturase 1, and the development of the metabolic syndrome. Diabetes 2005, 54, 1314–1323. [Google Scholar] [CrossRef]
- Heyman, L.; Axling, U.; Blanco, N.; Sterner, O.; Holm, C.; Berger, K. Evaluation of beneficial metabolic effects of berries in high-fat fed C57BL/6J mice. J. Nutr. Metab. 2014, 2014, 403041. [Google Scholar] [CrossRef]
- Mykkänen, O.T.; Huotari, A.; Herzig, K.H.; Dunlop, T.W.; Mykkänen, H.; Kirjavainen, P.V. Wild blueberries (vaccinium myrtillus) alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet. PLoS ONE 2014, 9, e114790. [Google Scholar] [CrossRef]
- Takahashi, A.; Shimizu, H.; Okazaki, Y.; Sakaguchi, H.; Taira, T.; Suzuki, T.; Chiji, H. Anthocyanin-rich phytochemicals from aronia fruits inhibit visceral fat accumulation and hyperglycemia in high-fat diet-induced dietary obese rats. J. Oleo Sci. 2015, 64, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Silamiķele, L.; Silamiķelis, I.; Ustinova, M.; Kalniņa, Z.; Elbere, I.; Petrovska, R.; Kalniņa, I.; Kloviņš, J. Metformin Strongly Affects Gut Microbiome Composition in High-Fat Diet-Induced Type 2 Diabetes Mouse Model of Both Sexes. Front. Endocrinol. (Lausanne) 2021, 12, 626359. [Google Scholar] [CrossRef] [PubMed]
- Mandwie, M.; Karunia, J.; Niaz, A.; Keay, K.A.; Musumeci, G.; Rennie, C.; McGrath, K.; Al-Badri, G.; Castorina, A. Metformin Treatment Attenuates Brain Inflammation and Rescues PACAP/VIP Neuropeptide Alterations in Mice Fed a High-Fat Diet. Int. J. Mol. Sci. 2021, 22, 13660. [Google Scholar] [CrossRef] [PubMed]
- Caro, J.F.; Ittoop, O.; Pories, W.J.; Meelheim, D.; Flickinger, E.G.; Thomas, F.; Jenquin, M.; Silverman, J.F.; Khazanie, P.G.; Sinha, M.K. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity. J. Clin. Investig. 1986, 78, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Soll, A.H.; Kahn, C.R.; Neville, D.M. Insulin binding to liver plasma membranes in the obese hyperglycemic (ob/ob) mouse. Demonstration of a decreased number of functionally normal receptors. J. Biol. Chem. 1975. [Google Scholar] [CrossRef]
- Neuschwander-Tetri, B.A. Non-alcoholic fatty liver disease. BMC Med. 2017, 15, 45. [Google Scholar] [CrossRef]
- Cobbina, E.; Akhlaghi, F. Non-alcoholic fatty liver disease (NAFLD)—Pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab. Rev. 2017, 49, 197–211. [Google Scholar] [CrossRef]
- Takahashi, M.; Takahashi, Y.; Takahashi, K.; Zolotaryov, F.N.; Hong, K.S.; Iida, K.; Okimura, Y.; Kaji, H.; Chihara, K. CXCL14 enhances insulin-dependent glucose uptake in adipocytes and is related to high-fat diet-induced obesity. Biochem. Biophys. Res. Commun. 2007, 364, 1037–1042. [Google Scholar] [CrossRef]
- Hara, T.; Tanegashima, K. Pleiotropic functions of the CXC-type chemokine CXCL14 in mammals. J. Biochem. 2012, 151, 469–476. [Google Scholar] [CrossRef]
- Lv, J.; Wu, Z.L.; Gan, Z.; Gui, P.; Yao, S.L. CXCL14 Overexpression Attenuates Sepsis-Associated Acute Kidney Injury by Inhibiting Proinflammatory Cytokine Production. Mediators Inflamm. 2020, 2020, 2431705. [Google Scholar] [CrossRef]
- Cereijo, R.; Gavaldà-Navarro, A.; Cairó, M.; Quesada-López, T.; Villarroya, J.; Morón-Ros, S.; Sánchez-Infantes, D.; Peyrou, M.; Iglesias, R.; Mampel, T.; et al. CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation. Cell Metab. 2018, 28, 750–763. [Google Scholar] [CrossRef] [Green Version]
- Sack, G.H. Serum amyloid A—A review. Mol. Med. 2018, 24, 46. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Walden, T.B.; Cai, D.; Ahl, D.; Bertilsson, S.; Phillipson, M.; Nyman, M.; Holm, L. Dietary fiber in bilberry ameliorates pre-obesity events in rats by regulating lipid depot, cecal short-chain fatty acid formation and microbiota composition. Nutrients 2019, 11, 1350. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, R.A.; Morrison, M.C.; Sheedfar, F.; Mulder, P.; Schreurs, M.; Hommelberg, P.P.H.; Hofker, M.H.; Schalkwijk, C.; Kleemann, R.; Tietge, U.J.F.; et al. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity. Mediators Inflamm. 2016, 2016, 2042107. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; Ljubicic, S.; Leibiger, B.; Kern, M.; Leibiger, I.B.; Moede, T.; Kelly, M.E.; Chatterjee Bhowmick, D.; Murano, I.; Cohen, P.; et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell 2014, 158, 41–53. [Google Scholar] [CrossRef]
- Gómez-Banoy, N.; Guseh, J.S.; Li, G.; Rubio-Navarro, A.; Chen, T.; Poirier, B.A.; Putzel, G.; Rosselot, C.; Pabón, M.A.; Camporez, J.P.; et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat. Med. 2019, 25, 1739–1747. [Google Scholar] [CrossRef]
- Liu, J.; Hefni, M.E.; Witthöft, C.M. Characterization of Flavonoid Compounds in Common Swedish Berry Species. Foods 2020, 9, 358. [Google Scholar] [CrossRef]
- Hajazimi, E.; Landberg, R.; Zamaratskaia, G. Simultaneous determination of flavonols and phenolic acids by HPLC-CoulArray in berries common in the Nordic diet. LWT 2016, 74, 128–134. [Google Scholar] [CrossRef]
- Lätti, A.K.; Riihinen, K.R.; Kainulainen, P.S. Analysis of Anthocyanin Variation in Wild Populations of Bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 2008, 56, 190–196. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Yoon, Y.; Yoon, H.; Park, H.-M.; Song, S.; Yeum, K.-J. Dietary Anthocyanins against Obesity and Inflammation. Nutrients 2017, 9, 1089. [Google Scholar] [CrossRef]
- Yao, Y.; Vieira, A. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity. Neurotoxicology 2007, 28, 93–100. [Google Scholar] [CrossRef]
- Može, S.; Polak, T.; Gašperlin, L.; Koron, D.; Vanzo, A.; Poklar Ulrih, N.; Abram, V. Phenolics in Slovenian Bilberries (Vaccinium myrtillus L.) and Blueberries (Vaccinium corymbosum L.). J. Agric. Food Chem. 2011, 59, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Su, Z. Anthocyanins and Flavonoids of Vaccinium L. Pharm. Crop. 2012, 3, 7–37. [Google Scholar] [CrossRef]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
- Hellström, J.K.; Törrönen, A.R.; Mattila, P.H. Proanthocyanidins in Common Food Products of Plant Origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef]
- Harada, G.; Onoue, S.; Inoue, C.; Hanada, S.; Katakura, Y. Delphinidin-3-glucoside suppresses lipid accumulation in HepG2 cells. Cytotechnology 2018, 70, 1707–1712. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, Q.; Wang, Y.; Zhang, Y.; Xia, M. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway. Free Radic. Biol. Med. 2012, 52, 314–327. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Zhang, H.; Wang, Y.; Wu, C.; Huang, W. Malvidin induces hepatic stellate cell apoptosis via the endoplasmic reticulum stress pathway and mitochondrial pathway. Food Sci. Nutr. 2020, 8, 5095–5106. [Google Scholar] [CrossRef]
- Decendit, A.; Mamani-Matsuda, M.; Aumont, V.; Waffo-Teguo, P.; Moynet, D.; Boniface, K.; Richard, E.; Krisa, S.; Rambert, J.; Mérillon, J.-M.; et al. Malvidin-3-O-β glucoside, major grape anthocyanin, inhibits human macrophage-derived inflammatory mediators and decreases clinical scores in arthritic rats. Biochem. Pharmacol. 2013, 86, 1461–1467. [Google Scholar] [CrossRef]
- Mackert, J.D.; McIntosh, M.K. Combination of the anthocyanidins malvidin and peonidin attenuates lipopolysaccharide-mediated inflammatory gene expression in primary human adipocytes. Nutr. Res. 2016, 36, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Singh, I.; Rose’ Meyer, R. Cytoprotective effects of berry anthocyanins against induced oxidative stress and inflammation in primary human diabetic aortic endothelial cells. Chem. Biol. Interact. 2020, 317, 108940. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003, 133, 2125–2130. [Google Scholar] [CrossRef]
- Daveri, E.; Cremonini, E.; Mastaloudis, A.; Hester, S.N.; Wood, S.M.; Waterhouse, A.L.; Anderson, M.; Fraga, C.G.; Oteiza, P.I. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol. 2018, 18, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Takikawa, M.; Inoue, S.; Horio, F.; Tsuda, T. Dietary Anthocyanin-Rich Bilberry Extract Ameliorates Hyperglycemia and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic Mice. J. Nutr. 2010, 140, 527–533. [Google Scholar] [CrossRef]
- Huang, F.; Marungruang, N.; Kostiuchenko, O.; Kravchenko, N.; Burleigh, S.; Prykhodko, O.; Hållenius, F.F.; Heyman-Lindén, L. Identification of Nordic Berries with Beneficial Effects on Cognitive Outcomes and Gut Microbiota in High-Fat-Fed Middle-Aged C57BL/6J Mice. Nutrients 2022, 14, 2734. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Walden, T.B.; Ahl, D.; Nyman, M.; Bertilsson, S.; Phillipson, M.; Holm, L. High-Fat Diet Enriched with Bilberry Modifies Colonic Mucus Dynamics and Restores Marked Alterations of Gut Microbiome in Rats. Mol. Nutr. Food Res. 2019, 63, e1900117. [Google Scholar] [CrossRef]
- Gérard, P. Gut microbiota and obesity. Cell. Mol. Life Sci. 2016, 73, 147–162. [Google Scholar] [CrossRef]
- Sakakibara, H.; Ogawa, T.; Koyanagi, A.; Kobayashi, S.; Goda, T.; Kumazawa, S.; Kobayashi, H.; Shimoi, K. Distribution and excretion of bilberry anthocyanins [corrected] in mice. J. Agric. Food Chem. 2009, 57, 7681–7686. [Google Scholar] [CrossRef]
- Wallace, T.C.; Slavin, M.; Frankenfeld, C.L. Systematic Review of Anthocyanins and Markers of Cardiovascular Disease. Nutrients 2016, 8, 32. [Google Scholar] [CrossRef]
- Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol. Nutr. Food Res. 2012, 56, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Suomela, J.P.; Tahvonen, R.; Yang, B.; Venojärvi, M.; Viikari, J.; Kallio, H. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women. Eur. J. Clin. Nutr. 2011, 65, 394–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tissue | Low-Fat Diet (LF) | High-Fat Diet (HF) | Bilberry Supplemented High-Fat Diet (HF+BLB) | p-Value between LF and HF | p-Value between HF and HF+BLB |
---|---|---|---|---|---|
Week 6 | |||||
Epididymal fat (g) | 0.84 ± 0.04 | 2.01 ± 0.09 | 1.99 ± 0.08 | <0.001 | ns |
Liver (g) | 1.01 ± 0.03 | 1.29 ± 0.05 | 1.18 ± 0.04 | <0.001 | ns |
Week 12 | |||||
Epididymal fat (g) | 1.16 ± 0.09 | 2.82 ± 0.11 | 2.81 ± 0.12 | <0.001 | ns |
Liver (g) | 1.20 ± 0.05 | 1.45 ± 0.11 | 1.37 ± 0.05 | 0.0780 | ns |
Protein | Low-Fat Diet (LF) | High-Fat Diet (HF) | Bilberry Supplemented High-Fat Diet (HF+BLB) | p-Value between LF and HF | p-Value between HF and HF+BLB |
---|---|---|---|---|---|
Week 6 | |||||
Adiponectin (mg/L) | 7.43 ± 0. 20 | 6.20 ± 0.12 | 6.21 ± 0.49 | <0.001 | ns |
Adipsin (mg/L) | 11.7 ± 0.38 | 7.48 ± 0.33 | 9.36 ± 0.37 | <0.001 | <0.01 |
Leptin (μg/L) | 3.52 ± 6.88 | 25.8 ± 2.25 | 21.8 ± 2.52 | <0.001 | ns |
Resistin (μg/L) | 17.8 ± 0.69 | 16.5 ± 0.58 | 16.7 ± 0.47 | ns | ns |
SAA (μg/L) | 219 ± 21.3 | 388 ± 33.2 | 201 ± 13.0 | <0.001 | <0.001 |
Week 12 | |||||
Adiponectin (mg/L) | 6.56 ± 0.12 | 6.35 ± 0.20 | 6.72 ± 0.25 | ns | ns |
Adipsin (mg/L) | 9.99 ± 0.38 | 6.90 ± 0.55 | 7.67 ± 0.38 | <0.001 | ns |
Leptin (μg/L) | 6.88 ± 1.09 | 39.1 ± 4.47 | 39.1 ± 2.52 | <0.001 | ns |
Resistin (μg/L) | 18.5 ± 1.14 | 17.7 ± 0.63 | 15.8 ± 0.74 | ns | ns |
SAA (μg/L) | 269 ± 24.4 | 629 ± 87.2 | 348 ± 106 | <0.01 | <0.01 |
Gene | Low-Fat Diet (LF) | High-Fat Diet (HF) | Bilberry Supplemented High-Fat Diet (HF+BLB) | p-Value between LF and HF | p-Value between HF and HF+BLB |
---|---|---|---|---|---|
Week 6 | |||||
Adiponectin | 1 ± 0.04 | 1.00 ± 0.09 | 1.00 ± 0.078 | ns | ns |
Adipsin | 1 ± 0.07 | 0.57 ± 0.05 | 0.73 ± 0.07 | < 0.001 | ns |
Leptin | 1 ± 0.09 | 3.77 ± 0.35 | 3.52 ± 0.35 | < 0.001 | ns |
Leptin receptor | 1 ± 0.10 | 0.80 ± 0.11 | 0.93 ± 0.23 | ns | ns |
Resistin | 1 ± 0.05 | 0.89 ± 0.08 | 0.86 ± 0.07 | ns | ns |
Week 12 | |||||
Adiponectin | 1 ± 0.05 | 0.85 ± 0.12 | 0.85 ± 0.07 | ns | ns |
Adipsin | 1 ± 0.08 | 0.41 ± 0.08 | 0.46 ± 0.09 | < 0.001 | ns |
Leptin | 1 ± 0.15 | 2.54 ± 0.281 | 2.80 ± 0.33 | < 0.001 | ns |
Leptin receptor | 1 ± 0.18 | 0.87 ± 0.19 | 0.93 ± 0.14 | ns | ns |
Resistin | 1 ± 0.06 | 0.54 ± 0.05 | 0.47 ± 0.08 | < 0.001 | ns |
Nutrients | Low-Fat Diet (LF) | High-Fat Diet (HF) | Bilberry Supplemented High-Fat Diet (HF+BLB) |
---|---|---|---|
Calculated energy (kcal) | |||
Protein | 716 | 716 | 716 |
Carbohydrate | 2840 | 1422 | 1422 |
Fat | 405 | 1823 | 1823 |
Total Energy | 3961 | 3961 | 3961 |
Calculated Energy per gram diet (kcal/g) | 3.72 | 4.56 | 4.41 |
Calculated Energy (kcal%) | |||
Protein | 18 | 18 | 18 |
Carbohydrate | 72 | 36 | 36 |
Fat | 10 | 46 | 46 |
Total Energy | 100 | 100 | 100 |
Bilberry powder (g) | 0 | 0 | 180 1 |
Ingredients (g) | |||
Casein (protein) | 200 | 200 | 189 (+ 10 from BLB), total 199 |
L-Cystine | 3 | 3 | 3 |
Corn Starch | 48 | 68 | 49 (+ 23 from BLB), total 72 |
Maltodextrin 10 | 75 | 100 | 100 |
Glucose | 28 | 28 | 0 (+ 28 from BLB), total 28 |
Fructose | 38 | 38 | 0 (+ 38 from BLB), total 38 |
Sucrose | 107 | 107 | 107 |
Cellulose (insoluble fiber) | 54 | 54 | 22 (+ 32 from BLB), total 54 |
Inulin (soluble fiber) | 12 | 12 | 3 (+ 9 from BLB), total 12 |
Soybean Oil | 25 | 25 | 9 (+ 12 from BLB), total 21 |
Lard | 20 | 178 | 182 |
Mineral Mix S10026 | 10 | 10 | 10 |
DiCalcium Phosphate | 13 | 13 | 13 |
Calcium Carbonate | 6 | 6 | 6 |
Potassium Citrate | 17 | 17 | 17 |
Vitamin Mix V10001 | 10 | 10 | 10 |
Choline Bitartrate | 2 | 2 | 2 |
Gene | Abbr. | Assay ID |
---|---|---|
Adiponectin | Adipoq | Mm00456425_m1 |
Adipsin | And | Mm01143935_g1 |
Chemokine (C-C motif) ligand 9 | Ccl9 | Mm00441260_m1 |
Chemokine (C-X-C motif) ligand 14 | Cxcl14 | Mm00444699_m1 |
Glucose transporter 2 | Glut2 | Mm00446229_m1 |
Glucose transporter 4 | Glut4 | Mm00436615_m1 |
Insulin like growth factor binding protein 2 | Igfbp2 | Mm00492632_m1 |
Insulin receptor | Insr | Mm01211875_m1 |
Interleukin 1β | Il1b | Mm00434228_m1 |
Leptin | Lep | Mm00434759_m1 |
Leptin receptor | Lepr | Mm00440181_m1 |
Mannose receptor C type 2 | Mrc2 | Mm00485184_m1 |
Metallothionein 1 | Mt1 | Mm00496660_g1 |
Monocyte chemoattractant protein 1 | Mcp1 | Mm00441242_m1 |
Peroxisome proliferator-activated receptor γ | Pparg | Mm01184322_m1 |
Peroxisome proliferator-activated receptor γ coactivator 1α | Ppargc1a | Mm01208835_m1 |
Resistin | Retn | Mm00445641_m1 |
S100 calcium-binding protein A8 | S100a8 | Mm00496696_g1 |
S100 calcium-binding protein A10 | S100a10 | Mm00501458_g1 |
Serum amyloid A1 | Saa1 | Mm00656927_g1 |
Serum amyloid A2 | Saa2 | Mm04208126_mH |
Serum amyloid A3 | Saa3 | Mm00441203_m1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pemmari, T.; Hämäläinen, M.; Ryyti, R.; Peltola, R.; Moilanen, E. Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. Int. J. Mol. Sci. 2022, 23, 11021. https://doi.org/10.3390/ijms231911021
Pemmari T, Hämäläinen M, Ryyti R, Peltola R, Moilanen E. Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. International Journal of Molecular Sciences. 2022; 23(19):11021. https://doi.org/10.3390/ijms231911021
Chicago/Turabian StylePemmari, Toini, Mari Hämäläinen, Riitta Ryyti, Rainer Peltola, and Eeva Moilanen. 2022. "Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity" International Journal of Molecular Sciences 23, no. 19: 11021. https://doi.org/10.3390/ijms231911021
APA StylePemmari, T., Hämäläinen, M., Ryyti, R., Peltola, R., & Moilanen, E. (2022). Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. International Journal of Molecular Sciences, 23(19), 11021. https://doi.org/10.3390/ijms231911021