Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders
Abstract
:1. Introduction
2. Immunohistochemical Biomarkers of Neuronal Injury and Neurodegeneration
2.1. Neurodegeneration
2.1.1. Counting of Cells in Sections
Neuronal Nuclei Antigen Nuclear Protein (NeuN)
Parvalbumin (PV)
Neuropeptide Y (NPY)
Glutamate Decarboxylase 65 (GAD65) and Glutamate Decarboxylase 67 (GAD67)
Acetylcholinesterase (AChE)
Tyrosine Hydroxylase (TH)
2.1.2. Counting Dying Cells in Neurodegeneration
4′,6-Diamidino-2-phenylindole (DAPI)
Fluoro-Jade B (FJB)
Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL)
2.2. Neuroinflammation
2.2.1. Glial Fibrillary Acidic Protein (GFAP)
2.2.2. Vimentin
2.2.3. Glutamine Synthetase (GS)
2.2.4. S100 Calcium-Binding Protein B (S100B)
2.2.5. Ionized Calcium Ion-Binding Adapter Protein-1 (IBA1)
2.2.6. Cluster of Differentiation 4 (CD4)
2.2.7. Macrophage
2.2.8. Transmembrane Protein 119 (TMEM119)
2.2.9. Cluster of Differentiation 45 (CD45)
2.2.10. Cluster of Differentiation 68 (CD68)
2.2.11. Complement
2.3. Neurogenesis
2.3.1. Doublecortin (DCX)
2.3.2. Neuroepithelial Stem Cell Protein (Nestin)
2.3.3. Neurogenic Differentiation (NeuroD)
2.3.4. 5′-Bromo-2′-deoxyuridine (BrdU)
2.3.5. Synaptophysin
2.3.6. Microtubule-Associated Protein 2 (MAP2)
2.3.7. Tau
2.4. Mossy Fiber Sprouting (MF)
Timm Staining
2.5. Mitochondrial Damage
Caspase-3
2.6. Blood–Brain Barrier (BBB) Damage
2.6.1. Evans Blue (EB)
2.6.2. Horseradish Peroxidase (HRP)
2.6.3. Endogenous Plasma Proteins
2.6.4. Fibrinogen
2.6.5. Sodium Fluorescein (SF)
2.6.6. Dextrans
3. Blood Biomarkers of Neuronal Injury and Neurodegeneration
3.1. Tau
3.2. Neurofilament Light Chain (NfL)
3.3. Brain Lipid-Binding Protein (BLBP)
3.4. MicroRNAs (miRNAs)
4. Imaging Biomarkers of Neuronal Injury and Neurodegeneration
4.1. Computed Tomography (CT)
4.2. Magnetic Resonance Imaging (MRI)
4.3. Positron Emission Tomography (PET)
4.4. Magnetic Resonance Spectroscopy (MRS)
4.5. Fluid-Attenuated Inversion Recovery (FLAIR)
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeromin, A.; Bowser, R. Biomarkers in neurodegenerative diseases. Adv. Neurobiol. 2017, 15, 491–528. [Google Scholar]
- Ferlini, A.; Scotton, C.; Novelli, G. Biomarkers in rare diseases. Public Health Genom. 2013, 16, 313–321. [Google Scholar] [CrossRef]
- Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS. 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Selleck, M.J.; Senthil, M.; Wall, N.R. Making meaningful clinical use of biomarkers. Biomark. Insights 2017, 12, 1177271917715236. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Cervera, E.; Villalba, P. Neuronal and glial biomarkers research for traumatic brain injury. In Traumatic Brain Injury—Neurobiology, Diagnosis and Treatment; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Dagonnier, M.; Donnan, G.A.; Davis, S.M.; Dewey, H.M.; Howells, D.W. Acute stroke biomarkers: Are we there yet? Front. Neurol. 2021, 12, 619721. [Google Scholar] [CrossRef] [PubMed]
- Bsat, S.; Halaoui, A.; Kobeissy, F.; Moussalem, C.; El Houshiemy, M.N.; Kawtharani, S.; Omeis, I. Acute ischemic stroke biomarkers: A new era with diagnostic promise? Acute Med. Surg. 2021, 8, e696. [Google Scholar] [CrossRef] [PubMed]
- Maas, M.B.; Furie, K.L. Molecular biomarkers in stroke diagnosis and prognosis. Biomark. Med. 2009, 3, 363–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaith, H.S.; Nawar, A.A.; Gabra, M.D.; Abdelrahman, M.E.; Nafady, M.H.; Bahbah, E.I.; Ebada, M.A.; Ashraf, G.M.; Negida, A.; Barreto, G.E. A Literature review of traumatic brain injury biomarkers. Mol. Neurobiol. 2022, 59, 4141–4158. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.A.; López, K.D.; Echeverri, R.A.; Pastor, L.; Rueda, S.; Fernández, L.L.; Mantilla, D.S.; Díaz, M.F.; Ramírez, M.C.; Barragán, D.C.; et al. Utility of biomarkers in traumatic brain injury: A narrative review. Colomb. J. Anesthesiol. 2020, 48, 155–161. [Google Scholar] [CrossRef]
- Padovani, A.; Canale, A.; Schiavon, L.; Masciocchi, S.; Imarisio, A.; Risi, B.; Bonzi, G.; De Giuli, V.; Di Luca, M.; Ashton, N.J.; et al. s amyloid involved in acute neuroinflammation? A CSF analysis in encephalitis. Alzheimer’s Dement. 2022. [Google Scholar] [CrossRef] [PubMed]
- Said, S.; Kang, M. Viral encephalitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Unnithan, A.; Das, M.J.; Mehta, P. Hemorrhagic stroke. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Reddy, S.D.; Younus, I.; Sridhar, V.; Reddy, D.S. Neuroimaging biomarkers of experimental Epileptogenesis and refractory epilepsy. Int. J. Mol. Sci. 2019, 20, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonato, M.; Agoston, D.V.; Brooks-Kayal, A.; Dulla, C.; Fureman, B.; Henshall, D.C.; Pitkänen, A.; Theodore, W.H.; Twyman, R.E.; Kobeissy, F.H.; et al. Identification of clinically relevant biomarkers of epileptogenesis—A strategic roadmap. Nat. Rev. Neurol. 2021, 17, 231–242. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Primers. 2017, 3, 17002. [Google Scholar] [CrossRef] [Green Version]
- Nwagwu, C.D.; Sarris, C.; Tao, Y.-X.; Mammis, A. Biomarkers for chronic neuropathic pain and their potential application in spinal cord stimulation: A review. Transl. Perioper. Pain Med. 2016, 1, 33–38. [Google Scholar]
- Diaz, M.M.; Caylor, J.; Strigo, I.; Lerman, I.; Henry, B.; Lopez, E.; Wallace, M.S.; Ellis, R.J.; Simmons, A.N.; Keltner, J.R. Toward composite pain biomarkers of neuropathic pain—Focus on peripheral neuropathic pain. Front. Pain Res. 2022, 3, 869215. [Google Scholar] [CrossRef]
- Kursun, O.; Yemisci, M.; van den Maagdenberg, A.M.J.M.; Karatas, H. Migraine and neuroinflammation: The inflammasome perspective. J. Headache Pain 2021, 22, 55. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Benito, M.; Granado, N.; García-Sanz, P.; Michel, A.; Dumoulin, M.; Moratalla, R. Modeling parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol. 2020, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Emamzadeh, F.N.; Surguchov, A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 2018, 12, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornung, S.; Dutta, S.; Bitan, G. CNS-derived blood exosomes as a promising source of biomarkers. Front. Mol. Neurosci. 2020, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-J.; Chen, W.-W.; Zhang, X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017, 13, 3163–3166. [Google Scholar] [CrossRef] [Green Version]
- Gajofatto, A.; Calabrese, M.; Benedetti, M.D.; Monaco, S. Clinical, MRI, and CSF markers of disability progression in multiple sclerosis. Dis. Markers 2013, 35, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Comabella, M.; Gandhi, R. Biomarkers in multiple sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9, a029058. [Google Scholar] [CrossRef]
- Housley, W.J.; Pitt, D.; Hafler, D.A. Biomarkers in multiple sclerosis. Clin. Immunol. 2015, 161, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; van Eimeren, T.; Sampaio, C.; Mestre, T.A. Validation of biomarkers in Huntington disease to support the development of disease-modifying therapies: A systematic review and critical appraisal scheme. Park. Relat. Disord. 2021, 93, 89–96. [Google Scholar] [CrossRef]
- Disatnik, M.-H.; Joshi, A.U.; Saw, N.L.; Shamloo, M.; Leavitt, B.; Qi, X.; Mochly-Rosen, D. Potential biomarkers to follow the progression and treatment response of Huntington’s disease. J. Exp. Med. 2016, 213, 2655–2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martí-Martínez, S.; Valor, L.M. A glimpse of molecular biomarkers in Huntington’s disease. Int. J. Mol. Sci. 2022, 23, 5411. [Google Scholar] [CrossRef]
- Janeiro, M.H.; Ardanaz, C.G.; Sola-Sevilla, N.; Dong, J.; Cortés-Erice, M.; Solas, M.; Puerta, E.; Ramírez, M.J. Biomarkers in Alzheimer’s disease. Adv. Lab. Med. 2020, 2, 27–37. [Google Scholar] [CrossRef]
- Masrori, P.; van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef]
- Verber, N.; Shaw, P.J. Biomarkers in amyotrophic lateral sclerosis: A review of new developments. Curr. Opin. Neurol. 2020, 33, 662–668. [Google Scholar] [CrossRef]
- Vejux, A.; Namsi, A.; Nury, T.; Moreau, T.; Lizard, G. Biomarkers of amyotrophic lateral sclerosis: Current status and interest of oxysterols and phytosterols. Front. Mol. Neurosci. 2018, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Hermann, P.; Appleby, B.; Brandel, J.-P.; Caughey, B.; Collins, S.; Geschwind, M.D.; Green, A.; Haïk, S.; Kovacs, G.G.; Ladogana, A.; et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021, 20, 235–246. [Google Scholar] [CrossRef]
- Campese, N.; Fanciulli, A.; Stefanova, N.; Haybaeck, J.; Kiechl, S.; Wenning, G.K. Neuropathology of multiple system atrophy: Kurt Jellinger`s legacy. J. Neural Transm. 2021, 128, 1481–1494. [Google Scholar] [CrossRef]
- Jellinger, K.A.; Wenning, G. Multiple system atrophy: Pathogenic mechanisms and biomarkers. J. Neural Transm. 2016, 123, 555–572. [Google Scholar] [CrossRef]
- Janelidze, S.; Christian, B.T.; Price, J.; Laymon, C.; Schupf, N.; Klunk, W.E.; Lott, I.; Silverman, W.; Rosas, H.D.; Zaman, S.; et al. Detection of brain tau pathology in down syndrome using plasma biomarkers. JAMA Neurol. 2022, 79, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, M.; Moschou, M.; Papaliagkas, V.; Notas, K.; Chatzikyriakou, E.; Zafeiridou, G.; Papagiannopoulos, S.; Arnaoutoglou, M.; Kimiskidis, V.K. Biomarkers of disease progression in adolescents and adults with 5q spinal muscular atrophy: A systematic review and meta-analysis. Neuromuscul. Disord. 2022, 32, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, M.; Papaliagkas, V.; Stamperna, A.; Moschou, M.; Notas, K.; Papagiannopoulos, S.; Arnaoutoglou, M.; Kimiskidis, V.K. Biomarkers of therapeutic efficacy in adolescents and adults with 5q spinal muscular atrophy: A systematic review. Acta Neurol. Belg. 2022. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.-W.; Chang, L.; Lindquist, A.M.; Wager, T.D. Building better biomarkers: Brain models in translational neuroimaging. Nat. Neurosci. 2017, 20, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, R.W.; Wharton, K.A.; Quigley, C.; Lowe, A. The use of immunohistochemistry for biomarker assessment—Can it compete with other technologies? Toxicol. Pathol. 2011, 39, 988–1002. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Kuruba, R.; Reddy, D.S. Midazolam-resistant seizures and brain injury after acute intoxication of diisopropylfluorophosphate, an organophosphate pesticide and surrogate for nerve agents. J. Pharmacol. Exp. Ther. 2018, 367, 302–321. [Google Scholar] [CrossRef] [Green Version]
- Megahed, T.; Hattiangady, B.; Shuai, B.; Shetty, A.K. Parvalbumin and neuropeptide Y expressing hippocampal GABA-ergic inhibitory interneuron numbers decline in a model of Gulf War illness. Front. Cell. Neurosci. 2015, 8, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuipers, S.D.; Schroeder, J.E.; Trentani, A. Changes in hippocampal neurogenesis throughout early development. Neurobiol. Aging 2015, 36, 365–379. [Google Scholar] [CrossRef]
- Stanley, D.P.; Shetty, A.K. Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J. Neurochem. 2004, 89, 204–216. [Google Scholar] [CrossRef]
- Capilla-Gonzalez, V.; Cebrian-Silla, A.; Guerrero-Cazares, H.; Garcia-Verdugo, J.M.; Quiñones-Hinojosa, A. Age-related changes in astrocytic and ependymal cells of the subventricular zone. Glia 2014, 62, 790–803. [Google Scholar] [CrossRef] [Green Version]
- Kelso, M.; Liput, D.; Eaves, D.; Nixon, K. Upregulated vimentin suggests new areas of neurodegeneration in a model of an alcohol use disorder. Neuroscience 2011, 197, 381–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sukhorukova, E.G.; Gusel’Nikova, V.V.; Korzhevskii, D.E. Glutamine synthetase in rat brain cells. Neurosci. Behav. Physiol. 2018, 48, 890–893. [Google Scholar] [CrossRef]
- Sun, M.; Symons, M.G.F.; O’Brien, W.T.; Mccullough, J.; Aniceto, M.R.; Lin, M.I.-H.; Eklund, M.; Brady, R.D.; Costello, D.M.; Chen, Z.; et al. Serum protein biomarkers of inflammation, oxidative stress, and cerebrovascular and glial injury in concussed Australian football players. J. Neurotrauma 2022, 39, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Cullen, N.C.; Leuzy, A.; Janelidze, S.; Palmqvist, S.; Svenningsson, A.L.; Stomrud, E.; Dage, J.L.; Mattsson-Carlgren, N.; Hansson, O. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat. Commun. 2021, 12, 3555. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S.; Golub, V.M.; Ramakrishnan, S.; Abeygunaratne, H.; Dowell, S.; Wu, X. A Comprehensive and advanced mouse model of post-traumatic epilepsy with robust spontaneous recurrent seizures. Curr. Protoc. 2022, 2, e447. [Google Scholar] [CrossRef]
- Matsumoto, S.; Banine, F.; Feistel, K.; Foster, S.; Xing, R.; Struve, J.; Sherman, L.S. Brg1 directly regulates Olig2 transcription and is required for oligodendrocyte progenitor cell specification. Dev. Biol. 2016, 413, 173–187. [Google Scholar] [CrossRef]
- Ohyama, T.; Nagata, T.; Tsuda, K.; Kobayashi, N.; Imai, T.; Okano, H.; Yamazaki, T.; Katahira, M. Structure of Musashi1 in a complex with target RNA: The role of aromatic stacking interactions. Nucleic Acids Res. 2011, 40, 3218–3231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Sheng, W.; Ma, Y.; Dong, M. Potential role of musashi-2 RNA-binding protein in cancer EMT. OncoTargets Ther. 2021, 14, 1969–1980. [Google Scholar] [CrossRef]
- Bernal, A.; Arranz, L. Nestin-expressing progenitor cells: Function, identity and therapeutic implications. Cell. Mol. Life Sci. 2018, 75, 2177–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, Y.; Yoshimura, H.; Suzuki, T.; Ishiwat, T. Nestin: Neural stem/progenitor cell marker in brain tumors. In Evolution of the Molecular Biology of Brain Tumors and the Therapeutic Implications; IntechOpen: London, UK, 2013. [Google Scholar]
- Mariotti, A.; Perotti, A.; Sessa, C.; Rüegg, C. N-cadherin as a therapeutic target in cancer. Expert Opin. Investig. Drugs 2007, 16, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cui, S.; Li, W.; Zhao, Y.; Yan, X.; Xu, J. PAX3 is a biomarker and prognostic factor in melanoma: Database mining. Oncol. Lett. 2019, 17, 4985–4993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sansom, S.N.; Griffiths, D.S.; Faedo, A.; Kleinjan, D.-J.; Ruan, Y.; Smith, J.; van Heyningen, V.; Rubenstein, J.L.; Livesey, F.J. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet. 2009, 5, e1000511. [Google Scholar] [CrossRef] [Green Version]
- Kamachi, Y.; Uchikawa, M.; Collignon, J.; Lovell-Badge, R.; Kondoh, H. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 1998, 125, 2521–2532. [Google Scholar] [CrossRef]
- Venere, M.; Han, Y.-G.; Bell, R.; Song, J.; Alvarez-Buylla, A.; Blelloch, R. Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development 2012, 139, 3938–3949. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Cui, W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem. Cells 2014, 6, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Labak, C.M.; Jain, N.; Purvis, I.J.; Guda, M.R.; Bach, E.S.; Tsung, A.J.; Asuthkar, S.; Velpula, K.K. OTX2 expression contributes to proliferation and progression in Myc-amplified medulloblastoma. Am. J. Cancer Res. 2017, 7, 647–656. [Google Scholar]
- Zou, Y.; Zhang, W.-F.; Liu, H.-Y.; Li, X.; Zhang, X.; Ma, X.-F.; Sun, Y.; Jiang, S.-Y.; Ma, Q.-H.; Xu, D.-E. Structure and function of the contactin-associated protein family in myelinated axons and their relationship with nerve diseases. Neural Regen. Res. 2017, 12, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.S.; Martynoga, B.; Parras, C.; Ramesh, V.; Pacary, E.; Johnston, C.; Drechsel, D.; Lebel-Potter, M.; Garcia, L.G.; Hunt, C.; et al. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev. 2011, 25, 930–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayanlaja, A.A.; Xiong, Y.; Gao, Y.; Ji, G.; Tang, C.; Abdullah, Z.A.; Gao, D. Distinct features of doublecortin as a marker of neuronal migration and its implications in cancer cell mobility. Front. Mol. Neurosci. 2017, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Tutukova, S.; Tarabykin, V.; Hernandez-Miranda, L.R. The role of Neurod genes in brain development, function, and disease. Front. Mol. Neurosci. 2021, 14, 662774. [Google Scholar] [CrossRef]
- Huang, T.-N.; Hsueh, Y.-P. Brain-specific transcriptional regulator T-brain-1 controls brain wiring and neuronal activity in autism spectrum disorders. Front. Neurosci. 2015, 9, 406. [Google Scholar] [CrossRef] [Green Version]
- Grenningloh, G.; Soehrman, S.; Bondallaz, P.; Ruchti, E.; Cadas, H. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J. Neurobiol. 2004, 58, 60–69. [Google Scholar] [CrossRef]
- Rønn, L.; Hartz, B.; Bock, E. The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp. Gerontol. 1998, 33, 853–864. [Google Scholar] [CrossRef]
- Gascon, E.; Vutskits, L.; Kiss, J.Z. The role of PSA-NCAM in adult neurogenesis. Adv. Exp. Med. Biol. 2010, 663, 127–136. [Google Scholar]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar] [CrossRef]
- Kim, K.K.; Adelstein, R.S.; Kawamoto, S. Identification of Neuronal Nuclei (NeuN) as fox-3, a new member of the fox-1 gene family of splicing factors. J. Biol. Chem. 2009, 284, 31052–31061. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.K.; Tuttle, J.B.; Rebhun, L.I.; Cleveland, D.W.; Frankfurter, A. The expression and posttranslational modification of a neuron-specific?—Tubulin isotype during chick embryogenesis. Cell Motil. Cytoskelet. 1990, 17, 118–132. [Google Scholar] [CrossRef]
- Peña-Ortega, F.; Robles-Gómez, A.; Xolalpa-Cueva, L. Microtubules as regulators of neural network shape and function: Focus on excitability, plasticity and memory. Cells 2022, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.H.; Pichardo, R.; Song, Z.; Sangha, N.; Camacho, F.; Satyamoorthy, K.; Sangueza, O.P.; Setaluri, V. Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma. Am. J. Pathol. 2005, 166, 1841–1850. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Liu, F.; Gong, C.-X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 2010, 7, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R. A. Neurofilaments at a glance. J. Cell Sci. 2012, 125, 3257–3263. [Google Scholar] [CrossRef] [Green Version]
- Tarsa, L.; Goda, Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 2002, 99, 1012–1016. [Google Scholar] [CrossRef] [Green Version]
- Béïque, J.C.; Andrade, R. PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex. J. Physiol. 2003, 546, 859–867. [Google Scholar] [CrossRef]
- Holahan, M. GAP-43 in synaptic plasticity: Molecular perspectives. Res. Rep. Biochem. 2015, 5, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Yasuyama, K.; Salvaterra, P.M. Localization of choline acetyltransferase-expressing neurons inDrosophila nervous system. Microsc. Res. Technol. 1999, 45, 65–79. [Google Scholar] [CrossRef]
- Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Schettino, T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Res. Int. 2013, 2013, 321213. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.K.; Wonnacott, S. Acetylcholine. In Basic Neurochemistry; Academic Press: Cambridge, MA, USA, 2012; pp. 258–282. [Google Scholar]
- Daubner, S.C.; Le, T.; Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011, 508, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Lopez, E.; Vrana, K. Dopamine beta-hydroxylase and its genetic variants in human health and disease. J. Neurochem. 2019, 152, 157–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thibaut, F.; Vaugeois, J.-M.; Petit, M. The dopamine transporter: Characterization and physiopathologic implications. Encephale 1995, 21, 445–451. [Google Scholar]
- Sigurdardottir, H.L.; Kranz, G.S.; Rami-Mark, C.; James, G.M.; Vanicek, T.; Gryglewski, G.; Berroterán-Infante, N.; Kautzky, A.; Hienert, M.; Traub-Weidinger, T.; et al. Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity–impulsivity symptoms in ADHD measured with PET. Mol. Psychiatry 2019, 26, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaro-Ruiz, R.; Martín-Belmonte, A.; Aguado, C.; Hernández, F.; Moreno-Martínez, A.E.; Ávila, J.; Luján, R. The expression and localisation of g-protein-coupled inwardly rectifying potassium (GIRK) channels is differentially altered in the hippocampus of two mouse models of Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 11106. [Google Scholar] [CrossRef]
- Zhao, Y.; Ung, P.M.-U.; Zahoránszky-Kőhalmi, G.; Zakharov, A.V.; Martinez, N.J.; Simeonov, A.; Glaaser, I.W.; Rai, G.; Schlessinger, A.; Marugan, J.J.; et al. Identification of a G-protein-independent activator of GIRK channels. Cell Rep. 2020, 31, 107770. [Google Scholar] [CrossRef]
- Oh, S.-M.; Chang, M.-Y.; Song, J.-J.; Rhee, Y.-H.; Joe, E.-H.; Lee, H.-S.; Yi, S.-H.; Lee, S.-H. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol. Med. 2015, 7, 510–525. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.H.; Levesque, M.; Claxton, S.; Johnson, R.L.; Ang, S.-L. Lmx1a and Lmx1b function cooperatively to regulate proliferation, specification, and differentiation of midbrain dopaminergic progenitors. J. Neurosci. 2011, 31, 12413–12425. [Google Scholar] [CrossRef] [Green Version]
- Pristerà, A.; Lin, W.; Kaufmann, A.-K.; Brimblecombe, K.R.; Threlfell, S.; Dodson, P.D.; Magill, P.J.; Fernandes, C.; Cragg, S.J.; Ang, S.-L. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice. Proc. Natl. Acad. Sci. USA 2015, 112, E4929-38. [Google Scholar] [CrossRef] [Green Version]
- López, J.M.; Morona, R.; González, A. Immunohistochemical localization of DARPP-32 in the brain of two lungfishes: Further assessment of its relationship with the dopaminergic system. Brain Behav. Evol. 2017, 90, 289–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Dani, J.A.; Le, W. The role of transcription factor Pitx3 in dopamine neuron development and Parkinson’s disease. Curr. Top. Med. Chem. 2009, 9, 855–859. [Google Scholar] [PubMed]
- Sigel, E.; Steinmann, M.E. Structure, function, and modulation of GABAA receptors. J. Biol Chem. 2012, 287, 40224–40231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavazzani, E.; Tritto, S.; Spaiardi, P.; Botta, L.; Manca, M.; Prigioni, I.; Masetto, S.; Russo, G. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells. Front. Cell. Neurosci. 2014, 8, 428. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.G.; Murthy, V.N. Activity-dependent regulation of inhibition via GAD67. J. Neurosci. 2012, 32, 8521–8531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Burgos, G.; Rotaru, D.C.; Zaitsev, A.V.; Povysheva, N.V.; Lewis, D.A. GABA Transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons. J. Neurophysiol. 2009, 101, 533–547. [Google Scholar] [CrossRef]
- Saito, K.; Kakizaki, T.; Hayashi, R.; Nishimaru, H.; Furukawa, T.; Nakazato, Y.; Takamori, S.; Ebihara, S.; Uematsu, M.; Mishina, M.; et al. The physiological roles of vesicular GABA transporter during embryonic development: A study using knockout mice. Mol. Brain 2010, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, Y.; Zhao, L.; Li, Y.; Zheng, J. Glutaminase 1 is essential for the differentiation, proliferation, and survival of human neural progenitor cells. Stem Cells Dev. 2014, 23, 2782–2790. [Google Scholar] [CrossRef] [Green Version]
- Suárez, I.; Bodega, G.; Fernández, B. Glutamine synthetase in brain: Effect of ammonia. Neurochem. Int. 2002, 41, 123–142. [Google Scholar] [CrossRef]
- Vigneault, E.; Poirel, O.; Riad, M.; Prud’Homme, J.; Dumas, S.; Turecki, G.; Fasano, C.; Mechawar, N.; El Mestikawy, S. Distribution of vesicular glutamate transporters in the human brain. Front. Neuroanat. 2015, 9, 23. [Google Scholar] [CrossRef]
- Carvajal, F.J.; Mattison, H.A.; Cerpa, W. Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast. 2016, 2701526. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, J.S.; Bonham, L.W.; Sturm, V.E.; Adhimoolam, B.; Karydas, A.; Coppola, G.; Miller, B.L.; Rankin, K.P. The 5-HTTLPR variant in the serotonin transporter gene modifies degeneration of brain regions important for emotion in behavioral variant frontotemporal dementia. NeuroImage Clin. 2015, 9, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Sugawara, Y.; Sawabe, K.; Ohashi, A.; Tsurui, H.; Xiu, Y.; Ohtsuji, M.; Lin, Q.S.; Nishimura, H.; Hasegawa, H.; et al. Late developmental stage-specific role of tryptophan hydroxylase 1 in brain serotonin levels. J. Neurosci. 2006, 26, 530–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Lu, X.; Li, Z.; Rydberg, N.; Zuo, C.; Peng, F.; Hua, F.; Guan, Y.; Xie, F. Increased vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) expression in adolescent brain development: A longitudinal micro-PET/CT study in rodent. Front. Neurosci. 2019, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Yu, J.; Yin, Y.; Jia, G.; Jiang, W.; Yu, L. The Olig family affects central nervous system development and disease. Neural Regen. Res. 2014, 9, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Fitzner, D.; Schneider, A.; Kippert, A.; Möbius, W.; Willig, K.I.; Hell, S.W.; Bunt, G.; Gaus, K.; Simons, M. Myelin basic protein-dependent plasma membrane reorganization in the formation of myelin. EMBO J. 2006, 25, 5037–5048. [Google Scholar] [CrossRef]
- Ambrosius, W.; Michalak, S.; Kozubski, W.; Kalinowska, A. Myelin oligodendrocyte glycoprotein antibody-associated disease: Current insights into the disease pathophysiology, diagnosis and management. Int. J. Mol. Sci. 2020, 22, 100. [Google Scholar] [CrossRef]
- Schnaar, R.L.; Lopez, P.H. Myelin-associated glycoprotein and its axonal receptors. J. Neurosci. Res. 2009, 87, 3267–3276. [Google Scholar] [CrossRef] [Green Version]
- Olga, K.; Yulia, B.; Vassilios, P. The functions of mitochondrial 2′,3′-cyclic nucleotide-3′-phosphodiesterase and prospects for its future. Int. J. Mol. Sci. 2020, 21, 3217. [Google Scholar] [CrossRef]
- urek, J.; Fedora, M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochirurgica 2011, 154, 93–103. [Google Scholar]
- Yardan, T.; Erenler, A.K.; Baydin, A.; Aydin, K.; Cokluk, C. Usefulness of S100B protein in neurological disorders. J. Pak. Med. Assoc. 2011, 61, 276–281. [Google Scholar]
- Zou, S.; Lan, Y.-L.; Wang, H.; Zhang, B.; Sun, Y.-G. The potential roles of aquaporin 4 in amyotrophic lateral sclerosis. Neurol. Sci. 2019, 40, 1541–1549. [Google Scholar] [CrossRef]
- Dai, H.; Goto, Y.-I.; Itoh, M. Insulin-like growth factor binding protein-3 deficiency leads to behavior impairment with monoaminergic and synaptic dysfunction. Am. J. Pathol. 2017, 187, 390–400. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Vidensky, S.; Jin, L.; Jie, C.; Lorenzini, I.; Frankl, M.; Rothstein, J.D. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 2011, 59, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Vandenberg, R.J.; Ryan, R.M. Mechanisms of glutamate transport. Physiol. Rev. 2013, 93, 1621–1657. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Hsiao, M. Loss-of-function aldolase C hypermethylation cause serotonin production in glioblastoma. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019, 161, 107559. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Zheng, Y.; Xu, D.; Sun, Z.; Yang, H.; Yin, Q. Galectin-3: A key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell Biosci. 2021, 11, 78. [Google Scholar] [CrossRef]
- Hou, L.; Qu, X.; Qiu, X.; Huang, R.; Zhao, X.; Wang, Q. Integrin CD11b mediates locus coeruleus noradrenergic neurodegeneration in a mouse Parkinson’s disease model. J. Neuroinflammation 2020, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Ohsawa, K.; Kanazawa, H.; Kohsaka, S.; Imai, Y. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem. Biophys. Res. Commun. 2001, 286, 292–297. [Google Scholar] [CrossRef]
- Pawelec, P.; Ziemka-Nalecz, M.; Sypecka, J.; Zalewska, T. The impact of the CX3CL1/CX3CR1 axis in neurological disorders. Cells 2020, 9, 2277. [Google Scholar] [CrossRef]
- Tan, J.; Town, T.; Mori, T.; Obregon, D.; Wu, Y.; Delledonne, A.; Rojiani, A.; Crawford, F.; Flavell, R.A.; Mullan, M. CD40 is expressed and functional on neuronal cells. EMBO J. 2002, 21, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtney, A.H.; Shvets, A.A.; Lu, W.; Griffante, G.; Mollenauer, M.; Horkova, V.; Lo, W.-L.; Yu, S.; Stepanek, O.; Chakraborty, A.K.; et al. CD45 functions as a signaling gatekeeper in T cells. Sci. Signal. 2019, 12, eaaw8151. [Google Scholar] [CrossRef]
- Liu, Y.; Walter, S.; Stagi, M.; Cherny, D.; Letiembre, M.; Schulz-Schaeffer, W.; Heine, H.; Penke, B.; Neumann, H.; Fassbender, K. LPS receptor (CD14): A receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 2005, 128, 1778–1789. [Google Scholar] [CrossRef] [Green Version]
- Pase, M.P.; Himali, J.J.; Beiser, A.S.; DeCarli, C.; McGrath, E.R.; Satizabal, C.L.; Aparicio, H.J.; Adams, H.H.; Reiner, A.P.; Longstreth, W.; et al. Association of CD14 with incident dementia and markers of brain aging and injury. Neurology 2020, 94, e254–e266. [Google Scholar] [CrossRef] [PubMed]
- Waschbisch, A.; Schröder, S.; Schraudner, D.; Sammet, L.; Weksler, B.; Melms, A.; Pfeifenbring, S.; Stadelmann, C.; Schwab, S.; Linker, R.A. Pivotal role for CD16+Monocytes in immune surveillance of the central nervous system. J. Immunol. 2016, 196, 1558–1567. [Google Scholar] [CrossRef]
- Janda, E.; Boi, L.; Carta, A.R. Microglial phagocytosis and its regulation: A therapeutic target in Parkinson’s disease? Front. Mol. Neurosci. 2018, 11, 114. [Google Scholar] [CrossRef] [Green Version]
- Mattiace, A.L.; Davies, P.; Dickson, D.W. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am. J. Pathol. 1990, 136, 1101–1114. [Google Scholar]
- Fan, X.; Liang, J.; Wu, Z.; Shan, X.; Qiao, H.; Jiang, T. Expression of HLA-DR genes in gliomas: Correlation with clinicopathological features and prognosis. Chin. Neurosurg. J. 2017, 3, 27. [Google Scholar] [CrossRef]
- Rupprecht, C.; Rupprecht, R.; Rammes, G. C1q, a small molecule with high impact on brain development: Putative role for aging processes and the occurrence of Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 809–812. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.-L.; Rettori, V.; Al-Shekhlee, A.; Bongiorno, P.B.; Canteros, G.; McCann, S.M.; Gold, P.W.; Licinio, J. Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat. Med. 1996, 2, 581–584. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Garringer, H.J.; Goodwin, C.B.; Richine, B.; Acton, A.; VanDuyn, N.; Muhoberac, B.B.; Irimia-Dominguez, J.; Chan, R.J.; Peacock, M.; et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS ONE 2015, 10, e0117435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayir, E.; Sendemir, A. Role of intermediate filaments in blood–brain barrier in health and disease. Cells 2021, 10, 1400. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Park, Y.; Nam, H.; Lee, J.-W.; Yu, S.-W. Translocator protein (TSPO): The new story of the old protein in neuroinflammation. BMB Rep. 2020, 53, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Liu, Y.; Umpierre, A.D.; Xie, M.; Tian, D.-S.; Richardson, J.R.; Wu, L.-J. Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol. Brain 2019, 12, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercurio, D.; Fumagalli, S.; Schafer, M.K.-H.; Pedragosa, J.; Ngassam, L.D.C.; Wilhelmi, V.; Winterberg, S.; Planas, A.M.; Weihe, E.; De Simoni, M.-G. Protein expression of the microglial marker Tmem119 decreases in association with morphological changes and location in a mouse model of traumatic brain injury. Front. Cell. Neurosci. 2022, 16, 820127. [Google Scholar] [CrossRef]
- Golub, V.M.; Brewer, J.; Wu, X.; Kuruba, R.; Short, J.; Manchi, M.; Swonke, M.; Younus, I.; Reddy, D.S. Neurostereology protocol for unbiased quantification of neuronal injury and neurodegeneration. Front. Aging Neurosci. 2015, 31, 196. [Google Scholar] [CrossRef] [Green Version]
- nal-Çevik, I.; Kılınç, M.; Gürsoy-Özdemir, Y.; Gurer, G.; Dalkara, T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: A cautionary note. Brain Res. 2004, 1015, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Wolf, H.K.; Buslei, R.; Schmidt-Kastner, R.; Schmidt-Kastner, P.K.; Pietsch, T.; Wiestler, O.D.; Blümcke, I. NeuN: A useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 1996, 44, 1167–1171. [Google Scholar] [CrossRef]
- Golub, V.M.; Reddy, D.S. Contusion brain damage in mice for modelling of post-traumatic epilepsy with contralateral hippocampus sclerosis: Comprehensive and longitudinal characterization of spontaneous seizures, neuropathology, and neuropsychiatric comorbidities. Exp. Neurol. 2022, 348, 113946. [Google Scholar] [CrossRef]
- Kuruba, R.; Wu, X.; Reddy, D.S. Benzodiazepine-refractory status epilepticus, neuroinflammation, and interneuron neurodegeneration after acute organophosphate intoxication. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2845–2858. [Google Scholar] [CrossRef]
- Reddy, D.S.; Zaayman, M.; Kuruba, R.; Wu, X. Comparative profile of refractory status epilepticus models following exposure of cholinergic agents pilocarpine, DFP, and soman. Neuropharmacology 2021, 191, 108571. [Google Scholar] [CrossRef]
- Caillard, O.; Moreno, H.; Schwaller, B.; Llano, I.; Celio, M.R.; Marty, A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl. Acad. Sci. USA 2000, 97, 13372–13377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godoy, L.D.; Prizon, T.; Rossignoli, M.T.; Leite, J.P.; Liberato, J.L. Parvalbumin role in epilepsy and psychiatric comorbidities: From mechanism to intervention. Front. Integr. Neurosci. 2022, 16, 765324. [Google Scholar] [CrossRef] [PubMed]
- Crespo, C.; Porteros, A.; Arévalo, R.; Briñón, J.G.; Aijón, J.; Alonso, J.R. Distribution of parvalbumin immunoreactivity in the brain of the tench (Tinca tinca L., 1758). J. Comp. Neurol. 1999, 413, 549–571. [Google Scholar] [CrossRef]
- Ferguson, B.R.; Gao, W.-J. PV interneurons: Critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 2018, 12, 37. [Google Scholar] [CrossRef] [Green Version]
- Nahar, L.; Delacroix, B.M.; Nam, H.W. The role of parvalbumin interneurons in neurotransmitter balance and neurological disease. Front. Psychiatry 2021, 12, 679960. [Google Scholar] [CrossRef]
- Tasan, R.; Verma, D.; Wood, J.; Lach, G.; Hörmer, B.; de Lima, T.; Herzog, H.; Sperk, G. The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides 2016, 55, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of Neuropeptide Y in neurodegenerative and neuroimmune diseases. Front. Neurosci. 2019, 13, 869. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Xapelli, S.; Santos, T.; Silva, A.P.; Cristóvão, A.; Cortes, L.; Malva, J.O. Neuropeptide Y modulation of interleukin-1β (IL-1β)-induced nitric oxide production in microglia. J. Biol. Chem. 2010, 285, 41921–41934. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.A.; Anair, J.D.; Beebe, N.L.; Mirjalili, P.; Schofield, B.R.; Roberts, M.T. Neuropeptide Y expression defines a novel class of Gabaergic projection neuron in the inferior colliculus. J. Neurosci. 2020, 40, 4685–4699. [Google Scholar] [CrossRef]
- Trifonov, S.; Yamashita, Y.; Kase, M.; Maruyama, M.; Sugimoto, T. Glutamic acid decarboxylase 1 alternative splicing isoforms: Characterization, expression and quantification in the mouse brain. BMC Neurosci. 2014, 15, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korzhevskii, D.E.; Grigor’ev, I.P.; Gusel’nikova, V.V.; Kolos, E.A.; Petrova, E.S.; Kirik, O.V.; Sufieva, D.A.; Razenkova, V.A.; Antipova, M.V.; Chernysh, M.V. Immunohistochemical markers for neurobiology. Med. Acad. J. 2020, 19, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Eisinger, B.; Gammie, S.C. Characterization of GABAergic Neurons in the Mouse Lateral Septum: A Double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS ONE 2013, 8, e73750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, A.; Rashidi, E.; Amooeian, V.G. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018, 265, 25–38. [Google Scholar] [CrossRef]
- Ruan, Z.; Pathak, D.; Kalavai, S.V.; Yoshii-Kitahara, A.; Muraoka, S.; Bhatt, N.; Takamatsu-Yukawa, K.; Hu, J.; Wang, Y.; Hersh, S.; et al. Alzheimer’s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain 2020, 144, 288–309. [Google Scholar] [CrossRef]
- Orta-Salazar, E.; Cuellar-Lemus, C.A.; Díaz-Cintra, S.; Feria-Velasco, A.I. Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer’s disease. Neurologia 2014, 29, 497–503. [Google Scholar] [CrossRef]
- Han, S.-H.; Park, J.-C.; Byun, M.S.; Yi, D.; Lee, J.H.; Lee, D.Y.; Mook-Jung, I. Blood acetylcholinesterase level is a potential biomarker for the early detection of cerebral amyloid deposition in cognitively normal individuals. Neurobiol. Aging 2019, 73, 21–29. [Google Scholar] [CrossRef]
- Karami, A.; Darreh-Shori, T.; Schultzberg, M.; Eriksdotter, M. CSF and plasma cholinergic markers in patients with cognitive impairment. Front. Aging Neurosci. 2021, 13, 704583. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.; Melchitzky, D.; Haycock, J. Four isoforms of tyrosine hydroxylase are expressed in human brain. Neuroscience 1993, 54, 477–492. [Google Scholar] [CrossRef]
- Kubis, N.; Faucheux, B.A.; Ransmayr, G.; Damier, P.; Duyckaerts, C.; Henin, D.; Forette, B.; Le Charpentier, Y.; Hauw, J.-J.; Agid, Y.; et al. Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 2000, 123 Pt 2, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Chang, H.-Y.; Sang, T.-K. Neuronal cell death mechanisms in major neurodegenerative diseases. Int. J. Mol. Sci. 2018, 19, 3082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorman, A.M. Neuronal cell death in neurodegenerative diseases: Recurring themes around protein handling. J. Cell. Mol. Med. 2008, 12, 2263–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnowski, B.I.; Spinale, F.G.; Nicholson, J.H. DAPI as a useful stain for nuclear quantitation. Biotech. Histochem. 1991, 66, 296–302. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Shen, J. Histological analysis of neurodegeneration in the mouse brain. Methods Mol. Biol. 2013, 1004, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Schmued, L.C.; Albertson, C.; Slikker, W. Fluoro-Jade: A novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res. 1997, 751, 37–46. [Google Scholar] [CrossRef]
- Reddy, D.S.; Perumal, D.; Golub, V.; Habib, A.; Kuruba, R.; Wu, X. Phenobarbital as alternate anticonvulsant for organophosphate-induced benzodiazepine-refractory status epilepticus and neuronal injury. Epilepsia Open 2020, 5, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Kraupp, B.G.; Ruttkay-Nedecky, B.; Koudelka, H.; Bukowska, K.; Bursch, W.; Schulte-Hermann, R. In situ detection of fragmented dna (tunel assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: A cautionary note. Hepatology 1995, 21, 1465–1468. [Google Scholar] [CrossRef]
- Reddy, D.S.; Kuruba, R. Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. Int. J. Mol. Sci. 2013, 14, 18284–18318. [Google Scholar] [CrossRef]
- Kyrylkova, K.; Kyryachenko, S.; Leid, M.; Kioussi, C. Detection of apoptosis by TUNEL assay. Methods Mol. Biol. 2012, 887, 41–47. [Google Scholar] [CrossRef]
- Orita, Y.; Nishizaki, K.; Sasaki, J.; Kanda, S.; Kimura, N.; Nomiya, S.; Yuen, K.; Masuda, Y. Does TUNEL staining during peri- and post-natal development of the mouse inner ear indicate apoptosis? Acta Otolaryngol. Suppl. 1999, 540, 22–26. [Google Scholar]
- Hovens, I.B.; Nyakas, C.; Schoemaker, R.G. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: Cell body to cell size ratio. Neuroimmunol. Neuroinflammation 2014, 1, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Kappock, T.J.; Caradonna, J.P. Pterin-dependent amino acid hydroxylases. Chem. Rev. 1996, 96, 2659–2756. [Google Scholar] [CrossRef] [PubMed]
- Avola, R. Biomarkers of glial cell proliferation and differentiation in culture. Front. Biosci. 2010, 2, 558–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pekny, M.; Johansson, C.B.; Eliasson, C.; Stakeberg, J.; Wallén, A.; Perlmann, T.; Lendahl, U.; Betsholtz, C.; Berthold, C.-H.; Frisén, J. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 1999, 145, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milatovic, D.; Montine, T.J.; Zaja-Milatovic, S.; Madison, J.L.; Bowman, A.B.; Aschner, M. Morphometric analysis in neurodegenerative disorders. Curr. Protoc. Toxicol. 2010, 46, 12–16. [Google Scholar] [CrossRef]
- Shetty, A.K.; Rao, M.S.; Hattiangady, B.; Zaman, V.; Shetty, G.A. Hippocampal neurotrophin levels after injury: Relationship to the age of the hippocampus at the time of injury. J. Neurosci. Res. 2004, 78, 520–532. [Google Scholar] [CrossRef]
- Goyal, R.; Mathur, S.K.; Gupta, S.; Goyal, R.; Kumar, S.; Batra, A.; Hasija, S.; Sen, R. Immunohistochemical expression of glial fibrillary acidic protein and CAM5.2 in glial tumors and their role in differentiating glial tumors from metastatic tumors of central nervous system. J. Neurosci. Rural Pract. 2015, 6, 499–503. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, K.K. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Hol, E.M.; Roelofs, R.F.; Moraal, E.; Sonnemans, M.A.F.; Sluijs, A.J.; Proper, A.E.; De Graan, E.P.N.; Fischer, D.; Van Leeuwen, F.W. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol. Psychiatry 2003, 8, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Boehme, M.; Guenther, M.; Stahr, A.; Liebmann, M.; Jaenisch, N.; Witte, O.W.; Frahm, C. Impact of indomethacin on neuroinflammation and hippocampal neurogenesis in aged mice. Neurosci. Lett. 2014, 572, 7–12. [Google Scholar] [CrossRef]
- dos Santos, G.; Rogel, M.R.; Baker, M.A.; Troken, J.R.; Urich, D.; Morales-Nebreda, L.; Sennello, J.A.; Kutuzov, M.A.; Sitikov, A.; Davis, J.M.; et al. Vimentin regulates activation of the NLRP3 inflammasome. Nat. Commun. 2015, 6, 6574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, A.; Failla, M.; Niyonkuru, C.; Amin, K.; Fabio, A.; Berger, R.P.; Wagner, A.K. S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. J. Neurotrauma 2013, 30, 946–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2018, 148, 168–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haselmann, V.; Schamberger, C.; Trifonova, F.; Ast, V.; Froelich, M.F.; Strauß, M.; Kittel, M.; Jaruschewski, S.; Eschmann, D.; Neumaier, M.; et al. Plasma-based S100B testing for management of traumatic brain injury in emergency setting. Pract. Lab. Med. 2021, 26, e00236. [Google Scholar] [CrossRef]
- Hier, D.B.; Obafemi-Ajayi, T.; Thimgan, M.S.; Olbricht, G.R.; Azizi, S.; Allen, B.; Hadi, B.A.; Wunsch, D.C. Blood biomarkers for mild traumatic brain injury: A selective review of unresolved issues. Biomark. Res. 2021, 9, 70. [Google Scholar] [CrossRef]
- Evans, F.L.; Dittmer, M.; de la Fuente, A.G.; Fitzgerald, D.C. Protective and regenerative roles of T cells in central nervous system disorders. Front. Immunol. 2019, 10, 2171. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.; Roqué, P.J.; Mileur, T.R.; Liggitt, D.; Goverman, J.M. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. J. Clin. Investig. 2019, 130, 203–213. [Google Scholar] [CrossRef]
- Williams, G.P.; Schonhoff, A.M.; Jurkuvenaite, A.; Gallups, N.J.; Standaert, D.G.; Harms, A.S. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 2021, 144, 2047–2059. [Google Scholar] [CrossRef] [PubMed]
- Park, L.; Uekawa, K.; Garcia-Bonilla, L.; Koizumi, K.; Murphy, M.; Pistik, R.; Younkin, L.; Younkin, S.; Zhou, P.; Carlson, G.; et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ. Res. 2017, 121, 258–269. [Google Scholar] [CrossRef]
- Munawara, U.; Catanzaro, M.; Xu, W.; Tan, C.; Hirokawa, K.; Bosco, N.; Dumoulin, D.; Khalil, A.; Larbi, A.; Lévesque, S.; et al. Hyperactivation of monocytes and macrophages in MCI patients contributes to the progression of Alzheimer’s disease. Immun. Ageing 2021, 18, 29. [Google Scholar] [CrossRef]
- Bennett, M.L.; Bennett, F.C.; Liddelow, S.A.; Ajami, B.; Zamanian, J.L.; Fernhoff, N.B.; Mulinyawe, S.B.; Bohlen, C.J.; Adil, A.; Tucker, A.; et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 2016, 113, E1738–E1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wageningen, T.A.; Vlaar, E.; Kooij, G.; Jongenelen, C.A.M.; Geurts, J.J.G.; Van Dam, A.-M. Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol. Commun. 2019, 7, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopperton, K.E.; Mohammad, D.; Trépanier, M.O.; Giuliano, V.; Bazinet, R.P. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: A systematic review. Mol. Psychiatry 2018, 23, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Honarpisheh, P.; Lee, J.; Banerjee, A.; Blasco-Conesa, M.P.; Honarpisheh, P.; D’Aigle, J.; Mamun, A.A.; Ritzel, R.M.; Chauhan, A.; Ganesh, B.P.; et al. Potential caveats of putative microglia-specific markers for assessment of age-related cerebrovascular neuroinflammation. J. Neuroinflammation 2020, 17, 366. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochemical marker. Lab. Investig. 2016, 97, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Gavriilaki, M.; Kimiskidis, V.K.; Gavriilaki, E. Precision medicine in neurology: The inspirational paradigm of complement therapeutics. Pharmaceuticals 2020, 13, 341. [Google Scholar] [CrossRef]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [Green Version]
- Catlow, B.J.; Jalloh, A.; Sanchez-Ramos, J. Chapter 77—Hippocampal neurogenesis: Effects of psychedelic drugs. In Neuropathology of Drug Addictions and Substance Misuse; Preedy, V.R., Ed.; Academic Press: London, UK, 2015; pp. 821–831. [Google Scholar]
- Trinchero, M.F.; Herrero, M.; Schinder, A.F. Rejuvenating the brain with chronic exercise through adult neurogenesis. Front. Neurosci. 2019, 13, 1000. [Google Scholar] [CrossRef]
- Rao, M.S.; Shetty, A.K. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur. J. Neurosci. 2004, 19, 234–246. [Google Scholar] [CrossRef]
- Zhang, J.; Jiao, J. Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. BioMed Res. Int. 2015, 2015, 727542. [Google Scholar] [CrossRef] [Green Version]
- Wojtowicz, J.M.; Kee, N. BrdU assay for neurogenesis in rodents. Nat. Protoc. 2006, 1, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Gudi, V.; Gai, L.; Herder, V.; Tejedor, L.S.; Kipp, M.; Amor, S.; Sühs, K.-W.; Hansmann, F.; Beineke, A.; Baumgärtner, W.; et al. Synaptophysin is a reliable marker for axonal damage. J. Neuropathol. Exp. Neurol. 2017, 76, 109–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajjar, T.; Goh, Y.M.; Rajion, M.A.; Vidyadaran, S.; Li, T.A.; Ebrahimi, M. Alterations in neuronal morphology and synaptophysin expression in the rat brain as a result of changes in dietary n-6: N-3 fatty acid ratios. Lipids Health Dis. 2013, 12, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafit-Zagardo, B.; Kalcheva, N. Making sense of the multiple MAP-2 transcripts and their role in the neuron. Mol. Neurobiol. 1998, 16, 149–162. [Google Scholar] [CrossRef]
- Hoffmann, A.; Bredno, J.; Wendland, M.; Derugin, N.; Ohara, P.; Wintermark, M. High and low molecular weight fluorescein isothiocyanate (FITC)–Dextrans to assess blood-brain barrier disruption: Technical considerations. Transl. Stroke Res. 2011, 2, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Sarnat, H.B. Clinical neuropathology practice guide 5-2013: Markers of neuronal maturation. Clin. Neuropathol. 2013, 32, 340–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehmelt, L.; Halpain, S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2005, 6, 204. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 2018, 284, 643–663. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, M. Cellular tau pathology and immunohistochemical study of tau isoforms in sporadic tauopathies. Neuropathology 2006, 26, 457–470. [Google Scholar] [CrossRef]
- Kolarova, M.; García-Sierra, F.; Bartos, A.; Ricny, J.; Ripova, D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimer’s Dis. 2012, 2012, 731526. [Google Scholar] [CrossRef] [Green Version]
- Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet 2011, 377, 1019–1031. [Google Scholar] [CrossRef]
- Fuster-Matanzo, A.; Llorens-Martín, M.; Jurado-Arjona, J.; Avila, J.; Hernández, F. Tau protein and adult hippocampal neurogenesis. Front. Neurosci. 2012, 6, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyama, R.; Ikegaya, Y. The molecular and cellular mechanisms of axon guidance in mossy fiber sprouting. Front. Neurol. 2018, 9, 382. [Google Scholar] [CrossRef] [PubMed]
- Cavarsan, C.F.; Malheiros, J.; Hamani, C.; Najm, I.; Covolan, L. Is mossy fiber sprouting a potential therapeutic target for epilepsy? Front. Neurol. 2018, 9, 1023. [Google Scholar] [CrossRef] [Green Version]
- Scheibel, M.E.; Crandall, P.H.; Scheibel, A.B. The hippocampal-dentate complex in temporal lobe epilepsy. Epilepsia 1974, 15, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Johri, A.; Beal, M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012, 342, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Krall, R.F.; Tzounopoulos, T.; Aizenman, E. The function and regulation of zinc in the brain. Neuroscience 2021, 457, 235–258. [Google Scholar] [CrossRef]
- Reddy, S.D.; Clossen, B.L.; Reddy, D.S. Epigenetic histone deacetylation inhibition prevents the development and persistence of temporal lobe epilepsy. J. Pharmacol. Exp. Ther. 2017, 364, 97–109. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Guo, C.; Sun, L.; Chen, X.; Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 2013, 8, 2003–2014. [Google Scholar] [CrossRef]
- Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amelio, M.; Cavallucci, V.; Cecconi, F. Neuronal caspase-3 signaling: Not only cell death. Cell Death Differ. 2009, 17, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ahmad, K.; Alshammari, E.M.A.; Adnan, M.; Baig, M.H.; Lohani, M.; Somvanshi, P.; Haque, S. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using Nonpeptidyl natural compounds. BioMed Res. Int. 2015, 2015, 379817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louneva, N.; Cohen, J.W.; Han, L.Y.; Talbot, K.; Wilson, R.S.; Bennett, D.A.; Trojanowski, J.Q.; Arnold, S.E. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am. J. Pathol. 2008, 173, 1488–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Duncan, G.S.; Chang, C.-C.; Elia, A.; Fang, M.; Wakeham, A.; Okada, H.; Calzascia, T.; Jang, Y.; You-Ten, A.; et al. Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and apaf-1 in apoptosis. Cell 2005, 121, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Löscher, W.; Potschka, H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci. 2005, 6, 591–602. [Google Scholar] [CrossRef]
- Carvey, P.M.; Hendey, B.; Monahan, A.J. The blood-brain barrier in neurodegenerative disease: A rhetorical perspective. J. Neurochem. 2009, 111, 291–314. [Google Scholar] [CrossRef]
- Kaya, M.; Ahishali, B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol. Biol. 2011, 763, 369–382. [Google Scholar] [CrossRef]
- Rawson, R.A. The binding of T-1824 and structurally related diazo dyes by the plasma proteins. Am. J. Physiol. Content 1943, 138, 708–717. [Google Scholar] [CrossRef] [Green Version]
- Saunders, N.R.; Dziegielewska, K.M.; Møllgård, K.; Habgood, M.D. Markers for blood-brain barrier integrity: How appropriate is Evans blue in the twenty-first century and what are the alternatives? Front. Neurosci. 2015, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Hu, H.; Liu, C.; Sun, N.; Duan, C. Methods used for the measurement of blood-brain barrier integrity. Metab. Brain Dis. 2021, 36, 723–735. [Google Scholar] [CrossRef]
- Akaishi, T.; Narikawa, K.; Suzuki, Y.; Mitsuzawa, S.; Tsukita, K.; Kuroda, H.; Nakashima, I.; Fujihara, K.; Aoki, M. Importance of the quotient of albumin, quotient of immunoglobulin G and Reibergram in inflammatory neurological disorders with disease-specific patterns of blood–brain barrier permeability. Neurol. Clin. Neurosci. 2015, 3, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.A.; Ryu, J.K.; Akassoglou, K. Fibrinogen in neurological diseases: Mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 2018, 19, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, U.; Frederiksen, J.L. Fibrinogen: A potential biomarker for predicting disease severity in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 46, 102509. [Google Scholar] [CrossRef]
- Golanov, E.V.; Sharpe, M.A.; Regnier-Golanov, A.S.; Del Zoppo, G.J.; Baskin, D.S.; Britz, G.W. Fibrinogen chains intrinsic to the brain. Front. Neurosci. 2019, 13, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thien, A.; Han, J.X.; Kumar, K.; Ng, Y.P.; Rao, J.P.; Ng, W.H.; King, N.K.K. Investigation of the usefulness of fluorescein sodium fluorescence in stereotactic brain biopsy. Acta Neurochir. 2017, 160, 317–324. [Google Scholar] [CrossRef]
- Song, F.; Poljak, A.; Smythe, G.A.; Sachdev, P. Plasma biomarkers for mild cognitive impairment and Alzheimer’s disease. Brain Res. Rev. 2009, 61, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Li, Y.; Gordon, B.A.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.L.; Xiong, C.; et al. High-precision plasma beta-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019, 93, e1647–e1659. [Google Scholar] [CrossRef]
- Zetterberg, H.; Blennow, K. Moving fluid biomarkers for Alzheimer’s disease from research tools to routine clinical diagnostics. Mol. Neurodegener. 2021, 16, 10. [Google Scholar] [CrossRef]
- Janelidze, S.; Stomrud, E.; Palmqvist, S.; Zetterberg, H.; van Westen, D.; Jeromin, A.; Song, L.; Hanlon, D.; Tan Hehir, C.A.; Baker, D.; et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 2016, 6, 26801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatebe, H.; Kasai, T.; Ohmichi, T.; Kishi, Y.; Kakeya, T.; Waragai, M.; Kondo, M.; Allsop, D.; Tokuda, T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: Pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol. Neurodegener. 2017, 12, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benatar, M.; Zhang, L.; Wang, L.; Granit, V.; Statland, J.; Barohn, R.; Swenson, A.; Ravits, J.; Jackson, C.; Burns, T.M.; et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 2020, 95, e59–e69. [Google Scholar] [CrossRef]
- Lee, J.C.; Kim, S.J.; Hong, S.; Kim, Y. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkins, H.M.; Dimachkie, M.M.; Agbas, M.A. Blood-based biomarkers for amyotrophic lateral sclerosis. In Amyotrophic Lateral Sclerosis [Internet]; Exon Publications: Brisbane, Australia, 2021; pp. 105–120. [Google Scholar] [CrossRef]
- Alirezaei, Z.; Pourhanifeh, M.H.; Borran, S.; Nejati, M.; Mirzaei, H.; Hamblin, M.R. Neurofilament light chain as a biomarker, and correlation with magnetic resonance imaging in diagnosis of CNS-related disorders. Mol. Neurobiol. 2019, 57, 469–491. [Google Scholar] [CrossRef]
- Corraliza-Gomez, M.; Sanchez, D.; Ganfornina, M.D. Lipid-binding proteins in brain health and disease. Front. Neurol. 2019, 10, 1152. [Google Scholar] [CrossRef]
- Feng, L.; Hatten, M.E.; Heintz, N. Brain lipid-binding protein (BLBP): A novel signaling system in the developing mammalian CNS. Neuron 1994, 12, 895–908. [Google Scholar] [CrossRef]
- Retrosi, G.; Sebire, N.J.; Bishay, M.; Kiely, E.M.; Anderson, J.; De Coppi, P.; Resca, E.; Rampling, D.; Bier, N.; Mills, K.; et al. Brain lipid–binding protein: A marker of differentiation in neuroblastic tumors. J. Pediatr. Surg. 2011, 46, 1197–1200. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Adlakha, Y.K.; Saini, N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol. Cancer 2014, 13, 33. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Qin, C. General hallmarks of microRNAs in brain evolution and development. RNA Biol. 2015, 12, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, S.; Hirose, D.; Hatanaka, H.; Takenoshita, N.; Kaneko, Y.; Ogawa, Y.; Sakurai, H.; Hanyu, H. Role of neuroimaging as a biomarker for neurodegenerative diseases. Front. Neurol. 2018, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Golub, V.M.; Reddy, D.S. Post-traumatic epilepsy and comorbidities: Advanced models, molecular mechanisms, biomarkers, and novel therapeutic interventions. Pharmacol. Rev. 2022, 74, 387–438. [Google Scholar] [CrossRef]
- Young, P.N.E.; Estarellas, M.; Coomans, E.; Srikrishna, M.; Beaumont, H.; Maass, A.; Venkataraman, A.V.; Lissaman, R.; Jiménez, D.; Betts, M.J.; et al. Imaging biomarkers in neurodegeneration: Current and future practices. Alzheimers Res. Ther. 2020, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Jiang, X. Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging 2013, 13, 466–481. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, R. CT imaging in neurocritical care. Indian J. Crit. Care Med. 2019, 23 (Suppl. 2), S98–S103. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.T.; Sandler, D.A. MRI in patients with cardiac devices. Curr. Cardiol. Rep. 2007, 9, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Miele, E.; Spinelli, G.P.; Tomao, F.; Zullo, A.; De Marinis, F.; Pasciuti, G.; Rossi, L.; Zoratto, F.; Tomao, S. Positron Emission Tomography (PET) radiotracers in oncology—Utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). J. Exp. Clin. Cancer Res. 2008, 27, 52. [Google Scholar] [CrossRef] [Green Version]
- Politis, M.; Su, P.; Piccini, P. Imaging of microglia in patients with neurodegenerative disorders. Front. Pharmacol. 2012, 3, 96. [Google Scholar] [CrossRef] [Green Version]
- Kalra, S. Magnetic Resonance Spectroscopy in ALS. Front. Neurol. 2019, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Sheikh-Bahaei, N.; Acharya, J.; Rajamohan, A.; Kim, P.E. Advanced imaging techniques in diagnosis of posterior reversible encephalopathy syndrome (PRES). Front. Neurol. 2020, 11, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kates, R.; Atkinson, D.; Brant-Zawadzki, M. Fluid-attenuated inversion recovery (FLAIR): Clinical prospectus of current and future applications. Top. Magn. Reson. Imaging 1996, 8, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Sati, P.; George, I.; Shea, C.D.; Gaitán, M.I.; Reich, D.S. FLAIR*: A Combined MR contrast technique for visualizing white matter lesions and parenchymal veins. Radiology 2012, 265, 926–932. [Google Scholar] [CrossRef]
Brain Region | Function | Cell Types | Function |
---|---|---|---|
Neurons | The two main subclasses of neurons are projection (principal) neurons and interneurons. | ||
Olfactory bulb | Receives input from the olfactory neurons and projects to the olfactory nucleus, piriform cortex, and amygdala. | Principal neurons | Main signaling units in the brain, communicating with each other via synapses. |
Cerebral cortex | Consists of excitatory projection neurons and inhibitory interneurons. It processes and filters sensory information and sends information to motor neurons in the spinal cord. | Interneuron | Provide local interconnections between projection neurons to control communication. |
Hippocampal formation | Associated with learning and memory. The main cell types are pyramidal projection neurons, granule cells, and interneurons. | Non-neurons | Support and promote the proper function of neurons. These include endothelial cells lining blood vessels, ependymal cells lining the ventricular walls, and glial cells. Glial cells include oligodendrocytes, microglia, and astrocytes. |
Amygdala | Located deep within the temporal lobe and is associated with emotions, such as fear, and with emotional learning. | Oligodendrocytes | Insulate neuronal axons for faster signal conduction. |
Basal ganglia | A collection of subcortical nuclei, such as the striatum, globus pallidus, and substantia nigra, which are involved in movement control, learning, addiction, and reward. | Microglia | Act as brain macrophages (with a hematopoietic origin) for protecting the brain from infection and injuries. |
Hypothalamus | Integrates the two-way communication between the brain and the rest of the body. It regulates the secretion of pituitary hormones, food intake, temperature, and circadian rhythms, and senses blood-borne hormones. | Astrocytes | Involved in numerous functions, such as maintaining the BBB, homeostasis, neuronal growth, and neurotransmitter recycling. |
Thalamus | Processes sensory and motor information destined for the cortex and plays a critical role in sleep and consciousness. | ||
Midbrain | Participates in the processing of auditory and visual information and the regulation of motor behavior. | ||
Pons | Involved in breathing, eye movement, and various other senses. | ||
Medulla oblongata | Contains several motor nuclei that control autonomic functions, including respiration, vomiting, sneezing, heart rate, and blood pressure. It also incorporates sensory nuclei that receive input from the vagus nerve. | ||
Cerebellum | Contains large Purkinje cells, is associated with motor control, motor learning, and coordination, and is important for certain cognitive functions. |
Disease | Pathological Features | Biomarkers | References |
---|---|---|---|
Acute neuronal injuries: | |||
Acute ischemic stroke | Blockage of cerebral blood vessels, leading to neuronal necrosis, cell death, and inflammation | S100B, GFAP, BNP, MCP-1, caspase-3, NSE, MMP-9, NMDA-R, PARK7, CRP, IL-6, TNF-α, procalcitonin, MMP-8, GABA, UCH-L1, sNfl, miRNA, NfL, CT, MRI, MRS | [7,8,9] |
Traumatic brain injury | Secretion of inflammatory cytokines by activated glial cells leading to neurodegeneration and neuronal dysfunction | NeuN, PV, GFAP, IBA1, Timm, DCX, FJB, S100B, UCH-L1, MAPT, NSE, AMPc, MBP, tau, IL-1B, IL-6, IL-8, TNF-α, IFN-γ, PNF-H, NMDAR, all-spectrin, Hsp70, AQP4, SBP, miRNA, MRI, CT | [10,11] |
Encephalitis | A viral/bacterial infection or immune system malfunction leading to brain inflammation | YKL-40, IL-6, IL-8, TNF-α, Aβ38, Aβ40, β2M, Aβ42, GFAP, sTREM-2, NfL, t-tau, p-tau, MRI, CT | [12,13] |
Hemorrhagic stroke | Rupturing/bleeding of brain blood vessels leading to neuronal necrosis, cell death, and inflammation | S100B, GFAP, NSE, MMP-9, MRI, CT | [9,14] |
Chronic neurological conditions | |||
Epilepsy | Absence or excess signaling of neurons results in unpredictable, spontaneous, and recurrent seizures leading to neurodegeneration, BBB damage, and inflammation | miRNA, NeuN, PV, FJB, GFAP, IBA1, Timm, DCX, IL-1, IL-6, TNF-α, UCH-L1, NSE, MMP-9, S100B, MRI, CT, SPECT | [15,16] |
Neuropathic pain | Lesion or disease affecting the somatosensory nervous system leading to altered and disordered sensory signal transmission | IL-1β, IL-6, IL-2, IL-33, CCL3, CXCL1, CCR5, and TNF-α, sICAM-1, CRP, miRNA, TSPO, PET, MRI | [17,18,19] |
Migraine | Activation of the trigeminovascular system | TNF-α, homocysteine, somatostatin | [20] |
Parkinson’s disease | Intracellular aggregates of α-synuclein in the form of Lewy bodies and Lewy neurites leading to the loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta | α-Synuclein, miRNA, orexin, caspase-3, TCS, NfL, Aβ42, p-tau, CRP, D3R, 8-OHG, YKL-40, MCP-1, MHPG, GCase, GlcCer, cathepsin D, miRNA, DJ-1, PET, MRI, SPECT, TCS, DWI | [21,22] |
Frontotemporal dementia | Accumulation of different forms of aberrant tau aggregates in the brain leading to the atrophy of the frontal lobe | Aβ42, t-tau, pT181-tau, pS396-tau, NfL | [23] |
Neurodegenerative diseases | |||
Multiple sclerosis | Inflammatory lesions create multiple plaques in the gray and white matter of the brain and spinal cord, leading to neuronal demyelination, axonal degeneration, and neurological dysfunctions | Tau, NFL, NFH, CXCL13, miRNA, ApoE, MBP, OPN, NCAM1, NGF, CNTF, GFAP, tau, S100B, Ferritin, CD163, YKL-40, Kir4, MRI | [24,25,26,27] |
Huntington’s disease | Expansion of CAG repeats in the huntingtin gene leading to progressive degeneration and atrophy of the striat um; loss of striatal neurons and cell death | mHTT, tau, NFL, NFH, miRNA, TDP-43, NPY, PDE10A, MRI, PET | [28,29,30] |
Alzheimer’s disease | Extracellular aggregates of amyloid β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) made of hyperphosphorylated tau protein and inflammation; leading to synapse dysfunction, neuronal cell loss, and brain atrophy | Tau, p-tau, NfL, FABP, Aβ1-42, MCP-1, YKL-40, TREM2, neurogranin, MRI, PET, FDG-PET, amyloid PET, NSE, VLP-1, HFABP, albumin, GFAP, α-synuclein, t-tau, pT181-tau, pS396-tau | [23,31] |
Amyotrophic lateral sclerosis | Progressive loss of motor neurons in the motor cortex, lower cranial brainstem motor nuclei, and anterior horn cells of the spinal cord leading to voluntary muscle and cognition impairments | NfL, phospho-NfH, TDP-43, tau, Aβ, p-tau, GDNF, TSPO, CHIT1, CHI3L2, f4-HNE, ferritin, MMP-2, MMP-9, IL-6, IL-8, PGE2, MCP-1, fMRI, PET, DTI, SPECT | [32,33,34] |
Creutzfeldt–Jakob disease | Accumulation of misfolded prion proteins (PrPs), and spongiform changes in the brain leading to neurodegeneration and cell death | MRI, DWI, FLAIR, PET, NSE, tau, NfL, PrP | [35] |
Multiple system atrophy | Abnormal accumulation of misfolded hyperphosphorylated α-synuclein in the brain, leading to the progressive loss of oligodendroglia and neuronal death | α-Synuclein, NfL, tau, miRNA, MRI, DTI, PET | [36,37] |
Down’s syndrome | Overexpression of the APP gene leading to accumulation of brain Aβ and tau pathologies typical of AD | Tau, p-tau, NfL, GFAP, PET, MRI, Aβ42/40 | [38] |
Spinal muscular atrophy | Progressive loss of motor neurons in the spinal cord and motor nuclei in the lower brain stem resulting in muscle weakness | SMN, NfL, creatinine, GFAP, MRI, miRNA | [39,40] |
Biomarker | Target | Functional Role |
---|---|---|
NeuN | Mature neurons | Regulation of alternative pre-mRNA splicing |
PV | GABAergic interneurons | Regulation of neuronal network excitability |
NPY | GABAergic interneurons | Regulation of neuronal network excitability |
GAD67 | GABAergic interneurons | An enzyme involved in the neuronal synthesis of GABA |
AChE | Cholinergic neurons | An enzyme involved in the breakdown of acetylcholine |
TH | Dopaminergic neurons | An enzyme involved in the synthesis of dopamine |
FJB | Degenerating neurons | Stains necrotic/injured cells |
DAPI | Apoptotic cells | Stains the nucleus of apoptotic cells |
TUNEL | Apoptotic cells | Stains dead cells |
GFAP | Astrocytes | Responsible for the cytoarchitecture and mechanical strength |
Vimentin | Radial glial/ mesenchymal cells | Responsible for the cytoarchitecture and mechanical strength |
GS | Astrocytes, glutamatergic neurons | An enzyme involved in the metabolic regulation of glutamate and detoxification of ammonia by synthesis of glutamine |
IBA1 | Microglia | Responsible for actin bundling, membrane ruffling, cell mobility, and phagocytosis |
CD4+ | T-cells, microglia | Immune regulation |
S100B | Astrocytes | Regulation of cell progression and differentiation, protein phosphorylation and degradation, Ca2+ homeostasis, energy metabolism, and innate inflammatory response |
Macrophage | Microglia | Responsible for innate immunity, homeostasis, and repair of damaged tissue |
TMEM119 | Microglia | Unknown |
CD45 | Microglia | Regulates T-cell activation |
CD68 | Microglia | Regulates phagocytosis |
DCX | Immature neurons | Involved in neuronal migration |
Nestin | Neural progenitor cells | Regulation of assembly and disassembly of other IF proteins such as phosphorylated vimentin during mitosis. |
NeuroD | Immature neurons | Involved in neuronal differentiation and embryonic neurogenesis |
BrdU | Immature neurons | Used to detect cell proliferation |
Synaptophysin | Mature neurons | Involved in the regulation of short- and long-term synaptic plasticity |
MAP2 | Mature neurons | Involved in the assembly, nucleation, and stabilization of microtubules |
Timm | Mossy fibers | Stains zinc-containing neurons and fibers |
Caspase-3 | Apoptotic cells | An enzyme involved in apoptosis |
Evans blue | BBB damage | Enters the brain from BBB leakage |
HRP | BBB damage | An enzyme involved in catalyzing the oxidation of organic substrates using hydrogen peroxide |
Endogenous plasma proteins | BBB damage | Maintenance of serum osmotic pressure |
Fibrinogen | BBB damage | Involved in forming fibrin and blood clotting |
SF | BBB damage | Enters the brain from BBB leakage |
Dextrans | BBB damage | Enters the brain from BBB leakage |
Tau | Mature neurons | Stabilization of microtubules |
p-Tau | Mature neurons | Involved in the formation of neurofibrillary tangles in the brain |
NfL | Mature neurons | Maintenance of axonal structure and transport |
BLBP | Astrocytes | Involved in fatty acid uptake, transport, and metabolism |
Antibody | Optimal Dilution | Vendor | Host | Clonality | Marker/Target | Reference |
---|---|---|---|---|---|---|
Anti-NeuN | 1:1000 | Chemicon, Temecula, CA, USA | Mouse | A60, monoclonal | Mature neurons | [43] |
Anti-PV | 1:2000 | Sigma-Aldrich, St. Louis, MO, USA | Mouse | Monoclonal | GABAergic interneurons | [43,44] |
Anti-NPY | 1:10,000 | Peninsula Labs, San Carlos, CA, USA | Rabbit | Monoclonal | Interneurons | [44] |
Anti-BrdU | 1:1000 | Bio-Rad, Hercules, CA, USA | Rat | Monoclonal | Cells in the S phase | [45] |
Anti-DCX | 1:200 | Santa Cruz Biotechnology, Dallas, TX, USA | Goat | Polyclonal | Newborn neurons | [44] |
Anti-GFAP | 1:1000 | Dako North America Inc., Carpinteria, CA, USA | Rabbit | Polyclonal | Astrocytes | [43] |
Anti-IBA1 | 1:2000 | Wako Chemicals, Richmond, VA, USA | Rabbit | Polyclonal | Microglia | [43] |
Anti-GAD67 | 1:2000 | Chemicon, Temecula, CA, USA | Rabbit | Monoclonal | GABAergic interneurons | [46] |
Anti-nestin | 1:100 | BD Biosciences, San Jose, CA, USA | Mouse | Monoclonal | Neural stem cells | [47] |
Anti-vimentin | 1:750 | Chemicon, Temecula, CA, USA | Mouse | VIM 3B4, monoclonal | Radial glial cells | [48] |
Anti-S100B | 1:1 | ImmunoStar Inc., Hudson, WI, USA | Rabbit | Polyclonal | Ependymal and glial cells | [47] |
Anti-GS | 1:400 | Chemicon, Temecula, CA, USA | Mouse | Monoclonal, clone GS-6 | Astrocytes | [49] |
Anti-BLBP | 1:100 | MilliporeSigma, Burlington, MA, USA | Rabbit | Polyclonal | Astrocytes | [50] |
Neuron Type | Neural-Specific Markers | Full Name | Potential Role | References |
---|---|---|---|---|
Neural Stem Cells | BRG1 | Brahma-related gene 1 | Regulates the oligodendrocyte progenitor’s differentiation, specification, and maturation | [53] |
MSI1 | Musashi-1 | Regulates target mRNA translation and promotes cell stemness, self-renewal, and tumorigenesis | [54] | |
MSI2 | Musashi-2 | Promotes tumor proliferation, migration, and invasion | [55] | |
Nestin | Nestin | Promotes cell stemness, self-renewal/proliferation, differentiation, migration, and cell-cycle regulation | [56,57] | |
NCAD | N-Cadherin | Promotes tumor survival, migration, and invasion | [58] | |
PAX3 | Paired box protein 3 | Regulates embryonic development, cell proliferation, migration, and apoptosis, and promotes cellular metastasis and invasion | [59] | |
PAX6 | Paired box protein 6 | Promotes neural stem cell self-renewal/proliferation and neurogenesis of the CNS including the cerebral cortex | [60] | |
SOX1 | SRY-box transcription factor 1 | Promotes stem cell maintenance and neural differentiation, and regulates embryonic development and γ-crystallin genes for developing eye lenses | [61,62] | |
SOX2 | SRY-box transcription factor 2 | Promotes neural stem cell self-renewal/proliferation and differentiation and regulates embryonic development | [61,63] | |
OTX2 | Orthodenticle homeobox 2 | Involved in gastrulation and brain, cerebellar, and optic nerve development | [64] | |
CASPR1 | Contactin-associated protein 1 | Involved in astrocyte and neuron differentiation, formation, and stability of myelinated axons, and propagation of action potentials | [65] | |
ASCL1 | Achaete-scute family BHLH transcription factor 1 | Regulates neural progenitor regulation, neuronal differentiation, and neurite outgrowth | [66] | |
Immature Neurons | DCX | Doublecortin | Regulates neuronal differentiation and neuronal migration by regulating the organization and stability of microtubules | [67] |
NeuroD | Neuronal differentiation 1 | Promotes the development of the cerebral cortex, early retinal ganglion cells, inner ear sensory neurons, and the DG layer of the hippocampus | [68] | |
TBR1 | T-box brain transcription factor 1 | Involved in cortical development, neuronal migration, and axonal projection | [69] | |
STMN | Stathmin | Promotes neurite outgrowth in development and regeneration | [70] | |
NCAM | Neural cell adhesion molecule | Regulates the adult neurogenesis, neurite outgrowth, cell migration, and fasciculation | [71,72] | |
NSE | Neuron-specific enolase | Promotes neural differentiation and maturation | [73] | |
Mature Neurons | NeuN | Neuronal nuclear antigen | Involved in the regulation of pre-mRNA alternative splicing, neural tissue development, and regulation of adult brain functions | [74] |
Tuj1 | Neuron-specific class III beta-tubulin | Involved in neuronal differentiation and neurite outgrowth | [75] | |
MAP2 | Microtubule-associated protein 2 | Promotes the microtubule assembly and stabilization of the dendritic shape during neuronal development | [76,77] | |
Tau | Tau | Promotes the microtubule assembly and stabilization by interacting with tubulin | [78] | |
NFH/M/L | Human neurofilament heavy/medium/light chain | Promotes the radial growth of axons during development, the maintenance of axon caliber, and the electrical impulse transmission of axons | [79] | |
Synaptophysin | Synaptophysin | Regulates the synapse formation | [80] | |
PSD95 | Postsynaptic density protein 95 | Involved in synaptogenesis and synaptic plasticity | [81] | |
GAP43 | Growth-associated protein 43 | Involved in presynaptic neuronal outgrowth, neuronal plasticity, axonal growth, and neurogenesis | [82] | |
Cholinergic Neurons | ChAT | Choline acetyltransferase | Catalyzes the synthesis of acetylcholine | [83] |
AChE | Acetylcholinesterase | Catalyzes the breakdown of acetylcholine | [84] | |
VACHT | Vesicular acetylcholine transporter | Facilitates the transfer of acetylcholine from the cytoplasm into individual synaptic vesicles | [85] | |
Dopaminergic Neurons | TH | Tyrosine hydroxylase | Catalyzes the conversion of tyrosine to dopamine | [86] |
DBH | Dopamine beta-hydroxylase | Catalyzes the conversion of dopamine to norepinephrine | [87] | |
DAT | Dopamine active transporter | Regulates the dopamine neurotransmission by terminating the action of dopamine in the synapse by reuptake | [88] | |
NET | Norepinephrine transporter | Regulates the norepinephrine homeostasis via reuptake of norepinephrine into the presynaptic terminals | [89] | |
Girk2 | G-protein-coupled inwardly rectifying potassium channel 2 | Regulates inhibitory neurotransmission and synaptic plasticity and maintains resting membrane potentials | [90,91] | |
Nurr1 | Nuclear receptor related-1 protein | Promotes midbrain dopamine (mDA) neural survival, development, and maturation | [92] | |
Lmx1b | LIM homeobox transcription factor 1 β | Promotes mDA development, specification, and maintenance | [93] | |
FoxA2 | Forkhead box transcription factor 2 | Promotes mDA neural survival, development, differentiation, and specification | [92,94] | |
DARPP-32 | Dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa | Inhibits protein phosphatase 1 | [95] | |
PITX3 | Paired-like homeodomain transcription factor 3 or pituitary homeobox 3 | Promotes midbrain dopamine (mDA) neural survival and development | [96] | |
GABAergic Neurons | GABA-A receptor alpha1 | GABRA1 | Mediates inhibitory neurotransmission | [97] |
GABA-A receptor beta1 | GABRB1 | Mediates inhibitory neurotransmission | [97] | |
GAD65 | Glutamic acid decarboxylase 65 | Catalyzes the synthesis of GABA | [98] | |
GAD67 | Glutamic acid decarboxylase 67 | Catalyzes the synthesis of GABA | [99] | |
GAT1 | GABA transporter 1 | Removes GABA from the synaptic cleft | [100] | |
VGAT/VIAAT | Vesicular GABA transporter | Involved in GABA and glycine uptake into synaptic vesicles | [101] | |
Glutamatergic Neurons | GLS | Glutaminase | Synthesis of glutamate | [102] |
GS | Glutamine synthetase | Synthesis of glutamine and detoxification of glutamate and ammonia | [103] | |
vGluT1 | Vesicular glutamate transporter 1 | Mediates the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells | [104] | |
vGluT2 | Vesicular glutamate transporter 2 | Mediates the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells | [104] | |
NMDAR1 | N-methyl D-aspartate receptor subtype 1 | Involved in synaptic plasticity and synaptogenesis | [105] | |
NMDAR2A | N-methyl D-aspartate receptor subtype 2A | Involved in synaptic plasticity and synaptogenesis | [105] | |
NMDAR2B | N-methyl D-aspartate receptor subtype 2B | Involved in synaptic plasticity and synaptogenesis | [105] | |
Serotonergic Neurons | 5-HTT | Serotonin transporter | Transports the neurotransmitter serotonin from synapses into the presynaptic neurons | [106] |
TPH | Tryptophan hydroxylase | Catalyzes the rate-limiting reaction of biosynthesis of serotonin | [107] | |
VMAT2 | Vesicular monoamine transporter 2 | Involved in the ATP-dependent transport of neurotransmitters into synaptic vesicles | [108] | |
Oligodendrocytes | OLIG1 | Oligodendrocyte transcription factor 1 | Promotes formation and maturation of oligodendrocytes | [109] |
OLIG2 | Oligodendrocyte transcription factor 2 | Promotes oligodendrocyte differentiation | [109] | |
MBP | Myelin basic protein | Involved in the formation and stabilization of the myelin membranes in the CNS | [110] | |
MOG | Myelin oligodendrocyte glycoprotein | Involved in the formation, maintenance of the myelin sheath, and in cell–cell communication | [111] | |
MAG | Myelin-associated glycoprotein | Involved in the myelination process | [112] | |
CNPase | 2′,3′-Cyclic-nucleotide 3′-phosphodiesterase | Involved in the myelination process | [113] | |
Astrocytes | GFAP | Glial fibrillary acidic protein | Maintains the shape, strength, movement, and function of astroglial cells | [114] |
S100B | S100 calcium-binding protein B | Regulates the cytoskeletal structure and cell proliferation | [115] | |
AQP4 | Aquaporin-4 | Maintains the ion and water homeostasis in the CNS, and mediates the astrocyte function in neuropathologies | [116] | |
IGFBP3 | Insulin-like growth factor-binding protein 3 | Regulates IGF bioactivity, induces apoptosis, and inhibits cell growth | [117] | |
ALDH1L1 | Aldehyde dehydrogenase 1 family member L1 | Regulates cell division and growth, involved in neural tube defects during early CNS development | [118] | |
GS | Glutamine synthetase | Synthesis of glutamine and detoxification of glutamate and ammonia | [103] | |
GT | Glutamine transporter | Regulates glutamate concentration | [104,119] | |
Aldolase | Aldolase | Involved in glycolysis to regulate glucose homeostasis | [120] | |
GLAST | Glutamate–aspartate transporter | Involved in the termination of excitatory neurotransmission of glutamate in the CNS | [121] | |
Gal-3 | Galectin-3 | Involved in inflammation, cell adhesion, proliferation, migration, apoptosis, and tumorigenesis | [122] | |
GAP43 | Growth-associated protein 43 | Involved in presynaptic neuronal outgrowth, neuronal plasticity, axonal growth, and neurogenesis | [82] | |
Microglia | CD11b | Cluster of differentiation 11b | Regulates phagocytosis, microglial migration, the production of microglial superoxide, and cell adhesion | [123] |
IBA1 | Ionized calcium-binding adapter molecule 1 | Regulates phagocytosis and the inflammatory response in the CNS by activating microglia | [124] | |
CX3CR1 | CX3C chemokine receptor 1 | Regulates the inflammatory response and the synapse maturation in the CNS | [125] | |
CD40 | Cluster of differentiation 40 | Regulates the immune and inflammatory response | [126] | |
CD45 | Cluster of differentiation 45 | Regulates T-cell activation | [127] | |
CD14 | Cluster of differentiation 14 | Mediates the innate immunity response to bacterial components and regulates the microglial inflammatory response | [128,129] | |
CD16 | Cluster of differentiation 16 | Involved in phagocytosis and immune cell activation | [130] | |
CD68 | Cluster of differentiation 68 | Involved in the inflammatory response in the CNS and regulates phagocytosis | [131] | |
HLA-DR | Human leukocyte antigen-DR | Involved in cell recognition and immune modulation | [132,133] | |
C1qA | Complement C1q subcomponent subunit A | Facilitates synaptic pruning/phagocytosis | [134] | |
iNOS | Inducible nitric oxide synthase | Regulates systemic inflammation and sepsis | [135] | |
Ferritin | Ferritin | Regulation of iron homeostasis | [136] | |
Vimentin | Vimentin | Involved in cell–cell interaction, homeostasis, microglial activation, and tissue repair | [137] | |
TSPO | Translocator protein | Promotes the transportation of cholesterol into mitochondria, lipid metabolism, apoptosis, proliferation, tumorigenesis, and inflammation | [138] | |
P2Y12R | Purinergic receptor P2Y12 | Mediates the chemotaxis process towards ADP/ATP gradients. Regulates the microglial translocation, neuronal excitability, and behavioral adaptations | [139] | |
TMEM119 | Transmembrane protein 119 | Unknown | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, D.S.; Abeygunaratne, H.N. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int. J. Mol. Sci. 2022, 23, 11734. https://doi.org/10.3390/ijms231911734
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. International Journal of Molecular Sciences. 2022; 23(19):11734. https://doi.org/10.3390/ijms231911734
Chicago/Turabian StyleReddy, Doodipala Samba, and Hasara Nethma Abeygunaratne. 2022. "Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders" International Journal of Molecular Sciences 23, no. 19: 11734. https://doi.org/10.3390/ijms231911734
APA StyleReddy, D. S., & Abeygunaratne, H. N. (2022). Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. International Journal of Molecular Sciences, 23(19), 11734. https://doi.org/10.3390/ijms231911734