Genome-Wide Analysis of the RNase T2 Family and Identification of Interacting Proteins of Four ClS-RNase Genes in ‘XiangShui’ Lemon
Abstract
:1. Introduction
2. Results
2.1. Identification of S-RNase Genes in ‘XiangShui’ Lemon
2.2. Chromosomal Locations
2.3. Phylogenetic Analysis of S-RNase Proteins
2.4. Analysis of S-RNase Gene Family Promoter Cis-Acting Elements
2.5. Analysis of the Gene Structure and RNase T2 Conserved Domain of S-RNases
2.6. S-RNase Gene Expression Pattern Analysis
2.7. Subcellular Localisation
2.8. Y2H Screening Assays
2.9. Tissue Expression Analysis of Interaction Candidate Genes
2.10. Bimolecular Fluorescence Complementation (BiFC) Experiments for Verification of the Interactions between S-RNases and F-box Proteins
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Cloning and Bioinformatics Analysis of Four S-RNase Genes
4.3. Quantitative PCR (qPCR) Analysis
4.4. Subcellular Localisation
4.5. Construction of a Y2H Library
4.6. Y2H Assays
4.7. BiFC Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.J.; Jia, Y.; Liu, Y.; Chen, D.F.; Luo, Y.B.; Niu, S.C. Challenges and Perspectives in the Study of Self-Incompatibility in Orchids. Int. J. Mol. Sci. 2021, 22, 12901. [Google Scholar] [CrossRef]
- Qiao, H.; Wang, H.Y.; Zhao, L.; Zhou, J.L.; Huang, J.; Zhang, Y.S.; Xue, Y.B. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell. 2004, 16, 582–595. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Meng, D.; Gu, Z.Y.; Li, W.; Wang, A.D.; Yang, Q.; Zhu, Y.D.; Li, T.Z. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple. J. Exp. Bot. 2014, 65, 3121–3131. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, M.F.; Wu, J.K.; Guo, H.; Li, Q.; Zhang, Y.E.; Chai, J.J.; Li, T.Z.; Xue, Y.B. Identification of a canonical SCF(SLF) complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). Plant Mol.Biol. 2013, 81, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Q.; Wang, P.; de Graaf, B.H.J.; Zhang, H.; Jiao, H.J.; Tang, C.; Zhang, S.L.; Wu, J.Y. Phosphatidic Acid Counteracts S-RNase Signaling in Pollen by Stabilizing the Actin Cytoskeleton. Plant Cell. 2018, 30, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Gu, Z.Y.; Li, W.; Wang, A.D.; Yuan, H.; Yang, Q.; Li, T.Z. Apple MdABCF assists in the transportation of S-RNase into pollen tubes. Plant J. 2014, 78, 990–1002. [Google Scholar] [CrossRef]
- Yang, Q.; Meng, D.; Gu, Z.Y.; Li, W.; Chen, Q.J.; Li, Y.; Yuan, H.; Yu, J.; Liu, C.S.; Li, T.D. Apple S-RNase interacts with an actin-binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin-severing activity at the early stage of self-pollination induction. Plant J. 2018, 95, 41–56. [Google Scholar] [CrossRef]
- Li, W.; Meng, D.; Gu, Z.Y.; Yang, Q.; Yuan, H.; Li, Y.; Chen, Q.J.; Yu, J.; Liu, C.S.; Li, T.Z. Apple S-RNase triggers inhibition of tRNA aminoacylation by interacting with a soluble inorganic pyrophosphatase in growing self-pollen tubes in vitro. New Phytol. 2018, 218, 579–593. [Google Scholar] [CrossRef]
- Hepler, P.K. Tip growth in pollen tubes: Calcium leads the way. Trends Plant Sci. 1997, 2, 79–80. [Google Scholar] [CrossRef]
- Hu, R.M.; Meng, D.; Bai, S.L.; Hu, J.F.; Li, T.Z. Preliminary study of calmodulin binding protein interacting with stylar S-RNase in apple ‘Ralls Genet’. J. China Agric. Univ. 2012, 17, 62–67. [Google Scholar]
- Lin, W.; Zhang, S.W.; Ding, F.; He, X.H.; Luo, C.; Huang, G.X.; Do, M.; Wang, Q.; Yang, Z.Y.; Su, L.; et al. Two Genes (ClS1 and ClF-box) Involved the Self-Incompatibility of “Xiangshui” Lemon (Citrus limon (L.) Burm. f.). Plant Mol. Biol. Rep. 2019, 37, 50–62. [Google Scholar] [CrossRef]
- Lin, W.; Li, Y.Z.; Luo, C.; Huang, G.X.; Hu, G.B.; He, X.H. Proteomic analysis of ubiquitinated proteins in ‘Xiangshui’ lemon [Citrus limon (L.)] pistils after self- and cross-pollination. J. Proteom. 2022, 264, 104631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.W. Causes of Seedless Forming and Identifiction of Seedless Related Genes from ‘Xiangshui’ Lemon; Guangxi University: Nanning, China, 2014. [Google Scholar]
- Guo, J.X. Analysis of Transcriptome, Proteome and Ubiquitination Induced by Ethylene in Corollas of Petunias; South China Agricultural University: Guangzhou, China, 2017. [Google Scholar]
- Nishimura, E.; Jumyo, S.; Arai, N.; Kanna, K.; Kume, M.; Nishikawa, J.; Tanase, J.; Ohyama, T. Structural and functional characteristics of S-like ribonucleases from carnivorous plants. Planta 2014, 240, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.; Cornish, E.C.; Mau, S.L.; Williams, E.G.; Hoggart, R.; Atkinson, A.; Bonig, I.; Grego, B.; Simpson, R.; Roche, P.J. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 1986, 321, 38–44. [Google Scholar] [CrossRef]
- Ohno, H.; Ehara, Y. Expression of Ribonuclease Gene in Mechanically Injured or Virus-Inoculated Nicotiana tabacum Leaves. Toh. J. Agric. Res. 2005, 55, 99–109. [Google Scholar]
- Salekdeh, G.; Siopongco, J.; Wade, L.; Ghareyazie, B.; Bennett, J. A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crop. Res. 2002, 76, 199–219. [Google Scholar] [CrossRef]
- Li, Y.; Duan, X.W.; Wu, C.B.; Yu, J.; Liu, C.S.; Wang, J.; Zhang, X.M.; Yan, G.H.; Jiang, F.; Li, T.Z.; et al. Ubiquitination of S4-RNase by S-LOCUS F-BOX LIKE 2 contributes to self-compatibility of sweet cherry ‘Lapins’. Plant Physiol. 2020, 184, 1702–1716. [Google Scholar] [CrossRef]
- Zhang, S.W.; Huang, G.X.; Ding, F.; He, X.H.; Pan, J.C. Mechanism of seedlessness in a new lemon cultivar ‘Xiangshui’ [Citrus limon (L.) Burm. f.]. Sex. Plant Reprod. 2012, 25, 337–345. [Google Scholar] [CrossRef]
- Micheli, F.; Holliger, C.; Goldberg, R.; Richard, L. Characterization of the pectin methylesterase-like gene AtPME3: A new member of a gene family comprising at least 12 genes in Arabidopsis thaliana. Gene 1998, 220, 13–20. [Google Scholar] [CrossRef]
- Ferguson, C.; Teeri, T.; Siika-aho, M.; Read, S.M.; Bacic, A. Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 1998, 206, 452–460. [Google Scholar] [CrossRef]
- Gao, S.; Lan, X.G. Structure and Function of Aspartic Proteinases in Plants. Lett. Biotechnol. 2018, 29, 866–870. [Google Scholar]
- Verica, J.A.; Chae, L.; Tong, H.; Ingmire, P.; He, Z.H. Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. Plant Physiol. 2003, 133, 1732–1746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Fan, J.; Taylor, D.C.; Ohlrogge, J.B. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell. 2009, 21, 3885–3901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokranjac, D.; Bourenkov, G.; Hell, K.; Neupert, W.; Groll, M. Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. Embo J. 2006, 25, 4675–4685. [Google Scholar] [CrossRef]
- Wang, C.L. Study on the Characteristics and Pathway of Incompatible Pollen Tube Death Mediated by Style S-RNase in Pyrus Pyrifolia; Nanjing Agricultural University: Nanjing, China, 2010. [Google Scholar]
- Yang, C.C.; Wang, Y.T.; Hsiao, Y.Y.; Doudeva, L.G.; Kuo, P.; Chow, S.; Yuan, H. Structural and biochemical characterization of CRN-5 and Rrp46: An exosome component participating in apoptotic DNA degradation. RNA 2010, 16, 1748–1759. [Google Scholar] [CrossRef]
- Zhu, G.P.; Cheng, Y.; Liao, J.; Xu, C. Caspase Family in Apoptosis. Prog. Biochem. Biophys. 2000, 2, 147–150. [Google Scholar]
- Thomas, S.G.; Franklin-Tong, V.E. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 2004, 429, 305–309. [Google Scholar] [CrossRef]
- Carlos Montesinos, J.; Sturm, S.; Langhans, M.; Hillmer, S.; Jesus Marcote, M.; Robinson, D.; Aniento, F. Coupled transport of Arabidopsis p24 proteins at the ER-Golgi interface. J. Exp. Bot. 2012, 63, 4243–4261. [Google Scholar] [CrossRef]
- Kuang, R.; Chan, K.; Yeung, E.; Lim, B.L. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity, in Arabidopsis. Plant Physiol. 2009, 151, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.M. The Mechanism of Phosphoinositide Signalingpathway Involved in Pollen Germination and Pollentube Growth of Picea Wilsonii, and the Ecophysiology of Cell Wall in the Reed Leaves; Institute of Botany, The Chinese Academy of Sciences: Beijing, China, 2006. [Google Scholar]
- Zhang, S.W.; Ding, F.; He, X.H.; Luo, C.; Huang, G.X.; Hu, Y. Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol. Genet. Genom. 2014, 290, 365–375. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Panu, A.; Manohar, J.; Konstantin, A.; Delphine, B.; Gabor, C.; Edouard, D.C.; Severine, D.; Volker, F.; Arnaud, F.; Elisabeth, G.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar]
- Liu, W.Z.; Xie, Y.B.; Ma, J.Y.; Luo, X.T.; Nie, P.; Zuo, Z.X.; Lahrmann, U.; Zhao, Q.; Zheng, Y.Y.; Zhao, Y.; et al. IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics 2015, 31, 3359–3361. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Xia, R.; Chen, H.; He, Y.H. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. Cold Spring Harb. Lab. 2018, 10, 289660. [Google Scholar]
- Geourjon, C.; Deléage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 1995, 11, 681–684. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Do, M.; Wei, M.; He, X.H.; Liu, Y.; Fan, Z.Y.; Zhang, S.W.; Luo, C.; Huang, G.X.; Hu, G.B. ClPLD5, a Phospholipase Gene Is Involved in Protection of Cytoskeleton Stability in Pollen of Self-imcompatible ‘Xiangshui’ Lemon (Citrus limon). Plant Cell Tissue Organ Cult. 2020, 143, 61–73. [Google Scholar] [CrossRef]
- Wang, Y.H.; He, X.H.; Yu, H.X.; Mo, X.; Fan, Y.; Fan, Z.Y.; Xie, X.J.; Liu, Y.; Luo, C. Overexpression of four MiTFL1 genes from mango delays the flowering time in transgenic Arabidopsis. BMC Plant Biol. 2021, 21, 407. [Google Scholar] [CrossRef]
- Kenneth, J.L.; Thomas, D.S. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar]
- Mo, X.; Luo, C.; Yu, H.X.; Chen, J.W.; Liu, Y.; Xie, X.J.; Fan, Z.Y.; He, X.H. Isolation and Functional Characterization of Two SHORT VEGETATIVE PHASE Homologous Genes from Mango. Int. J. Mol. Sci. 2021, 22, 9802. [Google Scholar] [CrossRef]
Gene Name | Gene Entry Number | Chromosome | Chromosomal Position | Length (aa) | pI | MW (kDa) |
---|---|---|---|---|---|---|
S1-RNase | ON981301 | Chr9 | 29,869,547–29,908,462 + | 177 | 10.60 | 20.40 |
S2-RNase | ON981301 | Chr6 | 1,799,000–1,799,808 + | 235 | 9.52 | 27.11 |
S3-RNase | ON981303 | Chr4 | 14,622,505–14,626,122 + | 278 | 5.89 | 31.47 |
S4-RNase | ON981304 | Chr6 | 310,580–311,366 + | 222 | 8.98 | 25.74 |
S5-RNase | ON981305 | Chr9 | 19,297,972–19,298,225 − | 98 | 7.95 | 10.92 |
S6-RNase | ON981306 | Chr9 | 29,869,583–29,869,942 + | 89 | 10.18 | 10.07 |
S7-RNase | ON981307 | Chr2 | 4,443,631–4,444,675 − | 230 | 5.20 | 25.82 |
S8-RNase | ON981307 | Chr2 | 4,440,309–4,441,515 + | 194 | 4.93 | 25.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-Z.; Zhu, J.-W.; Lin, W.; Lan, M.-Y.; Luo, C.; Xia, L.-M.; Zhang, Y.-L.; Liang, R.-Z.; Hu, W.-L.; Huang, G.-X.; et al. Genome-Wide Analysis of the RNase T2 Family and Identification of Interacting Proteins of Four ClS-RNase Genes in ‘XiangShui’ Lemon. Int. J. Mol. Sci. 2022, 23, 10431. https://doi.org/10.3390/ijms231810431
Li Y-Z, Zhu J-W, Lin W, Lan M-Y, Luo C, Xia L-M, Zhang Y-L, Liang R-Z, Hu W-L, Huang G-X, et al. Genome-Wide Analysis of the RNase T2 Family and Identification of Interacting Proteins of Four ClS-RNase Genes in ‘XiangShui’ Lemon. International Journal of Molecular Sciences. 2022; 23(18):10431. https://doi.org/10.3390/ijms231810431
Chicago/Turabian StyleLi, Yu-Ze, Jia-Wei Zhu, Wei Lin, Mo-Ying Lan, Cong Luo, Li-Ming Xia, Yi-Li Zhang, Rong-Zhen Liang, Wang-Li Hu, Gui-Xiang Huang, and et al. 2022. "Genome-Wide Analysis of the RNase T2 Family and Identification of Interacting Proteins of Four ClS-RNase Genes in ‘XiangShui’ Lemon" International Journal of Molecular Sciences 23, no. 18: 10431. https://doi.org/10.3390/ijms231810431
APA StyleLi, Y. -Z., Zhu, J. -W., Lin, W., Lan, M. -Y., Luo, C., Xia, L. -M., Zhang, Y. -L., Liang, R. -Z., Hu, W. -L., Huang, G. -X., & He, X. -H. (2022). Genome-Wide Analysis of the RNase T2 Family and Identification of Interacting Proteins of Four ClS-RNase Genes in ‘XiangShui’ Lemon. International Journal of Molecular Sciences, 23(18), 10431. https://doi.org/10.3390/ijms231810431