The Role of Tryptophan Metabolites in Neuropsychiatric Disorders
Abstract
:1. Introduction
- Kynurenine pathway (KP) creates nicotinic acid as a precursor to nicotinamide adenine dinucleotide coenzymes.
- Serotonin pathway (SP) eventuates in the production of serotonin as a neurotransmitter and melatonin as a neuromodulator.
2. TRP Metabolism
3. Neurotransmitters Precursor
4. TRP and Its Metabolites Quantification
5. The Role of TRP in Psychiatric Disorders
Disorder | Biomarker | Biomarker Classification | Outcome of Findings | Ref. |
---|---|---|---|---|
Depression (including MDD) | CRP, IL-6, TNF-α | Inflammatory | The simultaneous existence of three biomarkers in patients suffering from depression. | [113] |
Alteration in δ/β activity of EEG | Electro- physiological | Simultaneous decrement of δ-power and increase of β activity in the frontal lobe in people suffering from depression. | [98] | |
α1-anti-trypsin Epo-lipoprotein C3 Cortisol Myeloperoxidase | Protein | These biomarkers not only can be applied for MDD detection but also are able to estimate treatment response. | [114] | |
lncRNAs | Genetic | The expression of lncRNAs can act as a promising biomarker for improving the detection of MDD in the clinical setting. | [115] | |
Angiotensin-converting enzyme BDNF Cortisol | Proteomic | Preparation of anecdotal evidence about the increment of pro-inflammatory/oxidative stress response in the acute stages of MDD. | [116] | |
Mood disorders (particularly anxiety) | SB100 | Protein | Elevation of SB100 in patients suffering from mood disorders, including anxiety. | [117] |
Schizophrenia | Variation in β and θ activity | Electro- physiological | The surveys report the increase of β activity in all brain zones followed by increased θ activity in the upper temporal gyrus. | [118] |
sTNF-R1, IL-6, IL-1Ra, OPG, vWf, sCD40L and hsCRP Pro-inflammatory markers | Inflammatory | The study supports considerable negative associations between inflammatory markers and general cognitive abilities. | [119] | |
BD | BDNF | Protein | Significant decrease of BDNF in acute manic and BD. | [120] |
ADHD | SNAP-25 gene | Genetic | The SNAP-25 T allele leads to a genetic load for ADHD. | [121] |
PTSD | BNP | Protein | The amount of BNP is abnormally low in patients suffering from chronic PTSD. | [122] |
6. Pharmacological Influences of TRP in Neuropsychiatric Diseases
7. Toxicology of TRP and Its Metabolites
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muneer, A. Kynurenine pathway of tryptophan metabolism in neuropsychiatric disorders: Pathophysiologic and therapeutic considerations. Clin. Psychopharmacol. Neurosci. 2020, 18, 507. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R.; Stone, T.W. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017, 112, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Comai, S.; Bertazzo, A.; Brughera, M.; Crotti, S. Tryptophan in health and disease. Adv. Clin. Chem. 2020, 95, 165–218. [Google Scholar] [PubMed]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar]
- Comai, S.; Cavalletto, L.; Chemello, L.; Bernardinello, E.; Ragazzi, E.; Costa, C.V.L.; Bertazzo, A. Effects of PEG-interferon alpha plus ribavirin on tryptophan metabolism in patients with chronic hepatitis C. Pharmacol. Res. 2011, 63, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef]
- Höglund, E.; Øverli, Ø.; Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Front. Endocrinol. 2019, 10, 158. [Google Scholar] [CrossRef]
- Rizzi, A.; Comai, S.; Bertazzo, A.; Costa, C.V.; Allegri, G.; Traldi, P. An investigation on the possible role of melatonin in melanogenesis. J. Mass Spectrom. 2006, 41, 517–526. [Google Scholar] [CrossRef]
- Vogliardi, S.; Bertazzo, A.; Comai, S.; Costa, C.V.; Allegri, G.; Seraglia, R.; Traldi, P. An investigation on the role of 3-hydroxykynurenine in pigment formation by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 1413–1420. [Google Scholar] [CrossRef]
- Dagenais-Lussier, X.; Loucif, H.; Beji, C.; Telittchenko, R.; Routy, J.-P.; van Grevenynghe, J. Latest developments in tryptophan metabolism: Understanding its role in B cell immunity. Cytokine Growth Factor Rev. 2021, 59, 111–117. [Google Scholar] [CrossRef]
- Platten, M.; Nollen, E.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401. [Google Scholar] [CrossRef] [PubMed]
- Grifka-Walk, H.M.; Jenkins, B.R.; Kominsky, D.J. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front. Immunol. 2021, 12, 2005. [Google Scholar]
- Keegan, M.R.; Chittiprol, S.; Letendre, S.L.; Winston, A.; Fuchs, D.; Boasso, A.; Iudicello, J.; Ellis, R.J. Tryptophan metabolism and its relationship with depression and cognitive impairment among HIV-infected individuals. Int. J. Tryptophan Res. 2016, 9, IJTR-S36464. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A.-B. Kynurenine pathway and human systems. Exp. Gerontol. 2020, 129, 110770. [Google Scholar] [CrossRef]
- Dehhaghi, M.; Kazemi Shariat Panahi, H.; Guillemin, G.J. Microorganisms, tryptophan metabolism, and kynurenine pathway: A complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 2019, 12, 1178646919852996. [Google Scholar] [CrossRef]
- Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147. [Google Scholar] [CrossRef]
- Allen, A.P.; Naughton, M.; Dowling, J.; Walsh, A.; O’Shea, R.; Shorten, G.; Scott, L.; McLoughlin, D.; Cryan, J.F.; Clarke, G. Kynurenine pathway metabolism and the neurobiology of treatment-resistant depression: Comparison of multiple ketamine infusions and electroconvulsive therapy. J. Psychiatr. Res. 2018, 100, 24–32. [Google Scholar] [CrossRef]
- Benedetti, F.; Aggio, V.; Pratesi, M.L.; Greco, G.; Furlan, R. Neuroinflammation in bipolar depression. Front. Psychiatry 2020, 11, 71. [Google Scholar] [CrossRef]
- Price, J.B.; Bronars, C.; Erhardt, S.; Cullen, K.R.; Schwieler, L.; Berk, M.; Walder, K.; McGee, S.L.; Frye, M.A.; Tye, S.J. Bioenergetics and synaptic plasticity as potential targets for individualizing treatment for depression. Neurosci. Biobehav. Rev. 2018, 90, 212–220. [Google Scholar] [CrossRef]
- Group, B.D.W.; Atkinson Jr, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- Adams, Z.W.; McClure, E.A.; Gray, K.M.; Danielson, C.K.; Treiber, F.A.; Ruggiero, K.J. Mobile devices for the remote acquisition of physiological and behavioral biomarkers in psychiatric clinical research. J. Psychiatr. Res. 2017, 85, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yusufu, I.; Ding, K.; Smith, K.; Wankhade, U.D.; Sahay, B.; Patterson, G.T.; Pacholczyk, R.; Adusumilli, S.; Hamrick, M.W.; Hill, W.D.; et al. A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice. Int. J. Mol. Sci. 2021, 22, 5005. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, G.A. Niacin-tryptophan relationships in man and niacin requirement. Am. J. Clin. Nutr. 1958, 6, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Ehrenshaft, M.; Deterding, L.J.; Mason, R.P. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic. Biol. Med. 2015, 89, 220–228. [Google Scholar] [CrossRef]
- Crotti, S.; Enzo, M.V.; Bedin, C.; Pucciarelli, S.; Maretto, I.; Del Bianco, P.; Traldi, P.; Tasciotti, E.; Ferrari, M.; Rizzolio, F. Clinical predictive circulating peptides in rectal cancer patients treated with neoadjuvant chemoradiotherapy. J. Cell. Physiol. 2015, 230, 1822–1828. [Google Scholar] [CrossRef]
- Mishra, A.K.; Choi, J.; Moon, E.; Baek, K.-H. Tryptophan-rich and proline-rich antimicrobial peptides. Molecules 2018, 23, 815. [Google Scholar] [CrossRef]
- Jenabian, M.-A.; Patel, M.; Kema, I.; Kanagaratham, C.; Radzioch, D.; Thébault, P.; Lapointe, R.; Tremblay, C.; Gilmore, N.; Ancuta, P. Distinct tryptophan catabolism and Th17/Treg balance in HIV progressors and elite controllers. PLoS ONE 2013, 8, e78146. [Google Scholar] [CrossRef]
- Fatokun, A.A.; Hunt, N.H.; Ball, H.J. Indoleamine 2, 3-dioxygenase 2 (IDO2) and the kynurenine pathway: Characteristics and potential roles in health and disease. Amino Acids 2013, 45, 1319–1329. [Google Scholar] [CrossRef]
- Anquetil, F.; Mondanelli, G.; Gonzalez, N.; Calvo, T.R.; Gonzalo, J.Z.; Krogvold, L.; Dahl-Jørgensen, K.; Van den Eynde, B.; Orabona, C.; Grohmann, U. Loss of IDO1 expression from human pancreatic β-cells precedes their destruction during the development of type 1 diabetes. Diabetes 2018, 67, 1858–1866. [Google Scholar] [CrossRef]
- Yuasa, H.J.; Mizuno, K.; Ball, H.J. Low efficiency IDO 2 enzymes are conserved in lower vertebrates, whereas higher efficiency IDO 1 enzymes are dispensable. FEBS J. 2015, 282, 2735–2745. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Lee, H.B.; Shin, D.-M.; Kang, M.J.; Eugene, C.Y.; Noh, S.; Lee, J.; Lee, C.; Min, C.-K.; Choi, E.Y. Heme-binding-mediated negative regulation of the tryptophan metabolic enzyme indoleamine 2, 3-dioxygenase 1 (IDO1) by IDO2. Exp. Mol. Med. 2014, 46, e121. [Google Scholar] [CrossRef]
- Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol. 2016, 173, 2702–2725. [Google Scholar] [CrossRef]
- Comai, S.; Gobbi, G. CCNP Award Paper: Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: A novel target in psychopharmacology. J. Psychiatry Neurosci. 2014, 39, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucki, I. The spectrum of behaviors influenced by serotonin. Biol. Psychiatry 1998, 44, 151–162. [Google Scholar] [CrossRef]
- König, D.; Jaźwińska, A. Zebrafish fin regeneration involves transient serotonin synthesis. Wound Repair Regen. 2019, 27, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, G.; Comai, S. Differential function of melatonin MT1 and MT2 receptors in REM and NREM sleep. Front. Endocrinol. 2019, 10, 87. [Google Scholar] [CrossRef]
- Gobbi, G.; Comai, S. Sleep well. Untangling the role of melatonin MT1 and MT2 receptors in sleep. J. Pineal Res. 2019, 66, e12544. [Google Scholar] [CrossRef]
- Back, K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021, 105, 376–391. [Google Scholar] [CrossRef]
- Hemati, K.; Pourhanifeh, M.H.; Dehdashtian, E.; Fatemi, I.; Mehrzadi, S.; Reiter, R.J.; Hosseinzadeh, A. Melatonin and morphine: Potential beneficial effects of co-use. Fundam. Clin. Pharmacol. 2021, 35, 25–39. [Google Scholar] [CrossRef]
- Hassanzadeganroudsari, M.; Soltani, M.; Heydarinasab, A.; Nakhjiri, A.T.; Hossain, M.D.K.; Khiyavi, A.A. Mathematical modeling and simulation of molecular mass transfer across blood brain barrier in brain capillary. J. Mol. Liq. 2020, 310, 113254. [Google Scholar] [CrossRef]
- Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.-Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci. 2012, 13, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Bryleva, E.Y.; Brundin, L. Kynurenine pathway metabolites and suicidality. Neuropharmacology 2017, 112, 324–330. [Google Scholar] [CrossRef]
- Venkatesan, D.; Iyer, M.; Narayanasamy, A.; Siva, K.; Vellingiri, B. Kynurenine pathway in Parkinson’s disease-An update. eNeurologicalSci 2020, 21, 100270. [Google Scholar] [CrossRef] [PubMed]
- Schwarcz, R. Chapter Two—Kynurenines and Glutamate: Multiple Links and Therapeutic Implications. In Advances in Pharmacology; Schwarcz, R., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 76, pp. 13–37. [Google Scholar]
- Chen, Y.; Guillemin, G.J. Kynurenine pathway metabolites in humans: Disease and healthy states. Int. J. Tryptophan Res. 2009, 2, IJTR-S2097. [Google Scholar] [CrossRef]
- Bednarz, H.M.; Kana, R.K. Advances, challenges, and promises in pediatric neuroimaging of neurodevelopmental disorders. Neurosci. Biobehav. Rev. 2018, 90, 50–69. [Google Scholar] [CrossRef]
- Maes, M.; Leonard, B.; Myint, A.; Kubera, M.; Verkerk, R. The new ‘5-HT’hypothesis of depression: Cell-mediated immune activation induces indoleamine 2, 3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 702–721. [Google Scholar]
- Jin, M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, Z.; Ma, S.; Liu, D. TRP channels and their implications in metabolic diseases. Pflügers Arch.-Eur. J. Physiol. 2011, 461, 211–223. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Carmassi, C.; Mucci, F.; Marazziti, D. Depression, serotonin and tryptophan. Curr. Pharm. Des. 2016, 22, 949–954. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, H.; Ni, P.; Xu, B.; Luo, X.; Zhan, Y.; Gao, P.; Zhu, D. Simultaneous determination of urinary tryptophan, tryptophan-related metabolites and creatinine by high performance liquid chromatography with ultraviolet and fluorimetric detection. J. Chromatogr. B 2011, 879, 2720–2725. [Google Scholar] [CrossRef]
- Marcos, J.; Renau, N.; Valverde, O.; Aznar-Laín, G.; Gracia-Rubio, I.; Gonzalez-Sepulveda, M.; Pérez-Jurado, L.A.; Ventura, R.; Segura, J.; Pozo, O.J. Targeting tryptophan and tyrosine metabolism by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1434, 91–101. [Google Scholar] [CrossRef]
- Arnhard, K.; Pitterl, F.; Sperner-Unterweger, B.; Fuchs, D.; Koal, T.; Oberacher, H. A validated liquid chromatography-high resolution-tandem mass spectrometry method for the simultaneous quantitation of tryptophan, kynurenine, kynurenic acid, and quinolinic acid in human plasma. Electrophoresis 2018, 39, 1171–1180. [Google Scholar] [CrossRef]
- Elveny, M.; Khan, A.; Nakhjiri, A.T.; Albadarin, A.B. A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment. Arab. J. Chem. 2021, 14, 103352. [Google Scholar] [CrossRef]
- Sadok, I.; Jędruchniewicz, K.; Rawicz-Pruszyński, K.; Staniszewska, M. UHPLC-ESI-MS/MS Quantification of Relevant Substrates and Metabolites of the Kynurenine Pathway Present in Serum and Peritoneal Fluid from Gastric Cancer Patients—Method Development and Validation. Int. J. Mol. Sci. 2021, 22, 6972. [Google Scholar] [CrossRef]
- Posa, L.; De Gregorio, D.; Gobbi, G.; Comai, S. Targeting melatonin MT2 receptors: A novel pharmacological avenue for inflammatory and neuropathic pain. Curr. Med. Chem. 2018, 25, 3866–3882. [Google Scholar] [CrossRef]
- Manchia, M.; Carpiniello, B.; Valtorta, F.; Comai, S. Serotonin dysfunction, aggressive behavior, and mental illness: Exploring the link using a dimensional approach. ACS Chem. Neurosci. 2017, 8, 961–972. [Google Scholar] [CrossRef]
- Sarrias, M.J.; Cabré, P.; Martínez, E.; Artigas, F. Relationship between serotoninergic measures in blood and cerebrospinal fluid simultaneously obtained in humans. J. Neurochem. 1990, 54, 783–786. [Google Scholar] [CrossRef]
- Aeinehband, S.; Brenner, P.; Ståhl, S.; Bhat, M.; Fidock, M.D.; Khademi, M.; Olsson, T.; Engberg, G.; Jokinen, J.; Erhardt, S. Cerebrospinal fluid kynurenines in multiple sclerosis; relation to disease course and neurocognitive symptoms. Brain Behav. Immun. 2016, 51, 47–55. [Google Scholar] [CrossRef]
- Sühs, K.-W.; Novoselova, N.; Kuhn, M.; Seegers, L.; Kaever, V.; Müller-Vahl, K.; Trebst, C.; Skripuletz, T.; Stangel, M.; Pessler, F. Kynurenine is a cerebrospinal fluid biomarker for bacterial and viral central nervous system infections. J. Infect. Dis. 2019, 220, 127–138. [Google Scholar] [CrossRef]
- Comai, S.; Bertazzo, A.; Vachon, J.; Daigle, M.; Toupin, J.; Côté, G.; Turecki, G.; Gobbi, G. Tryptophan via serotonin/kynurenine pathways abnormalities in a large cohort of aggressive inmates: Markers for aggression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 70, 8–16. [Google Scholar] [CrossRef]
- Kulikova, E.A.; Kulikov, A.V. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: Focus on animal models. Expert Opin. Ther. Targets 2019, 23, 655–667. [Google Scholar] [CrossRef]
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int. J. Mol. Sci. 2021, 22, 2973. [Google Scholar] [CrossRef]
- Huang, J.; Tong, J.; Zhang, P.; Zhou, Y.; Cui, Y.; Tan, S.; Wang, Z.; Yang, F.; Kochunov, P.; Chiappelli, J. Effects of neuroactive metabolites of the tryptophan pathway on working memory and cortical thickness in schizophrenia. Transl. Psychiatry 2021, 11, 198. [Google Scholar] [CrossRef]
- Greenberg, E.; Petriceks, A.H.; Stern, T.A. Intrusive-Destructive Behaviors: Novel Behavioral Presentations of Patients with Co-Occurring Tourette Syndrome, Obsessive-Compulsive Disorder, and Attention-Deficit/Hyperactivity Disorder. Prim. Care Companion CNS Disord. 2021, 23, 28287. [Google Scholar] [CrossRef]
- Dogan-Sander, E.; Strauß, M. Case Report: Treatment of a Comorbid Attention Deficit Hyperactivity Disorder and Obsessive–Compulsive Disorder with Psychostimulants. Front. Psychiatry 2021, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- Wanderer, S.; Roessner, V.; Strobel, A.; Martini, J. WISC-IV performance of children with Chronic Tic Disorder, Obsessive–Compulsive Disorder and Attention-Deficit/Hyperactivity Disorder: Results from a German clinical study. Child Adolesc. Psychiatry Ment. Health 2021, 15, 44. [Google Scholar] [CrossRef]
- Molina-Carballo, A.; Cubero-Millán, I.; Fernández-López, L.; Checa-Ros, A.; Machado-Casas, I.; Jerez-Calero, A.; Blanca-Jover, E.; Cantarero-Malagón, A.-M.; Uberos, J.; Muñoz-Hoyos, A. Methylphenidate ameliorate the homeostatic balance between levels of kynurenines in ADHD children. Psychiatry Res. 2021, 303, 114060. [Google Scholar] [CrossRef]
- Babanezhad, M.; Behroyan, I.; Nakhjiri, A.T.; Rezakazemi, M.; Marjani, A.; Shirazian, S. Prediction of turbulence eddy dissipation of water flow in a heated metal foam tube. Sci. Rep. 2020, 10, 19280. [Google Scholar] [CrossRef]
- Ramos-Chávez, L.; Roldán-Roldán, G.; García-Juárez, B.; González-Esquivel, D.; Pérez de la Cruz, G.; Pineda, B.; Ramírez-Ortega, D.; García Muñoz, I.; Jiménez Herrera, B.; Ríos, C. Low serum tryptophan levels as an indicator of global cognitive performance in nondemented women over 50 years of age. Oxidative Med. Cell. Longev. 2018, 2018, 8604718. [Google Scholar] [CrossRef]
- Karu, N.; McKercher, C.; Nichols, D.S.; Davies, N.; Shellie, R.A.; Hilder, E.F.; Jose, M.D. Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian Chronic Kidney Disease pilot study. BMC Nephrol. 2016, 17, 171. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Jeon, S.W. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr. Neuropharmacol. 2018, 16, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Songtachalert, T.; Roomruangwong, C.; Carvalho, A.F.; Bourin, M.; Maes, M. Anxiety disorders: Sex differences in serotonin and tryptophan metabolism. Curr. Top. Med. Chem. 2018, 18, 1704–1715. [Google Scholar] [CrossRef]
- Sorgdrager, F.; Doornbos, B.; Penninx, B.; de Jonge, P.; Kema, I.P. The association between the hypothalamic pituitary adrenal axis and tryptophan metabolism in persons with recurrent major depressive disorder and healthy controls. J. Affect. Disord. 2017, 222, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Anderson, I.M.; Haddad, P.M.; Scott, J. Bipolar disorder. BMJ Br. Med. J. 2012, 345, e8508. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Okusaga, O.O.; Quevedo, J.; Soares, J.C.; Teixeira, A.L. The potential association between obesity and bipolar disorder: A meta-analysis. J. Affect. Disord. 2016, 202, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Kucyi, A.; Alsuwaidan, M.T.; Liauw, S.S.; McIntyre, R.S. Aerobic physical exercise as a possible treatment for neurocognitive dysfunction in bipolar disorder. Postgrad. Med. 2010, 122, 107–116. [Google Scholar] [CrossRef]
- Zhuang, W.; Hachem, K.; Bokov, D.; Javed Ansari, M.; Taghvaie Nakhjiri, A. Ionic liquids in pharmaceutical industry: A systematic review on applications and future perspectives. J. Mol. Liq. 2021, 349, 118145. [Google Scholar] [CrossRef]
- Lackner, N.; Bengesser, S.; Birner, A.; Painold, A.; Fellendorf, F.; Platzer, M.; Reininghaus, B.; Weiss, E.; Mangge, H.; McIntyre, R. Abdominal obesity is associated with impaired cognitive function in euthymic bipolar individuals. World J. Biol. Psychiatry 2016, 17, 535–546. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Danilewitz, M.; Liauw, S.S.; Kemp, D.E.; Nguyen, H.T.; Kahn, L.S.; Kucyi, A.; Soczynska, J.K.; Woldeyohannes, H.O.; Lachowski, A. Bipolar disorder and metabolic syndrome: An international perspective. J. Affect. Disord. 2010, 126, 366–387. [Google Scholar] [CrossRef]
- Widner, B.; Laich, A.; Sperner-Unterweger, B.; Ledochowski, M.; Fuchs, D. Neopterin production, tryptophan degradation, and mental depression—what is the link? Brain Behav. Immun. 2002, 16, 590–595. [Google Scholar] [CrossRef]
- Hebbrecht, K.; Skorobogatov, K.; Giltay, E.J.; Coppens, V.; De Picker, L.; Morrens, M. Tryptophan Catabolites in Bipolar Disorder: A Meta-Analysis. Front. Immunol. 2021, 12, 667179. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhu, B.T. Indoleamine 2, 3-dioxygenase tissue distribution and cellular localization in mice: Implications for its biological functions. J. Histochem. Cytochem. 2010, 58, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 2017, 112, 248–263. [Google Scholar] [CrossRef] [PubMed]
- Manowitz, P.; Gilmour, D.G.; Racevskis, J. Low plasma tryptophan levels in recently hospitalized schizophrenics. Biol. Psychiatry 1973, 6, 109–118. [Google Scholar] [PubMed]
- Chiappelli, J.; Postolache, T.T.; Kochunov, P.; Rowland, L.M.; Wijtenburg, S.A.; Shukla, D.K.; Tagamets, M.; Du, X.; Savransky, A.; Lowry, C.A. Tryptophan metabolism and white matter integrity in schizophrenia. Neuropsychopharmacology 2016, 41, 2587–2595. [Google Scholar] [CrossRef]
- Schwieler, L.; Larsson, M.K.; Skogh, E.; Kegel, M.E.; Orhan, F.; Abdelmoaty, S.; Finn, A.; Bhat, M.; Samuelsson, M.; Lundberg, K. Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia—significance for activation of the kynurenine pathway. J. Psychiatry Neurosci. 2015, 40, 126. [Google Scholar] [CrossRef] [PubMed]
- Barry, S.; Clarke, G.; Scully, P.; Dinan, T. Kynurenine pathway in psychosis: Evidence of increased tryptophan degradation. J. Psychopharmacol. 2009, 23, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Ho, P.P.; Youssef, S.; Fontoura, P.; Garren, H.; Hur, E.M.; Gupta, R.; Lee, L.Y.; Kidd, B.A.; Robinson, W.H. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 2005, 310, 850–855. [Google Scholar] [CrossRef]
- Vass, K.; Heininger, K.; Schäfer, B.; Linington, C.; Lassmann, H. Interferon-γ potentiates antibody-mediated demyelination in vivo. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1992, 32, 198–206. [Google Scholar] [CrossRef]
- Kroenke, M.A.; Segal, B.M. IL-23 modulated myelin-specific T cells induce EAE via an IFNγ driven, IL-17 independent pathway. Brain Behav. Immun. 2011, 25, 932–937. [Google Scholar] [CrossRef]
- Comi, C.; Tondo, G. Insights into the protective role of immunity in neurodegenerative disease. Neural. Regen. Res. 2017, 12, 64–65. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Hong, L.E. Neurodevelopmental and neurodegenerative models of schizophrenia: White matter at the center stage. Schizophr. Bull. 2014, 40, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Bartzokis, G. Schizophrenia: Breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002, 27, 672–683. [Google Scholar] [CrossRef]
- Colle, R.; Masson, P.; Verstuyft, C.; Fève, B.; Werner, E.; Boursier-Neyret, C.; Walther, B.; David, D.J.; Boniface, B.; Falissard, B. Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: A case–control study. Psychiatry Clin. Neurosci. 2020, 74, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Cowen, P.J. Serotonin and depression: Pathophysiological mechanism or marketing myth? Trends Pharmacol. Sci. 2008, 29, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef]
- Zoga, M.; Oulis, P.; Chatzipanagiotou, S.; Masdrakis, V.G.; Pliatsika, P.; Boufidou, F.; Foteli, S.; Soldatos, C.R.; Nikolaou, C.; Papageorgiou, C. Indoleamine 2, 3-dioxygenase and immune changes under antidepressive treatment in major depression in females. In Vivo 2014, 28, 633–638. [Google Scholar]
- Hüfner, K.; Kandler, C.; Koudouovoh-Tripp, P.; Egeter, J.; Hochstrasser, T.; Stemer, B.; Malik, P.; Giesinger, J.; Humpel, C.; Sperner-Unterweger, B. Bioprofiling of platelets in medicated patients with depression. J. Affect. Disord. 2015, 172, 81–88. [Google Scholar] [CrossRef]
- Paul-Savoie, E.; Potvin, S.; Daigle, K.; Normand, E.; Corbin, J.-F.; Gagnon, R.; Marchand, S. A deficit in peripheral serotonin levels in major depressive disorder but not in chronic widespread pain. Clin. J. Pain 2011, 27, 529–534. [Google Scholar] [CrossRef]
- Cao, Y.; Khan, A.; Nakhjiri, A.T.; Albadarin, A.B.; Kurniawan, T.A.; Rezakazemi, M. Recent advancements in molecular separation of gases using microporous membrane systems: A comprehensive review on the applied liquid absorbents. J. Mol. Liq. 2021, 337, 116439. [Google Scholar] [CrossRef]
- Arnone, D.; Saraykar, S.; Salem, H.; Teixeira, A.L.; Dantzer, R.; Selvaraj, S. Role of Kynurenine pathway and its metabolites in mood disorders: A systematic review and meta-analysis of clinical studies. Neurosci. Biobehav. Rev. 2018, 92, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Fujii, T.; Koga, N.; Hori, H.; Teraishi, T.; Hattori, K.; Noda, T.; Higuchi, T.; Motohashi, N.; Kunugi, H. Plasma L-tryptophan concentration in major depressive disorder: New data and meta-analysis. J. Clin. Psychiatry 2014, 75, 14646. [Google Scholar] [CrossRef] [PubMed]
- Quak, J.; Doornbos, B.; Roest, A.M.; Duivis, H.E.; Vogelzangs, N.; Nolen, W.A.; Penninx, B.W.; Kema, I.P.; de Jonge, P. Does tryptophan degradation along the kynurenine pathway mediate the association between pro-inflammatory immune activity and depressive symptoms? Psychoneuroendocrinology 2014, 45, 202–210. [Google Scholar] [CrossRef]
- Matthes, S.; Bader, M. Peripheral serotonin synthesis as a new drug target. Trends Pharmacol. Sci. 2018, 39, 560–572. [Google Scholar] [CrossRef]
- Wu, Y.; Mai, N.; Zhong, X.; Wen, Y.; Zhou, Y.; Li, H.; Shang, D.; Hu, L.; Chen, X.; Chen, B. Kynurenine pathway changes in late-life depression with memory deficit. Psychiatry Res. 2018, 269, 45–49. [Google Scholar] [CrossRef]
- MacQueen, G.; Frodl, T. The hippocampus in major depression: Evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry 2011, 16, 252–264. [Google Scholar] [CrossRef]
- Biederman, J. Attention-deficit/hyperactivity disorder: A selective overview. Biol. Psychiatry 2005, 57, 1215–1220. [Google Scholar] [CrossRef]
- Oades, R.D.; Lasky-Su, J.; Christiansen, H.; Faraone, S.V.; Sonuga-Barke, E.J.S.; Banaschewski, T.; Chen, W.; Anney, R.J.L.; Buitelaar, J.K.; Ebstein, R.P. The influence of serotonin-and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behav. Brain Funct. 2008, 4, 48. [Google Scholar] [CrossRef]
- Harikumar, A.; Evans, D.W.; Dougherty, C.C.; Carpenter, K.L.H.; Michael, A.M. A review of the default mode network in autism spectrum disorders and attention deficit hyperactivity disorder. Brain Connect. 2021, 11, 253–263. [Google Scholar] [CrossRef]
- Dinu, L.M.; Phattharakulnij, N.; Dommett, E.J. Tryptophan modulation in individuals with attention deficit hyperactivity disorder: A systematic review. J. Neural Transm. 2022, 129, 361–377. [Google Scholar] [CrossRef]
- Aarsland, T.I.M.; Landaas, E.T.; Hegvik, T.-A.; Ulvik, A.; Halmøy, A.; Ueland, P.M.; Haavik, J. Serum concentrations of kynurenines in adult patients with attention-deficit hyperactivity disorder (ADHD): A case–control study. Behav. Brain Funct. 2015, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Young, J.J.; Silber, T.; Bruno, D.; Galatzer-Levy, I.R.; Pomara, N.; Marmar, C.R. Is there progress? An overview of selecting biomarker candidates for major depressive disorder. Front. Psychiatry 2016, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Bilello, J.A.; Thurmond, L.M.; Smith, K.M.; Pi, B.; Rubin, R.; Wright, S.M.; Taub, F.; Henry, M.E.; Shelton, R.C.; Papakostas, G.I. MDDScore: Confirmation of a blood test to aid in the diagnosis of major depressive disorder. J. Clin. Psychiatry 2015, 76, 11343. [Google Scholar] [CrossRef]
- Cui, L.; Gong, X.; Tang, Y.; Kong, L.; Chang, M.; Geng, H.; Xu, K.; Wang, F. Relationship between the LHPP gene polymorphism and resting-state brain activity in major depressive disorder. Neural Plast. 2016, 2016, 9162590. [Google Scholar] [CrossRef] [PubMed]
- Stelzhammer, V.; Haenisch, F.; Chan, M.K.; Cooper, J.D.; Steiner, J.; Steeb, H.; Martins-de-Souza, D.; Rahmoune, H.; Guest, P.C.; Bahn, S. Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients. Int. J. Neuropsychopharmacol. 2014, 17, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Xie, G.-R.; Hu, Y.-Q.; Mao, F.-Q.; Su, L.-Y. The effects of gender and numbers of depressive episodes on serum S100B levels in patients with major depression. J. Neural Transm. 2008, 115, 1687–1694. [Google Scholar] [CrossRef]
- Shi, W.; Du, J.; Qi, Y.; Liang, G.; Wang, T.; Li, S.; Xie, S.; Zeshan, B.; Xiao, Z. Aberrant expression of serum miRNAs in schizophrenia. J. Psychiatr. Res. 2012, 46, 198–204. [Google Scholar] [CrossRef]
- Hope, S.; Hoseth, E.; Dieset, I.; Mørch, R.H.; Aas, M.; Aukrust, P.; Djurovic, S.; Melle, I.; Ueland, T.; Agartz, I. Inflammatory markers are associated with general cognitive abilities in schizophrenia and bipolar disorder patients and healthy controls. Schizophr. Res. 2015, 165, 188–194. [Google Scholar] [CrossRef]
- Goldstein, B.I.; Young, L.T. Toward clinically applicable biomarkers in bipolar disorder: Focus on BDNF, inflammatory markers, and endothelial function. Curr. Psychiatry Rep. 2013, 15, 425. [Google Scholar] [CrossRef]
- Pazvantoğlu, O.; Güneş, S.; Karabekiroğlu, K.; Yeğin, Z.; Erenkuş, Z.; Akbaş, S.; Sarısoy, G.; Korkmaz, I.Z.; Böke, Ö.; Bağcı, H. The relationship between the presence of ADHD and certain candidate gene polymorphisms in a Turkish sample. Gene 2013, 528, 320–327. [Google Scholar] [CrossRef]
- Berger, W.; Mehra, A.; Lenoci, M.; Metzler, T.J.; Otte, C.; Tarasovsky, G.; Mellon, S.H.; Wolkowitz, O.M.; Marmar, C.R.; Neylan, T.C. Serum brain-derived neurotrophic factor predicts responses to escitalopram in chronic posttraumatic stress disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Catena-Dell’Osso, M.; Rotella, F.; Dell’Osso, A.; Fagiolini, A.; Marazziti, D. Inflammation, serotonin and major depression. Curr. Drug Targets 2013, 14, 571–577. [Google Scholar] [CrossRef]
- Wu, K.K. Tryptophan Metabolism and Cancer Progression. J. Anal. Oncol. 2021, 10, 1–11. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Wurtman, R. Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science 1971, 173, 149–152. [Google Scholar] [CrossRef]
- Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive nutraceuticals for depression: A systematic review and meta-analyses. Am. J. Psychiatry 2016, 173, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Morand, C.; Young, S.N.; Ervin, F.R. Clinical response of aggressive schizophrenics to oral tryptophan. Biol. Psychiatry 1983, 18, 575–578. [Google Scholar] [PubMed]
- Moskowitz, D.; Pinard, G.; Zuroff, D.C.; Annable, L.; Young, S.N. The effect of tryptophan on social interaction in everyday life: A placebo-controlled study. Neuropsychopharmacology 2001, 25, 277–289. [Google Scholar] [CrossRef]
- Nantel-Vivier, A.; Pihl, R.O.; Young, S.N.; Parent, S.; Bélanger, S.A.; Sutton, R.; Dubois, M.-E.; Tremblay, R.E.; Séguin, J.R. Serotonergic contribution to boys’ behavioral regulation. PLoS ONE 2011, 6, e20304. [Google Scholar] [CrossRef]
- Sandyk, R. L-tryptophan in neuropsychiatry disorders: A review. Int. J. Neurosci. 1992, 67, 127–144. [Google Scholar] [CrossRef]
- Palmer, C.M. Ketogenic diet in the treatment of schizoaffective disorder: Two case studies. Schizophr. Res. 2017, 189, 208–209. [Google Scholar] [CrossRef]
- Goodnick, P.J.; Meltzer, H.Y. Treatment of schizoaffective disorders. Schizophr. Bull. 1984, 10, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.; Babanezhad, M.; Taghvaie Nakhjiri, A.; Rezakazemi, M.; Shirazian, S. Prediction of thermal distribution and fluid flow in the domain with multi-solid structures using Cubic-Interpolated Pseudo-Particle model. PLoS ONE 2020, 15, e0233850. [Google Scholar] [CrossRef]
- Brewerton, T.D.; Reus, V.I. Lithium carbonate and {l}-tryptophan in the treatment of bipolar and schizoaffective disorders. Am. J. Psychiatry 1983, 140, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Chandramouli, R.; Subrahmanyam, S. L-Tryptophan loading in schizoaffective and chronic schizophrenia. Biomedicine 1981, 1, 37–42. [Google Scholar]
- Fellendorf, F.T.; Gostner, J.M.; Lenger, M.; Platzer, M.; Birner, A.; Maget, A.; Queissner, R.; Tmava-Berisha, A.; Pater, C.A.; Ratzenhofer, M. Tryptophan Metabolism in Bipolar Disorder in a Longitudinal Setting. Antioxidants 2021, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Jacob, A.; Bellivier, F.; Alexis Geoffroy, P. Bipolar disorder: The role of the kynurenine and melatonergic pathways. Curr. Pharm. Des. 2016, 22, 987–1012. [Google Scholar] [CrossRef]
- Murphy, D.L.; Baker, M.; Goodwin, F.K.; Miller, H.; Kotin, J.; Bunney, W.E. L-tryptophan in affective disorders: Indoleamine changes and differential clinical effects. Psychopharmacologia 1974, 34, 11–20. [Google Scholar] [CrossRef]
- Coppen, A.; Shaw, D.; Farrell, J. Potentiation of the antidepressive effect of a monoamine-oxidase inhibitor by tryptophan. Lancet 1963, 281, 79–81. [Google Scholar] [CrossRef]
- Young, S.N. Use of tryptophan in combination with other antidepressant treatments: A review. J. Psychiatry Neurosci. 1991, 16, 241. [Google Scholar]
- Bell, C.; Abrams, J.; Nutt, D. Tryptophan depletion and its implications for psychiatry. Br. J. Psychiatry 2001, 178, 399–405. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Galecki, P.; Sliwinski, T. Oxidative and nitrosative stress as well as the tryptophan catabolites pathway in depressive disorders. Psychiatr. Danub. 2017, 29, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Rehman, Z.U.; Ghasem, N.; Al-Marzouqi, M.; Abdullatif, N.; Nakhjiri, A.T.; Ghadiri, M.; Rezakazemi, M.; Marjani, A.; Pishnamazi, M. Intensification of CO2 absorption using MDEA-based nanofluid in a hollow fibre membrane contactor. Sci. Rep. 2021, 11, 2649. [Google Scholar]
- Badawy, A.A. Tryptophan: The key to boosting brain serotonin synthesis in depressive illness. J. Psychopharmacol. 2013, 27, 878–893. [Google Scholar] [CrossRef] [PubMed]
- Torrente, M.P.; Gelenberg, A.J.; Vrana, K.E. Boosting serotonin in the brain: Is it time to revamp the treatment of depression? J. Psychopharmacol. 2012, 26, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, C.N.; Loh, W.W.; Kim, J.E. The impact of tryptophan supplementation on sleep quality: A systematic review, meta-analysis, and meta-regression. Nutr. Rev. 2022, 80, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Demisch, K.; Bauer, J.; Georgi, K. Treatment of severe chronic insomnia with L-tryptophan and varying sleeping times. Pharmacopsychiatry 1987, 20, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Helmert, D.; Spinweber, C.L. Evaluation of L-tryptophan for treatment of insomnia: A review. Psychopharmacology 1986, 89, 1–7. [Google Scholar] [CrossRef]
- Mendelsohn, D.; Riedel, W.J.; Sambeth, A. Effects of acute tryptophan depletion on memory, attention and executive functions: A systematic review. Neurosci. Biobehav. Rev. 2009, 33, 926–952. [Google Scholar] [CrossRef]
- Silber, B.; Schmitt, J. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci. Biobehav. Rev. 2010, 34, 387–407. [Google Scholar] [CrossRef]
- Rucklidge, J.J.; Johnstone, J.; Kaplan, B.J. Nutrient supplementation approaches in the treatment of ADHD. Expert Rev. Neurother. 2009, 9, 461–476. [Google Scholar] [CrossRef]
- Oxenkrug, G. Serotonin–kynurenine hypothesis of depression: Historical overview and recent developments. Curr. Drug Targets 2013, 14, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Samad, N.; Khaliq, S.; Alam, M.; Yasmin, F.; Ahmad, S.; Mustafa, S.; Raza, U. Tryptophan lessens reserpine induced anxiety, depression and memory impairment by modulating oxidative stress and serotonergic activity. Pak. J. Pharm. Sci. 2021, 34, 1499–1509. [Google Scholar] [PubMed]
- Sen, A. Does serotonin deficiency lead to anosmia, ageusia, dysfunctional chemesthesis and increaed severity of illness in COVID-19? Med. Hypotheses 2021, 153, 110627. [Google Scholar] [CrossRef]
- Marjani, A.; Nakhjiri, A.T.; Adimi, M.; Jirandehi, H.F.; Shirazian, S. Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Rep. 2020, 10, 2049. [Google Scholar]
- Herrington, R.; Bruce, A.; Johnstone, E.; Lader, M. Comparative trial of L-tryptophan and amitriptyline in depressive illness1. Psychol. Med. 1977, 6, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Sainio, E.-L.; Pulkki, K.; Young, S. L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids 1996, 10, 21–47. [Google Scholar] [CrossRef]
- Naveed, M.; Zhou, Q.-G.; Xu, C.; Taleb, A.; Meng, F.; Ahmed, B.; Zhang, Y.; Fukunaga, K.; Han, F. Gut-brain axis: A matter of concern in neuropsychiatric disorders…! Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 104, 110051. [Google Scholar] [CrossRef]
- Nanri, A.; Kimura, Y.; Matsushita, Y.; Ohta, M.; Sato, M.; Mishima, N.; Sasaki, S.; Mizoue, T. Dietary patterns and depressive symptoms among Japanese men and women. Eur. J. Clin. Nutr. 2010, 64, 832–839. [Google Scholar] [CrossRef]
- Kraeuter, A.K.; Loxton, H.; Lima, B.C.; Rudd, D.; Sarnyai, Z. Ketogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr. Res. 2015, 169, 491–493. [Google Scholar] [CrossRef]
- Kim, B.; Hong, V.M.; Yang, J.; Hyun, H.; Im, J.J.; Hwang, J.; Yoon, S.; Kim, J.E. A review of fermented foods with beneficial effects on brain and cognitive function. Prev. Nutr. Food Sci. 2016, 21, 297. [Google Scholar] [CrossRef]
- Jackson, J.R.; Eaton, W.W.; Cascella, N.G.; Fasano, A.; Kelly, D.L. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity. Psychiatr. Q. 2012, 83, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Ventriglio, A.; Sancassiani, F.; Contu, M.P.; Latorre, M.; Di Slavatore, M.; Fornaro, M.; Bhugra, D. Mediterranean diet and its benefits on health and mental health: A literature review. Clin. Pract. Epidemiol. Ment. Health 2020, 16, 156. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Stanton, C.; Long-Smith, C.; Kennedy, P.; Cryan, J.F.; Cowan, C.S.; Cenit, M.C.; van der Kamp, J.-W.; Sanz, Y. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clin. Nutr. 2019, 38, 1995–2001. [Google Scholar] [CrossRef] [PubMed]
- Panza, F.; Solfrizzi, V.; Colacicco, A.; D’introno, A.; Capurso, C.; Torres, F.; Del Parigi, A.; Capurso, S.; Capurso, A. Mediterranean diet and cognitive decline. Public Health Nutr. 2004, 7, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Babanezhad, M.; Nakhjiri, A.T.; Marjani, A.; Shirazian, S. Pattern recognition of the fluid flow in a 3D domain by combination of Lattice Boltzmann and ANFIS methods. Sci. Rep. 2020, 10, 15908. [Google Scholar]
- Palmer, C.M.; Gilbert-Jaramillo, J.; Westman, E.C. The ketogenic diet and remission of psychotic symptoms in schizophrenia: Two case studies. Schizophr. Res. 2019, 208, 439–440. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Kraeuter, A.-K.; Palmer, C.M. Ketogenic diet for schizophrenia: Clinical implication. Curr. Opin. Psychiatry 2019, 32, 394–401. [Google Scholar]
- Nishihira, J.; Kagami-Katsuyama, H.; Tanaka, A.; Nishimura, M.; Kobayashi, T.; Kawasaki, Y. Elevation of natural killer cell activity and alleviation of mental stress by the consumption of yogurt containing Lactobacillus gasseri SBT2055 and Bifidobacterium longum SBT2928 in a double-blind, placebo-controlled clinical trial. J. Funct. Foods 2014, 11, 261–268. [Google Scholar] [CrossRef]
- Takada, M.; Nishida, K.; Gondo, Y.; Kikuchi-Hayakawa, H.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Kuwano, Y.; Miyazaki, K. Beneficial effects of Lactobacillus casei strain Shirota on academic stress-induced sleep disturbance in healthy adults: A double-blind, randomised, placebo-controlled trial. Benef. Microbes 2017, 8, 153–162. [Google Scholar] [CrossRef]
- Benton, D.; Williams, C.; Brown, A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur. J. Clin. Nutr. 2007, 61, 355–361. [Google Scholar] [CrossRef]
- Roman, P.; Estévez, A.F.; Miras, A.; Sánchez-Labraca, N.; Cañadas, F.; Vivas, A.B.; Cardona, D. A pilot randomized controlled trial to explore cognitive and emotional effects of probiotics in fibromyalgia. Sci. Rep. 2018, 8, 10965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.M.; Thompson, S.V.; Edwards, C.G.; Musaad, S.M.; Khan, N.A.; Holscher, H.D. Associations among diet, the gastrointestinal microbiota, and negative emotional states in adults. Nutr. Neurosci. 2020, 23, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Rudzki, L.; Ostrowska, L.; Pawlak, D.; Małus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 2019, 100, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Montenero, A.S. Toxicity and tolerance of tryptophan and its metabolites. Acta Vitam. Enzym. 1978, 32, 188–194. [Google Scholar]
- Okuda, S.; Nishiyama, N.; Saito, H.; Katsuki, H. Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc. Natl. Acad. Sci. USA 1996, 93, 12553–12558. [Google Scholar] [CrossRef]
- Stone, T.W.; Perkins, M.N. Quinolinic acid: A potent endogenous excitant at amino acid receptors in CNS. Eur. J. Pharmacol. 1981, 72, 411–412. [Google Scholar] [CrossRef]
- Guillemin, G.J.; Kerr, S.J.; Smythe, G.A.; Smith, D.G.; Kapoor, V.; Armati, P.J.; Croitoru, J.; Brew, B.J. Kynurenine pathway metabolism in human astrocytes: A paradox for neuronal protection. J. Neurochem. 2001, 78, 842–853. [Google Scholar] [CrossRef]
- Clark, C.J.; Mackay, G.M.; Smythe, G.A.; Bustamante, S.; Stone, T.W.; Phillips, R.S. Prolonged survival of a murine model of cerebral malaria by kynurenine pathway inhibition. Infect. Immun. 2005, 73, 5249–5251. [Google Scholar] [CrossRef]
- Medana, I.M.; Day, N.P.J.; Salahifar-Sabet, H.; Stocker, R.; Smythe, G.; Bwanaisa, L.; Njobvu, A.; Kayira, K.; Turner, G.D.H.; Taylor, T.E. Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J. Infect. Dis. 2003, 188, 844–849. [Google Scholar] [CrossRef]
- Vanholder, R.; Pletinck, A.; Schepers, E.; Glorieux, G. Biochemical and clinical impact of organic uremic retention solutes: A comprehensive update. Toxins 2018, 10, 33. [Google Scholar] [CrossRef]
- Debnath, S.; Velagapudi, C.; Redus, L.; Thameem, F.; Kasinath, B.; Hura, C.E.; Lorenzo, C.; Abboud, H.E.; O’Connor, J.C. Tryptophan Metabolism in Patients with Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. Int. J. Tryptophan. Res. 2017, 10, 1178646917694600. [Google Scholar] [CrossRef] [PubMed]
Disorder | Group of Study | Therapeutic Intervention | Therapeutic Outcome | Ref. |
---|---|---|---|---|
Schizophrenia | Patients who have Schizophrenia and Schizoaffective disorders | Ketogenic diet | Prevention of suicidal contemplation | [167,168] |
Improvement of concentration Reduction of hallucinations Improvement quality of life | [131] | |||
Psychological stress | Students of medicine | L.gasseri SBT2055 B.longum SBT2928 | Decreased stress | [169] |
Female volunteers | Probiotic (L.casei Shirota) | Enhancement of sleeping quality in stressful conditions | [170] | |
Anxiety and cognitive dysfunction | Male and Female volunteers | Probiotic (L.casei Shirota) | Improvement in quality of life | [171] |
Patients suffering from Fibromyalgia | ERGYPHILUS Plus (L.Rhamnosus GG®, Casei, Acidophilus, and B. Bifidus) | Improvement of decision-making capability | [172] | |
Mood disorders | Adults | Dietary fiber | Improvement of mood | [173] |
Depression | Patients suffering from Major depression disorder | Probiotic (L.Plantarum 299v) | Improvement of cognitive function | [174] |
Disorder | Clinical Outcome | Ref. |
---|---|---|
Schizophrenia | TRP supplementation significantly declined the number of events that needed intervention. | [127] |
TRP supplementation improves mood and decreases hallucinations in patients. | [131] | |
Mood disorders | TRP supplementation could considerably decrease aggressive/pugnacious behavior without any impact on mood or agreeableness. | [128] |
TRP supplementation enhances dominance, helpfulness, and affiliative responding. | [129] | |
Hypomanic disorders | Disease improvement after receiving TRP supplement. | [138] |
Sleep disorders | TRP supplementation possesses excellent potential to decrease the latency to sleep as a hypnotic for chronic insomniacs. | [148] |
Mild depression | TRP supplementation is significantly effective in treating mild depression. | [156] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidson, M.; Rashidi, N.; Nurgali, K.; Apostolopoulos, V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 9968. https://doi.org/10.3390/ijms23179968
Davidson M, Rashidi N, Nurgali K, Apostolopoulos V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. International Journal of Molecular Sciences. 2022; 23(17):9968. https://doi.org/10.3390/ijms23179968
Chicago/Turabian StyleDavidson, Majid, Niloufar Rashidi, Kulmira Nurgali, and Vasso Apostolopoulos. 2022. "The Role of Tryptophan Metabolites in Neuropsychiatric Disorders" International Journal of Molecular Sciences 23, no. 17: 9968. https://doi.org/10.3390/ijms23179968
APA StyleDavidson, M., Rashidi, N., Nurgali, K., & Apostolopoulos, V. (2022). The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 23(17), 9968. https://doi.org/10.3390/ijms23179968