Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses
Abstract
:1. Introduction
2. Results
2.1. Effects of FAT and Ligustilide on Cell Viability
2.2. Effects of FAT on mRNA Expression of Filaggrin, Involucrin, and Loricurin in HaCaT Cells
2.3. Effects of FAT on mRNA Expression of SPT and TARC in HaCaT Cells
2.4. Effects of FAT on IL-6 Expression and Pro-Inflammatory Mediator Production in LPS-Induced RAW264.7 Cells
2.5. Effects of Ligustilide on mRNA Expression Levels of Filaggrin and SPTLC1 and Production of TARC in HaCaT Cells
2.6. Effects of Ligustilide on IL-6 Expression and Pro-Inflammatory Mediator Production in LPS-Induced RAW264.7 Cells
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Fermented Angelicae tenussimae with Aspergillus oryzae (FAT)
4.3. Cell Culture
4.4. Cell Viability
4.5. RT-PCR Analysis
4.6. TARC Production
4.7. TNF-α and Nitric Oxide Assay
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bylund, S.; Kobyletzki, L.B.; Svalstedt, M.; Svensson, Å. Prevalence and Incidence of Atopic Dermatitis: A Systematic Review. Acta Derm. Venereol. 2020, 100, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Shin, J.U.; Lee, K.H. Atopic dermatitis and skin barrier dysfunction. Allergy Asthma Respir. Dis. 2013, 1, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.H.; Yoon, N.Y. Pathogenesis of atopic dermatitis. J. Korean Med. Assoc. 2014, 57, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Steven, A.C.; Steinert, P.M. Protein composition of cornified cell envelopes of epidermal keratinocytes. J. Cell Sci. 1994, 107, 693–700. [Google Scholar] [CrossRef]
- Steinert, P.M.; Cantieri, J.S.; Teller, D.C.; Lonsdale-Eccles, J.D.; Dale, B.A. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc. Natl. Acad. Sci. USA 1981, 78, 4097–4101. [Google Scholar] [CrossRef] [Green Version]
- Harding, C.R.; Watkinson, A.; Rawlings, A.V.; Scott, I.R. Dry skin, moisturization and corneodesmolysis. Int. J. Cosmet. Sci. 2000, 22, 21–52. [Google Scholar] [CrossRef]
- Hänel, K.H.; Cornelissen, C.; Lüscher, B.; Baron, J.M. Cytokines and the Skin Barrier. Int. J. Mol. Sci. 2013, 14, 6720–6745. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, Y. Thymus and activation-regulated chemokine as a clinical biomarker in atopic dermatitis. J. Dermatol. 2014, 41, 221–229. [Google Scholar] [CrossRef]
- Kim, C.M.; Sin, M.K.; Ahn, D.K.; Lee, K.S. Dictionary of Chinese Materia Medica; Jungdam Publishing: Seoul, Korea, 1997. [Google Scholar]
- Weeratunga, P.; Uddin, M.B.; Kim, M.S.; Lee, B.H.; Kim, T.H.; Yoon, J.E.; Ma, J.Y.; Kim, H.; Lee, J.-S. Interferon-mediated antiviral activities of Angelica tenuissima Nakai and its active components. J. Microbiol. 2016, 54, 57–70. [Google Scholar] [CrossRef]
- Ahn, S.J.; Baek, J.M.; Cheon, Y.H.; Park, S.H.; Lee, M.S.; Oh, J.; Ahn, S.-J.; Baek, J.M.; Cheon, Y.-H.; Park, S.-H.; et al. The inhibitory effect of Angelica Tenuissima water extract on receptor activator of nuclear factor-kappa-B ligand-induced osteoclast differentiation and bone resorbing activity of mature osteoclasts. Am. J. Chin. Med. 2015, 43, 715–729. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, H.; Kim, H.; Lee, H.; Sung, Y.H.; Kim, S.E.; Chang, H.-K.; Shin, M.-C.; Shin, M.-S.; Kim, C.-J. Inhibitory effect of Angelicae tenuissimae Radix on expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Neurol. Res. 2010, 32 (Suppl. 1), 58–63. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, D.; Yang, I.; Choi, B.; Lee, J.W.; Namkoong, S.; Koo, H.J.; Lee, S.R.; Park, M.R.; Lim, H.; et al. Decursin and Z-ligustilide in Angelica tenuissima root extract fermented by Aspergillus oryzae display anti-pigment activity in melanoma cells. J. Microbiol. Biotechnol. 2018, 28, 1061–1067. [Google Scholar] [CrossRef]
- Park, Y.-A.; Lee, S.R.; Lee, J.W.; Koo, H.J.; Jang, S.-A.; Yun, S.-W.; Kim, H.J.; Woo, J.S.; Park, M.R.; Kang, S.C.; et al. Suppressive effect of fermented Angelica tenuissima root extract against photoaging: Possible involvement of hemeoxygenase-1. J. Microbiol. Biotechnol. 2018, 28, 1391–1400. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.J.; Lee, S.R.; Park, Y.; Lee, J.W.; So, G.; Kim, S.H.; Ha, C.W.; Lee, S.E.; Bak, J.P.; Ham, S.R.; et al. Inhibitory effects of ethanol extract from Angelica tenuissima root on oxidative stress and melanogenesis. Korean J. Plant Res. 2018, 31, 312–321. [Google Scholar]
- Bieber, T. Atopic dermatitis. N. Engl. J. Med. 2008, 358, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Elias, P.M. Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 1983, 80 (Suppl. 1), 44S–49S. [Google Scholar] [CrossRef]
- Serre, G.; Mils, V.; Haftek, M.; Vincent, C.; Croute, F.; Reano, A.; Ouhayoun, J.-P.; Bettinger, S.; Soleihavoup, J.-P. Identification of late differentiation antigens of human cornified epithelia, expressed in re-organized desmosomes and bound to cross-linked envelope. J. Invest. Dermatol. 1991, 97, 1061–1672. [Google Scholar] [CrossRef] [Green Version]
- Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005, 6, 328–340. [Google Scholar] [CrossRef]
- Lair, B.; Laurens, C.; Van Den Bosch, B.; Moro, C. Novel insights and mechanisms of lipotoxicity-driven insulin resistance. Int. J. Mol. Sci. 2020, 21, 6358. [Google Scholar] [CrossRef]
- Jonca, N. Ceramides metabolism and impaired epidermal barrier in cutaneous diseases and skin aging: Focus on the role of the enzyme PNPLA1 in the synthesis of ω-O-acylceramides and its pathophysiological involvement in some forms of congenital ichthyoses. OCL 2019, 26, 17–23. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Lee, C.-W.; Cha, S.Y.; Choi, J.-W.; Lee, S. Skin barrier enhancement of ferment using Lava Seawater and Lactobacillus plantarum HDB1234 as a novel cosmetic ingredient. J. Kor. Soc. Cosmetol. 2021, 27, 356–363. [Google Scholar] [CrossRef]
- Lorz, L.R.; Kim, M.Y.; Cho, J.Y. Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment. J. Ginseng Res. 2020, 44, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Wang, W.H.; Chen, S.H.; Chang, Y.W.; Hung, L.C.; Chen, C.Y.; Chen, Y.H. Lipopolysaccharide-induced nitric oxide, prostaglandin E2, and cytokine production of mouse and human macrophages are suppressed by pheophytin-b. Int. J. Mol. Sci. 2017, 18, 2637. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-G.; Kim, M.; Kang, S.; Kim, Y.-J. Novel Sporichthyaceae Bacterium Strain K-07 skin barrier, moisturizing and anti-inflammatory activity. J. Soc. Cosmet. Sci. 2017, 43, 137–147. [Google Scholar]
- Cho, B.O.; Yin, H.H.; Shin, J.Y.; Fang, C.Z.; Chang, C.D.; Jang, S.I. Anti-atopic effects of mixed extracts from date plum, persimmon, and mulberry leaves. J. Korean Soc. Food Sci. Nutr. 2016, 45, 501–509. [Google Scholar] [CrossRef]
Name | Forward (5′→3′) Reverse (5′→3′) |
---|---|
Filaggrin | CAC CGC GAT ACA GCC AGT AGC TGC CAT GTC TCC AAA CTA |
Involucrin | GGG ACT GCC TGA GCA AGA AT GGA GCT CCA ACA GTT GCT CT |
Loricurin | AAC AGT ATC AGT GCC AGA GC TCT GAC TGG TCT GCT GAG AG |
Serine Palmitoyltransferase Long Chain Base Subunit 1 (SPTLC1) | GCG CGC TAC TTG GAG AAA GA TGT TCC ACC GTG ACC ACA AC |
Serine Palmitoyltransferase Long Chain Base Subunit 2 (SPTLC2) | AGC CGC CAA AGT CCT TGA G CTT GTC CAG GTT TCC AAT TTC C |
Thymus and activation-regulated chemokine (TARC) | CTT CTC TGC AGC ACA TCC AC CTG CCC TGC ACA GTT ACA AA |
GAPDH | GTG GCA AAG TGG AGA TTG CC GAT GAT GAC CCG TTT GGC TCC |
IL-6 | TGG AGT CAC AGA AGG AGT GGC TAA TCT GAC CAC AGT GAG GAA TGT CCA C |
β-actin | GAC AGG ATG CAG AAG GAG ATT ACT TGA TCC ACA TCT GCT GGA AGG T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, C.-W.; Sohn, E.-H.; Kim, S.-H.; Jang, S.; Park, M.-R.; Kim, Y.-K.; Bae, I.-Y. Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses. Int. J. Mol. Sci. 2022, 23, 12072. https://doi.org/10.3390/ijms232012072
Ha C-W, Sohn E-H, Kim S-H, Jang S, Park M-R, Kim Y-K, Bae I-Y. Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses. International Journal of Molecular Sciences. 2022; 23(20):12072. https://doi.org/10.3390/ijms232012072
Chicago/Turabian StyleHa, Chang-Woo, Eun-Hwa Sohn, Sung-Hyeok Kim, Sohee Jang, Myung-Rye Park, Youn-Kyu Kim, and In-Young Bae. 2022. "Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses" International Journal of Molecular Sciences 23, no. 20: 12072. https://doi.org/10.3390/ijms232012072
APA StyleHa, C. -W., Sohn, E. -H., Kim, S. -H., Jang, S., Park, M. -R., Kim, Y. -K., & Bae, I. -Y. (2022). Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses. International Journal of Molecular Sciences, 23(20), 12072. https://doi.org/10.3390/ijms232012072