Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in Human Lung Cell Models
Abstract
:1. Introduction
2. Results
2.1. Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in BEAS-2B Cells
2.1.1. Behavior of Particles in Cell Culture Medium
2.1.2. Observation of Particles in Cell Cultures
2.1.3. Cytotoxic Effects of Tritiated Particles
2.1.4. Genotoxic Effects Exerted by Tritiated Particles: DNA Strand Break
2.1.5. Chromosomal Damage Exerted by Tritiated Particles: Micronuclei Formation
2.1.6. Oxidative Stress
2.2. Cytotoxicity of Tritiated Stainless Steel and Cement Particles in an In Vitro 3D Human Airway Epithelia Model
2.2.1. Epithelial Integrity and Metabolic Activity
2.2.2. Transepithelial Passage of Tritium and Cellular Accumulation
3. Discussion
4. Materials and Methods
4.1. Tools and Assays Used for the Characterization of the Cyto-Genotoxicity of Particles on BEAS-2B Cells
4.1.1. Cellular Model: BEAS-2B
4.1.2. Cells Exposure to Particles
Tritiated Stainless Steel Particles
Tritiated Cement Particles
Suspensions Preparation and Cell Exposure
4.1.3. Quantification of Tritium and Elemental Release from Particles
4.1.4. Confocal Microscopy
4.1.5. Cell Viability Assay: Intracellular ATP Quantification
4.1.6. Comet Assay
4.1.7. Cytokinesis-Block Micronucleus Assay
4.1.8. Oxidative Stress Measurement
4.2. Tools and Assays Used for the Characterization of the Toxicity of Particles on MucilAir™
4.2.1. Epithelium Model: MucilAir™
4.2.2. Exposure Protocol
4.2.3. Epithelial Integrity (TEER Measurement)
4.2.4. Resazurin Assay
4.2.5. Evaluation of Tritiated Particle Transfer
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNSCEAR. Sources, Effects and Risks of Ionizing Radiation; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Hill, R.L.; Johnson, J.R. Metabolism and Dosimetry of Tritium. Health Phys. 1993, 65, 628–647. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Shimada, Y.; Nakamura, A.J.; Usami, N.; Ojima, M.; Kakinuma, S.; Shimada, M.; Sunaoshi, M.; Hirayama, R.; Tauchi, H. Health Effects Triggered by Tritium: How Do We Get Public Understanding Based on Scientifically Supported Evidence? J. Radiat. Res. 2021, 62, 557–563. [Google Scholar] [CrossRef]
- Liger, K.; Grisolia, C.; Cristescu, I.; Moreno, C.; Malard, V.; Coombs, D.; Markelj, S. Overview of the TRANSAT (TRANSversal Actions for Tritium) Project. Nucl. Eng. Des. Fusion. 2018, 136, 168–172. [Google Scholar] [CrossRef]
- Roch-Lefèvre, S.; Grégoire, E.; Martin-Bodiot, C.; Flegal, M.; Fréneau, A.; Blimkie, M.; Bannister, L.; Wyatt, H.; Barquinero, J.-F.; Roy, L.; et al. Cytogenetic Damage Analysis in Mice Chronically Exposed to Low-Dose Internal Tritium Beta-Particle Radiation. Oncotarget 2018, 9, 27397–27411. [Google Scholar] [CrossRef] [PubMed]
- Sellappa, S.; Prathyumnan, S.; Balachandar, V. DNA Damage Induction and Repair Inhibition among Building Construction Workers in South India. Asian Pac. J. Cancer Prev. 2010, 11, 875–880. [Google Scholar]
- Krishna, L.; Sampson, U.; Annamala, P.T.; Unni, K.M.; Binukumar, B.; George, A.; Sreedharan, R. Genomic Instability in Exfoliated Buccal Cells among Cement Warehouse Workers. Int. J. Occup. Environ. Med. 2020, 11, 33–40. [Google Scholar] [CrossRef]
- Santonen, T.; Stockmann-Juvala, H.; Zitting, A. Review on Toxicity of Stainless Steel; Finnish Institute of Occupational Health: Helsinki, Finland, 2010. [Google Scholar]
- Uboldi, C.; Sanles Sobrido, M.; Bernard, E.; Tassistro, V.; Herlin-Boime, N.; Vrel, D.; Garcia-Argote, S.; Roche, S.; Magdinier, F.; Dinescu, G.; et al. In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. Nanomaterials 2019, 9, 1233. [Google Scholar] [CrossRef]
- Balonov, M.I.; Likhtarev, I.A.; Moskalev, I.Y. The Metabolism of 3H Compounds and Limits for Intakes by Workers. Health Phys. 1984, 47, 761–773. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Dahl, A.R.; Jow, H.N. Dissolution of Metal Tritides in a Simulated Lung Fluid. Health Phys. 1997, 73, 633–638. [Google Scholar] [CrossRef]
- Inkret, W.C.T.; Schillaci, M.E.; Boyce, M.K.; Cheng, Y.S.; Efurd, D.W.; Little, T.T.; Miller, G.; Musgrave, J.A.; Wermer, J.R. Internal Dosimetry for Inhalation of Hafnium Tritide Aerosols. Radiat. Prot. Dosim. 2001, 93, 55–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, Y.S. Dose Assessment for Inhaling Hafnium Particles Based on Laboratory Rats Study. Health Phys. 2003, 84, 469–476. [Google Scholar] [CrossRef] [PubMed]
- ICRP. Occupational intakes of radionuclides: Part 2. ICRP Publication 134. Ann. ICRP 2016, 45, 1–352. [Google Scholar]
- Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front. Cell Dev. Biol. 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Bajpayee, M.; Kumar, A.; Dhawan, A. The Comet Assay: Assessment of In Vitro and In Vivo DNA Damage. In Genotoxicity Assessment. Methods in Molecular Biology; Dhawan, A., Bajpayee, M., Eds.; Humana Press: New York, NY, USA, 2019; Volume 2031. [Google Scholar] [CrossRef]
- Wang, Q.; Rodrigues, M.A.; Repin, M.; Pampou, S.; Beaton-Green, L.A.; Perrier, J.; Garty, G.; Brenner, D.J.; Turner, H.C.; Wilkins, R.C. Automated Triage Radiation Biodosimetry: Integrating Imaging Flow Cytometry with High-Throughput Robotics to Perform the Cytokinesis-Block Micronucleus Assay. Radiat. Res. 2019, 191, 342. [Google Scholar] [CrossRef]
- Sari-Minodier, I.; Orsière, T.; Bellon, L.; Pompili, J.; Sapin, C.; Botta, A. Cytogenetic Monitoring of Industrial Radiographers Using the Micronucleus Assay. Mutat. Res. Toxicol. Environ. Mutagen. 2002, 521, 37–46. [Google Scholar] [CrossRef]
- Sari-Minodier, I.; Orsière, T.; Auquier, P.; Martin, F.; Botta, A. Cytogenetic Monitoring by Use of the Micronucleus Assay among Hospital Workers Exposed to Low Doses of Ionizing Radiation. Mutat. Res. Toxicol. Environ. Mutagen. 2007, 629, 111–121. [Google Scholar] [CrossRef]
- OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test; OECD Publishing: Paris, France, 2010. [Google Scholar] [CrossRef]
- Uboldi, C.; Orsière, T.; Darolles, C.; Aloin, V.; Tassistro, V.; George, I.; Malard, V. Poorly Soluble Cobalt Oxide Particles Trigger Genotoxicity via Multiple Pathways. Part. Fibre Toxicol. 2015, 13, 5. [Google Scholar] [CrossRef]
- Oh, S.M.; Kim, H.R.; Park, Y.J.; Lee, S.Y.; Chung, K.H. Organic Extracts of Urban Air Pollution Particulate Matter (PM2.5)-Induced Genotoxicity and Oxidative Stress in Human Lung Bronchial Epithelial Cells (BEAS-2B Cells). Mutat. Res. 2011, 723, 142–151. [Google Scholar] [CrossRef]
- Van Den Heuvel, R.; Den Hond, E.; Govarts, E.; Colles, A.; Koppen, G.; Staelens, J.; Mampaey, M.; Janssen, N.; Schoeters, G. Identification of PM 10 Characteristics Involved in Cellular Responses in Human Bronchial Epithelial Cells (Beas-2B). Environ. Res. 2016, 149, 48–56. [Google Scholar] [CrossRef]
- Seidi, S.; Eftekhari, A.; Khusro, A.; Heris, R.S.; Sahibzada, M.U.K.; Gajdács, M. Simulation and Modeling of Physiological Processes of Vital Organs in Organ-on-a-Chip Biosystem. J. King Saud Univ.-Sci. 2022, 34, 101710. [Google Scholar] [CrossRef]
- BéruBé, K.; Prytherch, Z.; Job, C.; Hughes, T. Human Primary Bronchial Lung Cell Constructs: The New Respiratory Models. Toxicology 2010, 278, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wiszniewski, L.; Constant, S.; Roggen, E. Potential of in Vitro Reconstituted 3D Human Airway Epithelia (MucilAirTM) to Assess Respiratory Sensitizers. Toxicol. In Vitro 2013, 27, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Palmberg, L. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity. Toxicol. Sci. 2018, 164, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Baiocco, G.; George, I.; Garcia-Argote, S.; Guardamagna, I.; Lonati, L.; Lamartinière, Y.; Orsière, T.; Rousseau, B.; Ottolenghi, A.; Jha, A.; et al. A 3D In Vitro Model of the Human Airway Epithelium Exposed to Tritiated Water: Dosimetric Estimate and Cytotoxic Effects. Radiat. Res. 2020, 195, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Slomberg, D. D3.2 Report on Production of Cement Particles and Characterization of Steel and Cement Suspensions; TRANSAT Deliverables. 2019. Available online: http://transat-h2020.eu/ (accessed on 11 August 2022).
- Dizdaroglu, M.; Jaruga, P. Mechanisms of Free Radical-Induced Damage to DNA. Free Radic. Res. 2012, 46, 382–419. [Google Scholar] [CrossRef]
- George, I.; Uboldi, C.; Bernard, E.; Sobrido, M.; Dine, S.; Hagège, A.; Vrel, D.; Herlin, N.; Rose, J.; Orsière, T.; et al. Toxicological Assessment of ITER-Like Tungsten Nanoparticles Using an In Vitro 3D Human Airway Epithelium Model. Nanomaterials 2019, 9, 1374. [Google Scholar] [CrossRef]
- Nemery, B. Chapter 19-Metals and the respiratory tract. In Handbook on the Toxicology of Metals, 5th ed.; Nordberg, G.F., Costa, M., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 421–443. ISBN 9780128232927. [Google Scholar] [CrossRef]
- Souza, I.D.C.; Morozesk, M.; Siqueira, P.; Zini, E.; Galter, I.N.; de Moraes, D.A.; Matsumoto, S.T.; Wunderlin, D.A.; Elliott, M.; Fernandes, M.N. Metallic Nanoparticle Contamination from Environmental Atmospheric Particulate Matter in the Last Slab of the Trophic Chain: Nanocrystallography, Subcellular Localization and Toxicity Effects. Sci. Total Environ. 2022, 814, 152685. [Google Scholar] [CrossRef] [PubMed]
- Van Berlo, D.; Haberzettl, P.; Gerloff, K.; Li, H.; Scherbart, A.M.; Albrecht, C.; Schins, R.P.F. Investigation of the Cytotoxic and Proinflammatory Effects of Cement Dusts in Rat Alveolar Macrophages. Chem. Res. Toxicol. 2009, 22, 1548–1558. [Google Scholar] [CrossRef]
- Zhang, H.-H.; Li, Z.; Liu, Y.; Xinag, P.; Cui, X.-Y.; Ye, H.; Hu, B.-L.; Lou, L.-P. Physical and Chemical Characteristics of PM2.5 and Its Toxicity to Human Bronchial Cells BEAS-2B in the Winter and Summer. J. Zhejiang Univ. Sci. B 2011, 19, 317–326. [Google Scholar] [CrossRef]
- Dong, C.-D.; Chen, C.-W.; Chen, Y.-C.; Chen, H.-H.; Lee, J.-S.; Lin, C.-H. Polystyrene Microplastic Particles: In Vitro Pulmonary Toxicity Assessment. J. Hazard. Mater. 2020, 385, 121575. [Google Scholar] [CrossRef]
- Vallabani, N.V.S.; Mittal, S.; Shukla, R.K.; Pandey, A.K.; Dhakate, S.R.; Pasricha, R.; Dhawan, A. Toxicity of Graphene in Normal Human Lung Cells (BEAS-2B). J. Biomed. Nanotechnol. 2011, 7, 106–107. [Google Scholar] [CrossRef]
- Bisig, C.; Comte, P.; Güdel, M.; Czerwinski, J.; Mayer, A.; Müller, L.; Petri-Fink, A.; Rothen-Rutishauser, B. Assessment of Lung Cell Toxicity of Various Gasoline Engine Exhausts Using a Versatile in Vitro Exposure System. Environ. Pollut. 2018, 235, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Rossner, P.; Cervena, T.; Vojtisek-Lom, M.; Neca, J.; Ciganek, M.; Vrbova, K.; Ambroz, A.; Novakova, Z.; Elzeinova, F.; Sima, M.; et al. Markers of Lipid Oxidation and Inflammation in Bronchial Cells Exposed to Complete Gasoline Emissions and Their Organic Extracts. Chemosphere 2021, 281, 130833. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, Y.; Gustafsson, J.; Karlsson, H.L.; Möller, L.; Odnevall Wallinder, I. Bioaccessibility, Bioavailability and Toxicity of Commercially Relevant Iron- and Chromium-Based Particles: In Vitro Studies with an Inhalation Perspective. Part. Fibre Toxicol. 2010, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Stockmann-Juvala, H.; Hedberg, Y.; Dhinsa, N.K.; Griffiths, D.R.; Brooks, P.N.; Zitting, A.; Wallinder, I.O.; Santonen, T. Inhalation Toxicity of 316L Stainless Steel Powder in Relation to Bioaccessibility. Hum. Exp. Toxicol. 2013, 32, 1137–1154. [Google Scholar] [CrossRef]
- Kain, J.; Karlsson, H.L.; Moller, L. DNA Damage Induced by Micro- and Nanoparticles—Interaction with FPG Influences the Detection of DNA Oxidation in the Comet Assay. Mutagenesis 2012, 27, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Gräbsch, C.; Gminski, R.; Ollmann, A.I.H.; Borm, P.; Dietz, A.; Herbarth, O.; Wichmann, G. Cement-Related Particles Interact with Proinflammatory IL-8 Chemokine from Human Primary Oropharyngeal Mucosa Cells and Human Epithelial Lung Cancer Cell Line A549. Environ. Toxicol. 2012, 27, 297–306. [Google Scholar] [CrossRef]
- Ribeiro, D.A.; Sugui, M.M.; Matsumoto, M.A.; Duarte, M.A.H.; Marques, M.E.A.; Salvadori, D.M.F. Genotoxicity and Cytotoxicity of Mineral Trioxide Aggregate and Regular and White Portland Cements on Chinese Hamster Ovary (CHO) Cells in Vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 101, 258–261. [Google Scholar] [CrossRef]
- Jha, A.N.; Dogra, Y.; Turner, A.; Millward, G.E. Impact of Low Doses of Tritium on the Marine Mussel, Mytilus Edulis: Genotoxic Effects and Tissue-Specific Bioconcentration. Mutat. Res. 2005, 586, 47–57. [Google Scholar] [CrossRef]
- Cui, F.M.; Liu, L.; Zheng, L.L.; Bao, G.L.; Tu, Y.; Sun, L.; Zhu, W.; Cao, J.P.; Zhou, P.K.; Chen, Q.; et al. The Role of MiR-34a in Tritiated Water Toxicity in Human Umbilical Vein Endothelial Cells. Dose. Response. 2016, 14, 1559325816638585. [Google Scholar] [CrossRef]
- Ogunbileje, J.O.; Nawgiri, R.S.; Anetor, J.I.; Akinosun, O.M.; Farombi, E.O.; Okorodudu, A.O. Particles Internalization, Oxidative Stress, Apoptosis and pro-Inflammatory Cytokines in Alveolar Macrophages Exposed to Cement Dust. Environ. Toxicol. Pharmacol. 2014, 37, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Sgambato, A.; Iavicoli, I.; Goracci, M.; Corbi, M.; Boninsegna, A.; Pietroiusti, A.; Cittadini, A.; Bergamaschi, A. Evaluation of in Vitro Toxic Effects of Cement Dusts: A Preliminary Study. Toxicol. Ind. Health 2010, 26, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Tan, Z.; Yang, Y.; Deng, B.; Mu, L. Prolonged Effect Associated with Inflammatory Response Observed after Exposure to Low Dose of Tritium β-Rays. Int. J. Radiat. Biol. 2020, 96, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Reddel, R.R.; Ke, Y.; Gerwin, B.I.; McMenamin, M.G.; Lechner, J.F.; Su, R.T.; Brash, D.E.; Park, J.B.; Rhim, J.S.; Harris, C.C. Transformation of Human Bronchial Epithelial Cells by Infection with SV40 or Adenovirus-12 SV40 Hybrid Virus, or Transfection via Strontium Phosphate Coprecipitation with a Plasmid Containing SV40 Early Region Genes. Cancer Res. 1988, 48, 1904–1909. [Google Scholar]
- Ortega, R.; Bresson, C.; Darolles, C.; Gautier, C.; Roudeau, S.; Perrin, L.; Janin, M.; Floriani, M.; Aloin, V.; Carmona, A.; et al. Low-Solubility Particles and a Trojan-Horse Type Mechanism of Toxicity: The Case of Cobalt Oxide on Human Lung Cells. Part. Fibre Toxicol. 2014, 11, 14. [Google Scholar] [CrossRef]
- Gensdarmes, F.; Payet, M.; Malard, V.; Grisolia, C. D3.1 Report on Production of Steel Particles. TRANSAT Deliverables. 2019. Available online: http://transat-h2020.eu/ (accessed on 11 August 2022).
- Payet, M. D3.3 Report on Tritiation of Cement and Steel Particles. TRANSAT Deliverables. 2020. Available online: http://transat-h2020.eu/ (accessed on 11 August 2022).
- Auffan, M.; Slomberg, D.; Rose, J.; Payet, M. D3.5 Report on Development of Tools to Study the Environment Fate of Particles by-Products. TRANSAT Deliverables. 2021. Available online: http://transat-h2020.eu/ (accessed on 11 August 2022).
- Sauer, U.G.; Vogel, S.; Hess, A.; Kolle, S.N.; Ma-Hock, L.; van Ravenzwaay, B.; Landsiedel, R. In Vivo–in Vitro Comparison of Acute Respiratory Tract Toxicity Using Human 3D Airway Epithelial Models and Human A549 and Murine 3T3 Monolayer Cell Systems. Toxicol. Vitr. 2013, 27, 174–190. [Google Scholar] [CrossRef]
(a) | ||
---|---|---|
[SS316L] µg/mL | Hydrogenated | Tritiated |
% Cytostasis (Mean ± sd) | ||
0 | 1.6 ± 1.7 | 0.8 ± 0.8 |
1 | 0.6 ± 1.0 | 0.0 ± 0.0 |
5 | 1.8 ± 3.1 | 0.0 ± 0.0 |
10 | 2.0 ± 2.7 | 3.3 ± 5.7 |
25 | 6.3 ± 3.5 | 19.1 ± 14.7 |
50 | 0.0 ± 0.0 | 69.2 ±35.6 |
100 | 12.1 ± 6.9 | 59.3 ± 41.7 |
MMC | 0.4 ± 0.7 | 0.7 ± 1.6 |
HTO | 0.8 ± 1.4 | |
(b) | ||
[Cement] µg/mL | Hydrogenated | Tritiated |
% Cytostasis (Mean ± sd) | ||
0 | 0.5 ± 0.8 | 1.8 ± 2.7 |
1 | 2.9 ± 0.3 | 2.2 ± 3.9 |
5 | 6.3 ± 6.4 | 0.6 ± 1.1 |
10 | 4.7 ± 4.7 | 2.1 ± 3.7 |
50 | 3.7 ± 3.2 | 3.8 ± 3.4 |
100 | 6.5 ± 7.1 | 43.4 ± 34.0 |
200 | 7.3 ± 3.3 | 75.3 ± 25.6 |
MMC | 3.8 ± 1.5 | 1.7 ± 2.8 |
HTO | 0.0 ± 0.0 |
TEER | D1 | D4 | D7 | D10 | D14 |
---|---|---|---|---|---|
C− | 100 ± 30.1 | 100 ± 5.5 | 100 ± 3.1 | 100 ± 2.6 | 100 ± 6.2 |
C+ | 2.5 ± 0.4 *** | 1.8 ± 0.3 *** | 1.2 ± 0.3 *** | 0.7 ± 0.3 *** | 2 ± 0.3 *** |
Hydrogenated cement | 98.3 ± 16.1 | 103.4 ± 3.5 | 83 ± 2.8 | 82.4 ± 17.2 | 85 ± 21.5 |
Tritiated cement | 83.9 ± 11.9 | 87.6 ± 21.9 | 114.2 ± 12.2 | 85.6 ± 5.1 | 118.5 ± 3.8 |
HTO 165 kBq/mL | 75.5 ± 19.5 | 121.2 ± 3.7 | 120.6 ± 4.2 * | 97.7 ± 7.5 | 103.1 ± 14 |
Hydrogenated SS316L | 106.4 ± 6.3 | 78.6 ± 3.2 | 77.6 ± 20.7 | 102.8 ± 7.5 | 74.6 ± 17.3 |
Tritiated SS316L | 82.3 ± 20.6 | 75.6 ± 32.4 | 80.5 ± 11.4 | 81.8 ± 16 | 97 ± 14.3 |
HTO 550 kBq/mL | 84.7 ± 42.4 | 94.4 ± 44.1 | 104.4 ± 16.4 | 105.3 ± 2.2 | 91.2 ± 19.4 |
RESAZURIN | D1 | D7 | D14 |
---|---|---|---|
C− | 100 ± 18.3 | 100 ± 5.0 | 100 ± 14.4 |
C+ | 3.6 ± 0.4 *** | 0.4 ± 0.1 *** | 0.1 ± 0.3 *** |
Hydrogenated cement | 92.4 ± 16.4 | 98.3 ± 4.7 | 82.4 ± 7.7 * |
Tritiated cement | 161.7 ± 26.3 * | 92.7 ± 6.1 | 114.3 ± 2.1 |
HTO 165kBq/ml | 128.2 ± 31.8 | 89.5 ± 5.6 | 117.2 ± 9.8 * |
Hydrogenated SS316L | 83.2 ± 17.3 | 104.9 ± 4.2 | 119.3 ± 3.3 * |
Tritiated SS316L | 153.9 ± 24.2 | 97.4 ± 10.2 | 122.5 ± 5.1 ** |
HTO 550kBq/ml | 147.1 ± 44.3 | 98.3 ± 4.0 | 120.3 ± 2.4 * |
% Tritium | Compartment | D0 | D1 | D4 | D7 | D10 | D14 | D14 in Cells |
---|---|---|---|---|---|---|---|---|
HTO 165 kBq/mL | apical | <Q.L | 3.56 ± 0.11 | <Q.L | <Q.L | <Q.L | <Q.L | <Q.L |
basolateral | 0.21 ± 0.03 | 71.73 ± 2.92 | <Q.L | <Q.L | <Q.L | <Q.L | ||
Tritiated cement | apical | <Q.L | 8.89 ± 1.19 | <Q.L | <Q.L | <Q.L | <Q.L | 0.73 ± 0.11 |
basolateral | <Q.L | 71.56 ± 3.68 | <Q.L | <Q.L | <Q.L | <Q.L | ||
HTO 550 kBq/mL | apical | <Q.L | 3.88 ± 0.41 | <Q.L | <Q.L | <Q.L | <Q.L | <Q.L |
basolateral | 0.06 ± 0 | 66.57 ± 2.33 | 0.07 ± 0.01 | <Q.L | <Q.L | <Q.L | ||
Tritiated SS316L | apical | <Q.L | 53.63 ± 5.19 | <Q.L | <Q.L | <Q.L | <Q.L | 1.29 ± 0.37 |
basolateral | <Q.L | 25.06 ± 0.95 | <Q.L | <Q.L | <Q.L | <Q.L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamartiniere, Y.; Slomberg, D.; Payet, M.; Tassistro, V.; Mentana, A.; Baiocco, G.; Rose, J.; Lebaron-Jacobs, L.; Grisolia, C.; Malard, V.; et al. Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in Human Lung Cell Models. Int. J. Mol. Sci. 2022, 23, 10398. https://doi.org/10.3390/ijms231810398
Lamartiniere Y, Slomberg D, Payet M, Tassistro V, Mentana A, Baiocco G, Rose J, Lebaron-Jacobs L, Grisolia C, Malard V, et al. Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in Human Lung Cell Models. International Journal of Molecular Sciences. 2022; 23(18):10398. https://doi.org/10.3390/ijms231810398
Chicago/Turabian StyleLamartiniere, Yordenca, Danielle Slomberg, Michaël Payet, Virginie Tassistro, Alice Mentana, Giorgio Baiocco, Jerome Rose, Laurence Lebaron-Jacobs, Christian Grisolia, Véronique Malard, and et al. 2022. "Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in Human Lung Cell Models" International Journal of Molecular Sciences 23, no. 18: 10398. https://doi.org/10.3390/ijms231810398
APA StyleLamartiniere, Y., Slomberg, D., Payet, M., Tassistro, V., Mentana, A., Baiocco, G., Rose, J., Lebaron-Jacobs, L., Grisolia, C., Malard, V., & Orsière, T. (2022). Cyto-Genotoxicity of Tritiated Stainless Steel and Cement Particles in Human Lung Cell Models. International Journal of Molecular Sciences, 23(18), 10398. https://doi.org/10.3390/ijms231810398