Extraction of High-Value Chemicals from Plants for Technical and Medical Applications
Abstract
:1. Introduction
2. Extraction Methods for High-Value Chemicals
2.1. Hydrodistillation
2.2. Steam Distillation
2.3. Cold Pressing
2.4. Solvent Extraction
2.5. Soxhlet Extraction
2.6. Microwave-Assisted Extraction (MAE)
2.7. Ultrasound-Assisted Extraction (UAE)
2.8. Subcritical Water Extraction (SWE)
2.9. Supercritical CO2 Extraction (scCO2)
3. Analytical Methods
3.1. Gas Chromatography Mass Spectrometry (GC-MS)
3.2. High-Performance Liquid Chromatography Mass Spectrometry (HPLC-MS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kose, M.D.; Hardy, J.G.; Sheridan, E.; Bozoğlan, F.; Bayraktar, O. Research Trends in Plant-Derived Oligomers for Health Applications. Curr. Nutraceuticals 2020, 2, 3–13. [Google Scholar] [CrossRef]
- Lange, L.; Connor, K.O.; Arason, S.; Bundgård-Jørgensen, U.; Canalis, A.; Carrez, D.; Gallagher, J.; Gøtke, N.; Huyghe, C.; Jarry, B.; et al. Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business. Front. Bioeng. Biotechnol. 2021, 8, 619066. [Google Scholar] [PubMed]
- Serna-Loaiza, S.; Miltner, A.; Miltner, M.; Friedl, A. A Review on the Feedstocks for the Sustainable Production of Bioactive Compounds in Biorefineries. Sustainability 2019, 11, 6765. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Wink, M. Plant Secondary Metabolites Modulate Insect Behavior-Steps toward Addiction? Front. Physiol. 2018, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Poiroux-Gonord, F.; Bidel, L.P.R.; Fanciullino, A.L.; Gautier, H.; Lauri-Lopez, F.; Urban, L. Health Benefits of Vitamins and Secondary Metabolites of Fruits and Vegetables and Prospects to Increase Their Concentrations by Agronomic Approaches. J. Agric. Food Chem. 2010, 58, 12065–12082. [Google Scholar] [CrossRef]
- Makkar, H.; Siddhuraju, P.; Becker, K. Plant Secondary Metabolites. In Methods in Molecular BiologyTM; Springer: Berlin, Germany, 2007. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar]
- Fernández-López, J.; Viuda-Martos, M. Introduction to the Special Issue: Application of Essential Oils in Food Systems. Foods 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Hmaied, M.; Bouafif, H.; Magdouli, S.; Braghiroli, F.L.; Koubaa, A. Effect of Forest Biomass Pretreatment on Essential Oil Yield and Properties. Forests 2019, 10, 1042. [Google Scholar] [CrossRef] [Green Version]
- Said-Al Ahl, H.A.H.; Sabra, A.S.; Alataway, A.; Astatkie, T.; Mahmoud, A.A.; Bloem, E. Biomass Production and Essential Oil Composition of Thymus vulgaris in Response to Water Stress and Harvest Time. J. Essent. Oil Res. 2019, 31, 63–68. [Google Scholar] [CrossRef]
- Mossi, A.J.; Pauletti, G.F.; Rota, L.; Echeverrigaray, S.; Barros, I.B.I.; Oliveira, J.V.; Paroul, N.; Cansian, R.L. Effect of Different Liming Levels on the Biomass Production and Essential Oil Extraction Yield of Cunila galioides Benth. Braz. J. Biol. 2012, 72, 787–793. [Google Scholar] [CrossRef]
- Noriega, P. Terpenes in Essential Oils: Bioactivity and Applications. In Terpenes and Terpenoids—Recent Advances; IntechOpen: London, UK, 2021. [Google Scholar]
- Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants: From Farm to Pharmacy; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Segneanu, A.; Velciov, S.M.; Olariu, S.; Cziple, F.; Damian, D.; Grozescu, I. Bioactive Molecules Profile from Natural Compounds. In Amino Acid—New Insights and Roles in Plant and Animal; IntechOpen: London, UK, 2017. [Google Scholar]
- Hohtola, A. Bioactive Compounds from Northern Plants. Adv. Exp. Med. Biol. 2010, 698, 99–109. [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- Perveen, S. Introductory Chapter: Terpenes and Terpenoids. In Terpenes and Terpenoids; BoD–Books on Demand: Norderstedt, Germany, 2018. [Google Scholar]
- Kurek, J. Introductory Chapter: Alkaloids-Their Importance in Nature and Human Life; BoD–Books on Demand: Norderstedt, Germany, 2019. [Google Scholar]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar]
- Guclu-Ustundag, Ö.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary Metabolites of Plants and Their Role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [PubMed]
- Cheng, F.; Cheng, Z. Research Progress on the Use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Front. Plant Sci 2015, 6, 1020. [Google Scholar] [CrossRef]
- Pech-Kú, R.; Muñoz-Sánchez, J.A.; Monforte-González, M.; Vázquez-Flota, F.; Rodas-Junco, B.A.; Hernández-Sotomayor, S.M.T. Caffeine Extraction, Enzymatic Activity and Gene Expression of Caffeine Synthase from Plant Cell Suspensions. J. Vis. Exp. 2018, 140, e58166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A Review of Caffeine’s Effects on Cognitive, Physical and Occupational Performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [PubMed]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Oluwaseun Ademiluyi, A.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential Oils Used in Aromatherapy: A Systemic Review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Rassem, H.H.; Nour, A.H.; Yunus, R.M. Techniques for Extraction of Essential Oils from Plants: A Review. Aust. J. Basic Appl. Sci. 2016, 10, 117–127. [Google Scholar]
- Feyaerts, A.F.; Luyten, W.; van Dijck, P. Striking Essential Oil: Tapping into a Largely Unexplored Source for Drug Discovery. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Reddy, D.N. Essential Oils Extracted from Medicinal Plants and Their Applications. In Natural Bio-Active Compounds: Volume 1: Production and Applications; Springer: Singapore, 2019. [Google Scholar]
- Elshafie, H.S.; Camele, I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. Biomed. Res. Int. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, H.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Heinbockel, T. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application. Int. J. Mol. Sci. 2020, 21, 1558. [Google Scholar] [CrossRef]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of Secondary Metabolites in Plant Defense against Pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, P. Essential Oils for the Treatment of Herpes Simplex Virus Infections. Chemotherapy 2019, 64, 1–7. [Google Scholar] [CrossRef]
- Shin, S.A.; Moon, S.Y.; Kim, W.Y.; Paek, S.M.; Park, H.H.; Lee, C.S. Structure-Based Classification and Anti-Cancer Effects of Plant Metabolites. Int. J. Mol. Sci. 2018, 19, 2651. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef]
- Price, S. Using Essential Oils in Professional Practice. Complement. Ther. Nurs. Midwifery 1998, 4, 144–147. [Google Scholar] [CrossRef]
- Malcolm, B.J.; Tallian, K. Essential Oil of Lavender in Anxiety Disorders: Ready for Prime Time? Ment. Health Clin. 2017, 7, 147–155. [Google Scholar] [CrossRef]
- Lillehei, A.S.; Halcón, L.L.; Savik, K.; Reis, R. Effect of Inhaled Lavender and Sleep Hygiene on Self-Reported Sleep Issues: A Randomized Controlled Trial. J. Altern. Complement. Med. 2015, 21, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural Products against Alzheimer’s Disease: Pharmaco-Therapeutics and Biotechnological Interventions. Biotechnol. Adv. 2017, 35, 178–216. [Google Scholar] [PubMed]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural Monoterpenes: Much More than Only a Scent. Chem. Biodivers. 2019, 16, e1900434. [Google Scholar] [CrossRef]
- Qiao, Q.; Wang, X.; Ren, H.; An, K.; Feng, Z.; Cheng, T.; Sun, Z. Oil Content and Nervonic Acid Content of Acer Truncatum Seeds from 14 Regions in China. Hortic. Plant J. 2019, 5, 24–30. [Google Scholar] [CrossRef]
- Marillia, E.F.; Francis, T.; Falk, K.C.; Smith, M.; Taylor, D.C. Palliser’s Promise: Brassica Carinata, An Emerging Western Canadian Crop for Delivery of New Bio-Industrial Oil Feedstocks. Biocatal. Agric. Biotechnol. 2014, 3, 65–74. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Yu, X.; Gao, J.M. A Mini Review of Nervonic Acid: Source, Production, and Biological Functions. Food Chem. 2019, 301, 125286. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, F.A. The Use of Mouthwash Containing Essential Oils (LISTERINE®) to Improve Oral Health: A Systematic Review. Saudi Dent. J. 2018, 30, 2–6. [Google Scholar] [CrossRef]
- Lynch, M.C.; Cortelli, S.C.; McGuire, J.A.; Zhang, J.; Ricci-Nittel, D.; Mordas, C.J.; Aquino, D.R.; Cortelli, J.R. The Effects of Essential Oil Mouthrinses with or without Alcohol on Plaque and Gingivitis: A Randomized Controlled Clinical Study. BMC Oral Health 2018, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Karadağlıoğlu, Ö.İ.; Ulusoy, N.; Başer, K.H.C.; Hanoğlu, A.; Şık, İ. Antibacterial Activities of Herbal Toothpastes Combined with Essential Oils against Streptococcus mutans. Pathogens 2019, 8, 20. [Google Scholar] [CrossRef]
- Freires, I.A.; Denny, C.; Benso, B.; de Alencar, S.M.; Rosalen, P.L. Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules 2015, 20, 7329–7358. [Google Scholar] [CrossRef]
- Anusha, D.; Chaly, P.; Junaid, M.; Nijesh, J.; Shivashankar, K.; Sivasamy, S. Efficacy of a Mouthwash Containing Essential Oils and Curcumin as an Adjunct to Nonsurgical Periodontal Therapy among Rheumatoid Arthritis Patients with Chronic Periodontitis: A Randomized Controlled Trial. Indian J. Dent. Res. 2019, 30, 506–511. [Google Scholar] [CrossRef]
- Rao, B.; Sastry, K. Major Essential Oils of South Lndia-A Perspective. Fafai J. 2003, 5, 19–24. [Google Scholar]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical and Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef] [PubMed]
- Ferhat, M.A.; Meklati, B.Y.; Chemat, F. Comparison of Different Isolation Methods of Essential Oil from Citrus Fruits: Cold Pressing, Hydrodistillation and Microwave “dry” Distillation. Flavour Fragr. J. 2007, 22, 494–504. [Google Scholar] [CrossRef]
- Bousbia, N.; Vian, M.A.; Ferhat, M.A.; Meklati, B.Y.; Chemat, F. A New Process for Extraction of Essential Oil from Citrus Peels: Microwave Hydrodiffusion and Gravity. J. Food Eng. 2009, 90, 409–413. [Google Scholar] [CrossRef]
- Cardoso-Ugarte, G.A.; Juárez-Becerra, G.P.; Sosa-Morales, M.E.; López-Malo, A. Microwave-Assisted Extraction of Essential Oils from Herbs. J. Microw. Power Electromagn. Energy 2013, 47, 63–72. [Google Scholar] [CrossRef]
- De Castro, M.L.; Jiménez-Carmona, M.M.; Fernandez-Perez, V. Towards More Rational Techniques for the Isolation of Valuable Essential Oils from Plants. TrAC-Trends Anal. Chem. 1999, 18, 708–716. [Google Scholar] [CrossRef]
- Kokolakis, A.K.; Golfinopoulos, S.K. Microwave-Assisted Techniques (MATs); a Quick Way to Extract a Fragrance: A Review. Nat. Prod. Commun. 2013, 8, 1493–1504. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Chapter 13-Phenolic Acids from Plants: Extraction and Application to Human Health; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Pacheco-Fernández, I.; Pino, V. Extraction with Ionic Liquids-Organic Compounds. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Haghighi, A.; Khajenoori, M. Mass Transfer-Advances in Sustainable Energy and Environment Oriented Numerical Modeling; BoD–Books on Demand: Norderstedt, Germany, 2013. [Google Scholar]
- Ko, M.J.; Nam, H.H.; Chung, M.S. Subcritical Water Extraction of Bioactive Compounds from Orostachys japonicus A. Berger (Crassulaceae). Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Hrncic, M.K.; Cör, D.; Verboten, M.T.; Knez, Z. Application of Supercritical and Subcritical Fluids in Food Processing. Food Qual. Saf. 2018, 2, 59–67. [Google Scholar] [CrossRef]
- Mejri, J.; Aydi, A.; Abderpabba, M.; Mejri, M. Emerging Extraction Processes of Essential Oils: A Review. Asian J. Green Chem. 2018, 2, 246–267. [Google Scholar]
- Azmin, S.N.H.M.; Manan, Z.A.; Alwi, S.R.W.; Chua, L.S.; Mustaffa, A.A.; Yunus, N.A. Herbal Processing and Extraction Technologies. Sep. Purif. Rev. 2016, 45, 305–320. [Google Scholar] [CrossRef]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A Review of Sustainable and Intensified Techniques for Extraction of Food and Natural Products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Presti, M.L.; Ragusa, S.; Trozzi, A.; Dugo, P.; Visinoni, F.; Fazio, A.; Dugo, G.; Mondello, L. A Comparison between Different Techniques for the Isolation of Rosemary Essential Oil. J. Sep. Sci. 2005, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Temelli, F.; Saldaña, M.D.A.; Comin, L. Application of Supercritical Fluid Extraction in Food Processing. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4. [Google Scholar]
- Zheljazkov, V.D.; Astatkie, T.; Schlegel, V. Hydrodistillation Extraction Time Effect on Essential Oil Yield, Composition, and Bioactivity of Coriander Oil. J. Oleo Sci. 2014, 63, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Abidin, Z.; Ahmad, B.; Yusoff, Z.B.; Fikri, A.; Awang, B.; Fifadli, A.; Mohd, B.; Rudin, N.; Saiful, M.; Bin, H.; et al. Hydro-Distillation Process in Extracting of Agarwood Essential Oil; Politeknik Kuching: Kuching, Malaysia, 2009. [Google Scholar]
- Huzar, E.; Dziecioł, M.; Wodnicka, A.; Orün, H.; Icoz, A.; Cicek, E. Influence of Hydrodistillation Conditions on Yield and Composition of Coriander (Coriandrum Sativum L.) Essential Oil. Pol. J. Food Nutr. Sci. 2018, 68, 243–249. [Google Scholar] [CrossRef]
- Semerdjieva, I.B.; Shiwakoti, S.; Cantrell, C.L.; Zheljazkov, V.D.; Astatkie, T.; Schlegel, V.; Radoukova, T. Hydrodistillation Extraction Kinetics Regression Models for Essential Oil Yield and Composition in Juniperus Virginiana, J. Excelsa, and J. Sabina. Molecules 2019, 24, 986. [Google Scholar] [CrossRef] [PubMed]
- Sintim, H.Y.; Burkhardt, A.; Gawde, A.; Cantrell, C.L.; Astatkie, T.; Obour, A.E.; Zheljazkov, V.D.; Schlegel, V. Hydrodistillation Time Affects Dill Seed Essential Oil Yield, Composition, and Bioactivity. Ind. Crops Prod. 2015, 63, 190–196. [Google Scholar] [CrossRef]
- Collin, H.A. Secondary Metabolites|Extraction and Industrial Processes. In Encyclopedia of Rose Science; Elsevier: Amsterdam, The Netherlands, 2003; pp. 726–735. [Google Scholar]
- Tisserand, R.; Young, R. Essential Oil Composition. In Essential Oil Safety; Elsevier: Amsterdam, The Netherlands, 2013; pp. 5–22. [Google Scholar]
- Périno-Issartier, S.; Ginies, C.; Cravotto, G.; Chemat, F. A Comparison of Essential Oils Obtained from Lavandin via Different Extraction Processes: Ultrasound, Microwave, Turbohydrodistillation, Steam and Hydrodistillation. J. Chromatogr. A 2013, 1305, 41–47. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Chemat, F. Accelerated Methods for Sample Preparation in Food. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 4. [Google Scholar]
- Beoletto, V.G.; de las Mercedes Oliva, M.; Marioli, J.M.; Carezzano, M.E.; Demo, M.S. Antimicrobial Natural Products Against Bacterial Biofilms. In Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Scott, R. Encyclopedia of Analytical Science. In Reference Reviews, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 19, pp. 554–561. [Google Scholar]
- Peter, K.V. Handbook of Herbs and Spices, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 1, ISBN 9780857095671. [Google Scholar]
- El-Toumy, S.A.; Hussein, A.A. Cold Pressed Yuzu (Citrus junos Sieb. Ex Tanaka) Oil. In Cold Pressed Oils; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Masango, P. Cleaner Production of Essential Oils by Steam Distillation. J. Clean Prod. 2005, 13, 833–839. [Google Scholar] [CrossRef]
- Richard, J.J.; Junk, G.A. Steam Distillation, Solvent Extraction, and Ion Exchange for Determining Polar Organics in Shale Process Waters. Anal. Chem. 1984, 56, 1625–1628. [Google Scholar] [CrossRef]
- Irmak, S.; Erbatur, O. Additives for Environmentally Compatible Active Food Packaging. In Environmentally Compatible Food Packaging; Woodhead Publishing: Cambridge, MA, USA, 2008. [Google Scholar]
- Prado, J.M.; Vardanega, R.; Debien, I.C.; Meireles, M.A.A.; Gerschenson, L.N.; Sowbhagya, H.B.; Chemat, S. Chapter 6-Conventional Extraction. In Food Waste Recovery; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Vidic, D.; Čopra-Janićijević, A.; Miloš, M.; Maksimović, M. Effects of Different Methods of Isolation on Volatile Composition of Artemisia Annua L. Int. J. Anal. Chem. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Malekydozzadeh, M.; Khadiv-Parsi, P.; Rezazadeh, S.; Abolghasemi, H.; Salehi, Z.; Li, Q. Application of Multistage Steam Distillation Column for Extraction of Essential Oil of Rosemarinuse Officinialis L. Iran. J. Chem. Eng. 2012, 9, 55. [Google Scholar]
- Yahya, A.; Yunus, R.M. Influence of Sample Preparation and Extraction Time on Chemical Composition of Steam Distillation Derived Patchouli Oil. Procedia Eng. 2013, 53, 1–6. [Google Scholar] [CrossRef]
- Božović, M.; Navarra, A.; Garzoli, S.; Pepi, F.; Ragno, R. Esential Oils Extraction: A 24-Hour Steam Distillation Systematic Methodology. Nat. Prod. Res. 2017, 31, 2387–2396. [Google Scholar] [CrossRef] [PubMed]
- Geramitcioski, T.; Mitrevski, V.; Mijakovski, V. Design of a Small Press for Extracting Essential Oil According VDI 2221. IOP Conf. Ser. Mater. Sci. Eng. 2018, 393, 012131. [Google Scholar] [CrossRef]
- Faugno, S.; Piccolella, S.; Sannino, M.; Principio, L.; Crescente, G.; Baldi, G.M.; Fiorentino, N.; Pacifico, S. Can Agronomic Practices and Cold-Pressing Extraction Parameters Affect Phenols and Polyphenols Content in Hempseed Oils? Ind Crops Prod. 2019, 130, 511–519. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E.; Hussain, S. Comparison of Cold-Pressing and Soxhlet Extraction Systems for Bioactive Compounds, Antioxidant Properties, Polyphenols, Fatty Acids and Tocopherols in Eight Nut Oils. J. Food Sci. Technol. 2018, 55, 3163–3173. [Google Scholar] [CrossRef]
- Kostadinovic-Velickovska, S.; Mitrev, S. Characterization of Fatty Acid Profile, Polyphenolic Content and Antioxidant Activity of Cold Pressed and Refined Edible Oils from Macedonia. J. Food Chem. Nutr. 2013, 1, 16–21. [Google Scholar]
- Çakaloğlu, B.; Özyurt, V.H.; Ötleş, S. Cold Press in Oil Extraction. A Review. Ukr. Food J. 2018, 7, 640–654. [Google Scholar] [CrossRef]
- Savoire, R.; Lanoisellé, J.L.; Vorobiev, E. Mechanical Continuous Oil Expression from Oilseeds: A Review. Food Bioproc. Tech. 2013, 6, 1–16. [Google Scholar] [CrossRef]
- Kristoferson, L.; Bolkalders, V. Chapter 11: Production of Biomass Engine Fuels. In Renewable Energy Technologies: Their Applications in Developing Countries; Elsevier: Amsterdam, The Netherlands, 1986; pp. 131–149. [Google Scholar]
- El-Haggar, S.M. Sustainable Industrial Design and Waste Management: Cradle-to-cradle for Sustainable Development; Academic Press: Cambridge, MA, USA, 2007; pp. 21–84. [Google Scholar] [CrossRef]
- Balaman, Ş.Y. Biomass-Based Production Systems. In Decision-Making for Biomass-Based Production Chains; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Sanmartin, C.; Taglieri, I.; Macaluso, M.; Sgherri, C.; Ascrizzi, R.; Flamini, G.; Venturi, F.; Quartacci, M.F.; Luro, F.; Curk, F.; et al. Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features. Molecules 2019, 24, 2625. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A.S.F. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed]
- Felhi, S.; Daoud, A.; Hajlaoui, H.; Mnafgui, K.; Gharsallah, N.; Kadri, A. Solvent Extraction Effects on Phytochemical Constituents Profiles, Antioxidant and Antimicrobial Activities and Functional Group Analysis of Ecballium Elaterium Seeds and Peels Fruits. Food Sci. Technol. 2017, 37, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Silva, G.L.; Lee, I.-S.; Kinghorn, A.D. Special Problems with the Extraction of Plants. In Natural Products Isolation.; Humana Press: Totowa, NJ, USA, 1998; pp. 343–363. [Google Scholar]
- Monteiro, G.A.; Cabral, J.M.S.; Prazeres, D.M.F. Appendix 1. Essential Guides for Isolation/Purification of Nucleic Acids. In Encyclopedia of Separation Science; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Ferhat, M.A.; Tigrine-Kordjani, N.; Chemat, S.; Meklati, B.Y.; Chemat, F. Rapid Extraction of Volatile Compounds Using a New Simultaneous Microwave Distillation: Solvent Extraction Device. Chromatographia 2007, 65, 217–222. [Google Scholar] [CrossRef]
- Rajaei, A.; Barzegar, M.; Yamini, Y. Supercritical Fluid Extraction of Tea Seed Oil and Its Comparison with Solvent Extraction. Eur. Food Res. Technol. 2005, 220, 401–405. [Google Scholar] [CrossRef]
- Tabaraki, R.; Nateghi, A. Optimization of Ultrasonic-Assisted Extraction of Natural Antioxidants from Rice Bran Using Response Surface Methodology. Ultrason. Sonochem. 2011, 18, 1279–1286. [Google Scholar] [CrossRef]
- Kothari, V.; Gupta, A.; Naraniwal, M. Modern Extraction Methods for Preparation of Bioactive Plant Extra-cts. Int. J. Appl. Nat. Sci. 2012, 1, 8–26. [Google Scholar]
- Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production. Molecules 2020, 25, 309. [Google Scholar] [CrossRef] [PubMed]
- Tambunan, A.P.; Bahtiar, A.; Tjandrawinata, R.R. Influence of Extraction Parameters on the Yield, Phytochemical, Tlc-Densitometric Quantification of Quercetin, and LC-MS Profile, and How to Standardize Different Batches for Long Term from Ageratum conyoides L. Leaves. Pharmacogn. J. 2014, 9, 767–774. [Google Scholar] [CrossRef]
- Zygler, A.; Słomińska, M.; Namieśnik, J. Soxhlet Extraction and New Developments Such as Soxtec. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2. [Google Scholar]
- Worsfold, P.; Townshend, A.; Poole, C.; Miró, M. Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kim, J.; Choi, K.; Chung, D.S. Sample Preparation for Capillary Electrophoretic Applications. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; Volume 3. [Google Scholar]
- Gopalasatheeskumar, K. Significant Role of Soxhlet Extraction Process in Phytochemical Research. Mintage J. Pharm. Med. Sci. 2018, 7, 43–47. [Google Scholar]
- Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Russo-Profili, A.; Eveleigh, A.; Aliev, A.; Kay, A.; Mills-Lamptey, B. Influence of Solvent Selection and Extraction Temperature on Yield and Composition of Lipids Extracted from Spent Coffee Grounds. Ind. Crops Prod. 2018, 119, 49–56. [Google Scholar] [CrossRef]
- De Castro, M.L.; Priego-Capote, F. Soxhlet Extraction: Past and Present Panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Ridgway, K. Sample Preparation for Food Contaminant Analysis. LCGC Eur. 2012, 25, 60–71. [Google Scholar]
- De Castro, M.L.; Garcıa-Ayuso, L.E. Soxhlet Extraction of Solid Materials: An Outdated Technique with a Promising Innovative Future. Anal. Chim. Acta 1998, 369, 1–10. [Google Scholar] [CrossRef]
- Mussatto, S.I. Generating Biomedical Polyphenolic Compounds from Spent Coffee or Silverskin. In Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Suwari; Kotta, H.Z.; Buang, Y. Optimization of Soxhlet Extraction and Physicochemical Analysis of Crop Oil from Seed Kernel of Feun Kase (Thevetia peruviana). AIP Conf. Proc. 2017, 1911, 020005. [Google Scholar]
- Picó, Y. Recent Advances in Sample Preparation for Pesticide Analysis. In Comprehensive Sampling and Sample Preparation; Academic Press: Cambridge, MA, USA, 2012; Volume 3, pp. 569–590. ISBN 9780123813749. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, D. Supercritical CO2 Extraction of Eucalyptus Leaves Oil and Comparison with Soxhlet Extraction and Hydro-Distillation Methods. Sep. Purif. Technol. 2014, 133, 443–451. [Google Scholar] [CrossRef]
- Shen, J.; Shao, X. A Comparison of Accelerated Solvent Extraction, Soxhlet Extraction, and Ultrasonic-Assisted Extraction for Analysis of Terpenoids and Sterols in Tobacco. Anal. Bioanal. Chem. 2005, 383, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Sicaire, A.G.; Vian, M.; Fine, F.; Joffre, F.; Carré, P.; Tostain, S.; Chemat, F. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing. Int. J. Mol. Sci. 2015, 16, 8430–8453. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H. Pharmaceutical Analysis Sample Preparation. In Encyclopedia of Analytical Science, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 231–255. [Google Scholar]
- Llompart, M.; Garcia-Jares, C.; Celeiro, M.; Dagnac, T. Microwave-Assisted Extraction. In Encyclopedia of Analytical Science, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 67–77. [Google Scholar]
- Rehman, M.U.; Abdullah; Khan, F.; Niaz, K. Introduction to Natural Products Analysis. In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128164556. [Google Scholar]
- Bogdal, D. Chapter 1-Interaction of Microwaves with Differnt Materials. Tetrahedron Org. Chem. Ser. 2005, 25, 1–11. [Google Scholar]
- de la Guardia, M.; Armenta, S. Greening Sample Treatments. Compr. Anal. Chem. 2011, 57, 87–120. [Google Scholar] [CrossRef]
- Costa, R. The Chemistry of Mushrooms: A Survey of Novel Extraction Techniques Targeted to Chromatographic and Spectroscopic Screening. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 279–306. [Google Scholar]
- Golmakani, M.T.; Moayyedi, M. Comparison of Heat and Mass Transfer of Different Microwave-Assisted Extraction Methods of Essential Oil from Citrus limon (Lisbon Variety) Peel. Food Sci. Nutr. 2015, 3, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Letellier, M.; Budzinski, H. Microwave Assisted Extraction of Organic Compounds. Analusis 1999, 27, 259–270. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-Assisted Extractions of Active Ingredients from Plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Phutdhawong, W.; Kawaree, R.; Sanjaiya, S.; Sengpracha, W.; Buddhasukh, D. Microwave-Assisted Isolation of Essential Oil of Cinnamomum Iners Reinw. ex Bl.: Comparison with Conventional Hydrodistillation. Molecules 2007, 12, 868–877. [Google Scholar] [CrossRef]
- Louie, K.B.; Kosina, S.M.; Hu, Y.; Otani, H.; de Raad, M.; Kuftin, A.N.; Mouncey, N.J.; Bowen, B.P.; Northen, T.R. Mass Spectrometry for Natural Product Discovery. In Comprehensive Natural Products III; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780081026908. [Google Scholar]
- Roohinejad, S.; Nikmaram, N.; Brahim, M.; Koubaa, M.; Khelfa, A.; Greiner, R. Potential of Novel Technologies for Aqueous Extraction of Plant Bioactives. In Water Extraction of Bioactive Compounds: From Plants to Drug Development; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zhou, J. Applications and Prospects of Ultrasound-Assisted Extraction in Chinese Herbal Medicine. Open Access J. Biomed. Sci. 2019, 1, 5–15. [Google Scholar] [CrossRef]
- Chahardoli, A.; Jalilian, F.; Farzaei, H.; Shokoohinia, Y. Chapter 26-Analysis of Organic Acids. In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 767–823. [Google Scholar]
- Picó, Y. Ultrasound-Assisted Extraction for Food and Environmental Samples. TrAC-Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAC-Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Luque de Castro, M.D.; Priego Capote, F. Analytical Uses of Ultrasounds. In Techniques and Instrumentation in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2006; Volume 26. [Google Scholar]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of Ultrasound-Assisted Extraction with Conventional Extraction Methods of Oil and Polyphenols from Grape (Vitis vinifera L.) Seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Barrera Vázquez, M.F.; Comini, L.R.; Martini, R.E.; Núñez Montoya, S.C.; Bottini, S.; Cabrera, J.L. Comparisons between Conventional, Ultrasound-Assisted and Microwave-Assisted Methods for Extraction of Anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrason. Sonochem. 2014, 21, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Dent, M.; Dragovic-Uzelac, V.; Garofulic, I.E.; Bosiljkov, T.; Ježek, D.; Brncic, M. Comparison of Conventional and Ultrasound-Assisted Extraction Techniques on Mass Fraction of Phenolic Compounds from Sage (Salvia Officinalis L.). Chem. Biochem. Eng. Q. 2015, 29, 475–484. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef] [PubMed]
- Awaluddin, S.A.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.K.; Harun, R. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris. Biomed. Res. Int. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Luong, D.; Sephton, M.A.; Watson, J.S. Subcritical Water Extraction of Organic Matter from Sedimentary Rocks. Anal. Chim. Acta 2015, 879, 48–57. [Google Scholar] [CrossRef]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Gaurina Srček, V.; Slivac, I.; et al. Subcritical Water Extraction as an Environmentally-Friendly Technique to Recover Bioactive Compounds from Traditional Serbian Medicinal Plants. Ind. Crops Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef]
- Liang, X.; Fan, Q. Application of Sub-Critical Water Extraction in Pharmaceutical Industry. J. Mater. Sci. Chem. Eng. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Soto Ayala, R.; De Castro, M.L. Continuous Subcritical Water Extraction as a Useful Tool for Isolation of Edible Essential Oils. Food Chem. 2001, 75, 109–113. [Google Scholar] [CrossRef]
- Gbashi, S.; Madala, N.E.; Adebo, O.A.; Piater, L.; Phoku, J.Z.; Njobeh, P.B. Subcritical Water Extraction and Its Prospects for Aflatoxins Extraction in Biological Materials. In Aflatoxin-Control, Analysis, Detection and Health Risks; IntechOpen: London, UK, 2017. [Google Scholar]
- Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized Hot Water Extraction (PHWE). J. Chromatogr. A 2010, 1217, 2484–2494. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC-Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Gámiz-Gracia, L.; De Castro, M.L. Continuous Subcritical Water Extraction of Medicinal Plant Essential Oil: Comparison with Conventional Techniques. Talanta 2000, 51, 1179–1185. [Google Scholar] [CrossRef]
- Giray, E.S.; Kirici, S.; Kaya, D.A.; Türk, M.; Sönmez, Ö.; Inan, M. Comparing the Effect of Sub-Critical Water Extraction with Conventional Extraction Methods on the Chemical Composition of Lavandula stoechas. Talanta 2008, 74, 930–935. [Google Scholar] [CrossRef]
- Rodrigues, L.G.G.; Mazzutti, S.; Siddique, I.; da Silva, M.; Vitali, L.; Ferreira, S.R.S. Subcritical Water Extraction and Microwave-Assisted Extraction Applied for the Recovery of Bioactive Components from Chaya (Cnidoscolus aconitifolius Mill.). J. Supercrit. Fluids 2020, 165, 104976. [Google Scholar] [CrossRef]
- Cvetanović, A. Extractions Without Organic Solvents: Advantages and Disadvantages. Chem. Afr. 2019, 2, 343–349. [Google Scholar] [CrossRef]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical Water Extraction of Natural Products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef]
- Khosravi-Darani, K.; Vasheghani-Farahani, E. Application of Supercritical Fluid Extraction in Biotechnology. Crit. Rev. Biotechnol. 2005, 25, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Simandi, B.; Kery, A.; Lemberkovics, E.; Oszagyan, M.; Ronyai, E.; Mathe, I.; Fekete, J.; Hethelyi, E. Supercritical Fluid Extraction of Medicinal Plants. In Process Technology Proceedings; Elsevier: Amsterdam, The Netherlands, 1996; pp. 357–362. [Google Scholar]
- Radcliffe, C.; Maguire, K.; Lockwood, B. Applications of Supercritical Fluid Extraction and Chromatography in Forensic Science. J. Biochem Biophys Methods 2000, 43, 261–272. [Google Scholar] [CrossRef]
- Týskiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, B. Bio-Based Chemicals from Biorefining: Lipid and Wax Conversion and Utilization. In Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation; Keith, W., Ed.; Woodhead Publishing: Cambridge, UK, 2014. [Google Scholar]
- Moradi-kheibari, N.; Ahmadzadeh, H.; Talebi, A.F.; Hosseini, M.; Murry, M.A. Recent Advances in Lipid Extraction for Biodiesel Production. In Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts: New Technologies, Challenges and Opportunities; Woodhead Publishing: Duxford, UK, 2019. [Google Scholar]
- Baskar, G.; Kalavathy, G.; Aiswarya, R.; Abarnaebenezer Selvakumari, I. Advances in Bio-Oil Extraction from Nonedible Oil Seeds and Algal Biomass. In Advances in Eco-Fuels for a Sustainable Environment; Woodhead Publishing: Duxford, UK, 2019. [Google Scholar]
- Pieczykolan, A.; Pietrzak, W.; Rój, E.; Nowak, R. Effects of Supercritical Carbon Dioxide Extraction (SC-CO2) on the Content of Tiliroside in the Extracts from Tilia L. Flowers. Open Chem. 2019, 17, 187–210. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, A.; Liu, H.; Liu, L.; Zhang, Y.; Li, N.; Gong, K.; Yu, M.; Zheng, L. Peanut By-Products Utilization Technology. In Peanuts: Processing Technology and Product Development; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Abhari, K.; Mousavi Khaneghah, A. Alternative Extraction Techniques to Obtain, Isolate and Purify Proteins and Bioactive from Aquaculture and by-Products. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2020; Volume 92. [Google Scholar]
- Tarafder, A. Metamorphosis of Supercritical Fluid Chromatography to SFC: An Overview. TrAC-Trends Anal. Chem. 2016, 81, 3–10. [Google Scholar] [CrossRef]
- Capuzzo, A.; Maffei, M.E.; Occhipinti, A. Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules 2013, 18, 7194–7238. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, A.; Caboni, M.F.; Irano, M.; Panfili, G. A Critical Comparison between Traditional Methods and Supercritical Carbon Dioxide Extraction for the Determination of Tocochromanols in Cereals. Eur. Food Res. Technol. 2002, 215, 353–358. [Google Scholar] [CrossRef]
- Pyo, D.; Yoo, J.; Surh, J. Comparison of Supercritical Fluid Extraction and Solvent Extraction of Isoflavones from Soybeans. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 923–932. [Google Scholar] [CrossRef]
- Memon, A.H.; Hamil, M.S.R.; Laghari, M.; Rithwan, F.; Zhari, S.; Saeed, M.A.A.; Ismail, Z.; Majid, A.M.S.A. A Comparative Study of Conventional and Supercritical Fluid Extraction Methods for the Recovery of Secondary Metabolites from Syzygium campanulatum Korth. J. Zhejiang Univ. Sci. B 2016, 17, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Martínez, L.J.; Hurtado-Benavides, A.M.; Ayala-Aponte, A.; Serna-Cock, L.; Tirado, D.F. A Pilot-Scale Supercritical Carbon Dioxide Extraction to Valorize Colombian Mango Seed Kernel. Molecules 2021, 26, 2279. [Google Scholar] [CrossRef]
- Bertoli, A.; Ruffoni, B.; Pistelli, L.; Pistelli, L. Analytical Methods for the Extraction and Identification of Secondary Metabolite Production in “in Vitro” Plant Cell Cultures. Adv. Exp. Med. Biol. 2010, 698, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Thirumal, Y.; Laavu, S. HPLC Profile of Medicinal Plant Extracts and Its Application in Aquaculture. J. Aquac. Res. Dev. 2017, 8, 2–6. [Google Scholar] [CrossRef]
- Boligon, A.A.; Athayde, M.L. Importance of HPLC in Analysis of Plants Extracts. Austin Chromatogr. 2014, 1, 2. [Google Scholar]
- Salam, A.M.; Lyles, J.T.; Quave, C.L. Methods in the Extraction and Chemical Analysis of Medicinal Plants. In Methods and Techniques in Ethnobiology and Ethnoecology; Humana Press: New York, NY, USA, 2019. [Google Scholar]
- Feng, W.; Li, M.; Hao, Z.; Zhang, J. Analytical Methods of Isolation and Identification. In Phytochemicals in Human Health; IntechOpen: London, UK, 2020. [Google Scholar]
- Asteggiano, A.; Occhipinti, A.; Capuzzo, A.; Mecarelli, E.; Aigotti, R.; Medana, C. Quali-Quantitative Characterization of Volatile and Non-Volatile Compounds in Protium heptaphyllum (Aubl.) Marchand Resin by GC-MS Validated Method, GC-FID and HPLC-HRMS2. Molecules 2021, 26, 1447. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Nkengurutse, J.; Mansouri, F.; Bekkouch, O.; ben Moumen, A.; Masharabu, T.; Gahungu, G.; Serghini, H.C.; Khalid, A. Chemical Composition and Oral Toxicity Assessment of Anisophyllea boehmii Kernel Oil: Potential Source of New Edible Oil with High Tocopherol Content. Food Chem. 2019, 278, 795–804. [Google Scholar] [CrossRef]
- Melo, E.; Michels, F.; Arakaki, D.; Lima, N.; Gonçalves, D.; Cavalheiro, L.; Oliveira, L.; Caires, A.; Hiane, P.; Nascimento, V. First Study on the Oxidative Stability and Elemental Analysis of Babassu (Attalea speciosa) Edible Oil Produced in Brazil Using a Domestic Extraction Machine. Molecules 2019, 24, 4235. [Google Scholar] [CrossRef] [PubMed]
- Grosshagauer, S.; Steinschaden, R.; Pignitter, M. Strategies to Increase the Oxidative Stability of Cold Pressed Oils. LWT 2019, 106, 72–77. [Google Scholar] [CrossRef]
- Llorent-Martínez, E.J.; Ortega-Barrales, P.; Fernández-De Córdova, M.L.; Domínguez-Vidal, A.; Ruiz-Medina, A. Investigation by ICP-MS of Trace Element Levels in Vegetable Edible Oils Produced in Spain. Food Chem. 2011, 127, 1257–1262. [Google Scholar] [CrossRef]
- Zhu, F.; Fan, W.; Wang, X.; Qu, L.; Yao, S. Health Risk Assessment of Eight Heavy Metals in Nine Varieties of Edible Vegetable Oils Consumed in China. Food Chem. Toxicol. 2011, 49, 3081–3085. [Google Scholar] [CrossRef]
- Kumar, V.; Mathela, C.S.; Kumar, M.; Tewari, G. Antioxidant Potential of Essential Oils from Some Himalayan Asteraceae and Lamiaceae Species. Med. Drug Discov. 2019, 1, 100004. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Sparkman, O.; Penton, Z.; Kitson, F. Introduction and History. In Gas Chromatography and Mass Spectrometry: A Practical Guide; Academic Press: Cambridge, MA, USA, 2011; pp. 2–13. [Google Scholar]
- He, P.; Aga, D.S. Comparison of GC-MS/MS and LC-MS/MS for the Analysis of Hormones and Pesticides in Surface Waters: Advantages and Pitfalls. Anal. Methods 2019, 11, 1436–1448. [Google Scholar] [CrossRef]
- Rockwood, A.; Kushnir, M.; Clarke, N. Mass Spectrometry. In Principles and Applications of Clinical Mass Spectrometry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 33–65. ISBN 9780128160633. [Google Scholar]
- Niwa, M. Derivatization and Labeling Techniques. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Lawrence, J.F. Advantages and limitations of chemical derivatization for trace analysis by liquid chromatography. J. Chromatogr. Sci. 1985, 23, 484–487. [Google Scholar] [CrossRef]
- Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass Spectrometry Strategies in Metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, S.; Hu, Y.; Li, P.; Wan, J.B. Current State of the Art of Mass Spectrometry-Based Metabolomics Studies—A Review Focusing on Wide Coverage, High Throughput and Easy Identification. RSC Adv. 2015, 5, 78728–78737. [Google Scholar] [CrossRef]
- Lynch, K.L. Toxicology: Liquid Chromatography Mass Spectrometry. In Mass Spectrometry for the Clinical Laboratory; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Kaluarachchi, M.; Lewis, M.R.; Lindon, J.C. Standardized Protocols for MS-Based Metabolic Phenotyping. In Encyclopedia of Spectroscopy and Spectrometry; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Chan, E.C.Y.; Pasikanti, K.K.; Hong, Y.; Ho, P.C.; Mahendran, R.; Raman Nee Mani, L.; Chiong, E.; Esuvaranathan, K. Metabonomic Profiling of Bladder Cancer. J. Proteome Res. 2015, 14, 587–602. [Google Scholar] [CrossRef]
- Pasikanti, K.K.; Ho, P.C.; Chan, E.C.Y. Gas Chromatography/Mass Spectrometry in Metabolic Profiling of Biological Fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 871, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Perez, H.L.; Evans, C.A. Chemical Derivatization in Bioanalysis. Bioanalysis 2015, 7, 2435–2437. [Google Scholar] [CrossRef]
- Savolainen, O.I.; Sandberg, A.S.; Ross, A.B. A Simultaneous Metabolic Profiling and Quantitative Multimetabolite Metabolomic Method for Human Plasma Using Gas-Chromatography Tandem Mass Spectrometry. J. Proteome Res. 2016, 15, 259–265. [Google Scholar] [CrossRef]
- Gomathi, D.; Kalaiselvi, M.; Ravikumar, G.; Devaki, K.; Uma, C. GC-MS Analysis of Bioactive Compounds from the Whole Plant Ethanolic Extract of Evolvulus alsinoides (L.) L. J. Food Sci. Technol. 2015, 52, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS Analysis of Phytoconstituents from Amomum nilgiricum and Molecular Docking Interactions of Bioactive Serverogenin Acetate with Target Proteins. Sci. Rep. 2020, 10, 1–23. [Google Scholar] [CrossRef]
- Velmurugan, G.; Anand, S.P. GC-MS Analysis of Bioactive Compounds on Ethanolic Leaf Extract of Phyllodium pulchellum L. Desv. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 114–118. [Google Scholar] [CrossRef]
- Rukshana, M.; Doss, A.; Kumari Pushpa Rani, T. Phytochemical Screening and GC-MS Analysis of Leaf Extract of Pergularia daemia (Forssk) Chiov. Asian J. Plant Sci. Res. 2017, 1, 9–15. [Google Scholar]
- Swamy, M.K.; Sinniah, U.R.; Akhtar, M.S. In Vitro Pharmacological Activities and GC-Ms Analysis of Different Solvent Extracts of Lantana camara Leaves Collected from Tropical Region of Malaysia. Evid.-Based Complement. Altern. Med. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Jalal Ali, M.; Makky, E.A.; Zareen, S.; Yusoff, M.M. Identification of Bioactive Phytochemicals Using GC-Mass and TLC to the Estimation of Antimicrobial Susceptibility of Plant Extracts. J. Phys. Conf. Ser. 2019, 1294, 062013. [Google Scholar] [CrossRef]
- Asha, K.R.; Priyanga, S.; Hemmalakshmi, S.; Devaki, K. GC-MS Analysis of the Ethanolic Extract of the Whole Plant Drosera Indica L. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 685–688. [Google Scholar] [CrossRef]
- Zaikin, V.G.; Borisov, R.S. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. J. Anal. Chem. 2021, 76, 1567–1587. [Google Scholar] [CrossRef]
- Wiley Registry of Mass Spectral Data, 12th ed.; Wiley: Hoboken, NJ, USA, 2020.
- Hübschmann, H.-J. Handbook of GC-MS: Fundamentals and Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Tilvi, S.; Majik, M.S.; Singh, K.S. Mass Spectrometry for Determination of Bioactive Compounds. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; Volume 65. [Google Scholar]
- Pang, B.; Zhu, Y.; Lu, L.; Gu, F.; Chen, H. The Applications and Features of Liquid Chromatography-Mass Spectrometry in the Analysis of Traditional Chinese Medicine. Evid.-Based Complement. Altern. Med. 2016, 2016, 3837270. [Google Scholar] [CrossRef] [PubMed]
- Grebe, S.K.G.; Singh, R.J. LC-MS/MS in the Clinical Laboratory-Where to from Here? Clin. Biochem. Rev. 2011, 32, 5. [Google Scholar] [PubMed]
- Mukherjee, P.K. LC–MS: A Rapid Technique for Understanding the Plant Metabolite Analysis. In Quality Control and Evaluation of Herbal Drugs; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Zhang, Z.; Hu, X.; Li, P. Chromatography: Combined Chromatography and Mass Spectrometry. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Aretz, I.; Meierhofer, D. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology. Int. J. Mol. Sci. 2016, 17, 632. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.; Ivanova, P.; Brown, A. Chapter 2- Approaches to Lipid Analysis. In Biochemistry of Lipids, Lipoproteins and Membranes, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 41–72. [Google Scholar]
- Malviya, R.; Bansal, V.; Pal, O.P.; Sharma, P.K. High Performance Liquid Chromatography: A Short Review. J. Glob. Pharma Technol. 2010, 2, 22–26. [Google Scholar]
- Gika, H.G.; Wilson, I.D.; Theodoridis, G.A. Omics|Metabolomics: An Analytical Perspective. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Zisi, C.; Nikitas, P.; Pappa-Louisi, A. Computer-Aided Separation Optimization in Reversed-Phase Liquid Chromatography. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Buszewski, B.; Noga, S. Hydrophilic Interaction Liquid Chromatography (HILIC)—A Powerful Separation Technique. Anal. Bioanal. Chem. 2012, 402, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Smoluch, M.; Mielczarek, P.; Drabik, A.; Silberring, J. Online and Offline Sample Fractionation. In Proteomic Profiling and Analytical Chemistry: The Crossroads, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Zhang, K.; Liu, X. Mixed-Mode Chromatography in Pharmaceutical and Biopharmaceutical Applications. J. Pharm. Biomed. Anal. 2016, 128, 73–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitha, M.F. Chromatography: Principles and Instrumentation; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Fanali, C.; Haddad, P.R.; Poole, C.F.; Riekkola, M.L. Liquid Chromatography: Fundamentals and Instrumentation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1. [Google Scholar]
- Olsen, B.A.; Pack, B.W. Hydrophilic Interaction Chromatography: A Guide for Practitioners; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Eugster, P.J.; Wolfender, J.-L. UHPLC in Life Sciences; Royal Society of Chemistry: London, UK, 2012; Volume 44. [Google Scholar]
- Weiss, J. Handbook of Ion Chromatography; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bahadir Acikara, O. Ion-Exchange Chromatography and Its Applications. In Column Chromatography; 2013; Available online: https://www.intechopen.com/chapters/44033 (accessed on 4 September 2022).
- Podzimek, S. Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Striegel, A.M.; Yau, W.W.; Kirkland, J.J.; Bly, D.D. Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
Condition(s) | Essential Oils |
---|---|
Anxiety, agitation, stress, challenging behaviours | Angelica archangelica rad. (angelica), Cistus ladaniferus (labdanum), Citrus aurantium var. amara fol. (petitgrain bigarade), Citrus aurantium var. amara per. (orange bigarade), Citrus bergamia (bergamot), Citrus sinensis (sweet orange), Cymbopogon martinii (palmarosa), Eucalyptus staigeriana (lemon-scented ironbark), Lavandula angustifolia (lavender), Litsea cubeba (may chang), Ocimum basilicum (basil), Origanum majorana (sweet marjoram), Pelargonium graveolens (geranium), Pogostemon patchouli (patchouli), Valeriana officinalis (valerian) |
End-of-life agitation | Lavandula angustifolia (lavender), Santalum album (sandalwood), Boswellia carteri (frankincense) |
Fatigue | Angelica archangelica rad. (angelica) (nervous), Cistus ladaniferus (labdanum) (chronic), Citrus aurantium var. amara (neroli bigarade), Citrus paradisi (grapefruit) (exhaustion), Coriandrum sativum (coriander) (including mental), Cymbopogon nardus (citronella), Eucalyptus radiata (black peppermint) (chronic), Eucalyptus smithii (gully gum), Juniperus communis ram. (juniper twig), Mentha spicata (spearmint) (mental), Pelargonium graveolens (geranium) (nervous), Pinus sylvestris (Scots pine), Rosmarinus officinalis ct. cineole, ct. camphor, ct. verbenone (rosemary), Salvia sclarea (clary) (nervous), Zingiber officinale (ginger) |
Insomnia | Angelica archangelica rad. (angelica), Cananga odorata (ylang ylang), Chamaemelum nobile (Roman chamomile), Citrus aurantium var. amara (neroli bigarade), Cistus ladaniferus (labdanum), Citrus bergamia (bergamot), C. limon (lemon), Citrus reticulata (mandarin), Citrus sinensis (sweet orange), Cuminum cyminum (cumin), Juniperus communis fruct. (juniper berry), Lavandula angustifolia (lavender), Litsea cubeba (may chang), Melissa officinalis (lemon balm), Myrtus communis (myrtle), Ocimum basilicum (basil) (nervous), Origanum majorana (sweet marjoram), Ravensara aromatica (ravensara), Thymus vulgaris ct. geraniol, ct. linalool (sweet thyme), Valeriana officinalis (valerian) |
Mental exhaustion, burnout | M. piperita (peppermint), Ocimum basilicum (basil), Helichrysum angustifolium (everlasting) |
Memory loss | Litsea cubeba (may chang), M. piperita (peppermint), Rosmarinus officinalis ct. cineole (rosemary) |
Pain management | Eucalyptus smithii (gully gum), Lavandula angustifolia (lavender), Matricaria recutita (German chamomile), Leptospermum scoparium (manuka), Origanum majorana (sweet marjoram), Pinus mugo var. pumilio (dwarf pine), Rosmarinus officinalis ct. camphor (rosemary), Zingiber officinale (ginger) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapadia, P.; Newell, A.S.; Cunningham, J.; Roberts, M.R.; Hardy, J.G. Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. Int. J. Mol. Sci. 2022, 23, 10334. https://doi.org/10.3390/ijms231810334
Kapadia P, Newell AS, Cunningham J, Roberts MR, Hardy JG. Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. International Journal of Molecular Sciences. 2022; 23(18):10334. https://doi.org/10.3390/ijms231810334
Chicago/Turabian StyleKapadia, Pritam, Amy S. Newell, John Cunningham, Michael R. Roberts, and John G. Hardy. 2022. "Extraction of High-Value Chemicals from Plants for Technical and Medical Applications" International Journal of Molecular Sciences 23, no. 18: 10334. https://doi.org/10.3390/ijms231810334
APA StyleKapadia, P., Newell, A. S., Cunningham, J., Roberts, M. R., & Hardy, J. G. (2022). Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. International Journal of Molecular Sciences, 23(18), 10334. https://doi.org/10.3390/ijms231810334