Development and Molecular Cytogenetic Characterization of a Novel Wheat-Rye T6RS.6AL Translocation Line from Secale cereale L. Qinling with Resistance to Stripe Rust and Powdery Mildew
Abstract
:1. Introduction
2. Results
2.1. Development and Identification of the New T6RS.6AL Translocation Line 117-6
2.2. Analysis of Resistance to Stripe Rust and Powdery Mildew
2.3. Agronomic Traits of the T6RS.6AL Translocation Line 117-6
3. Discussion
3.1. New 6RS Chromosome Arm with Resistance to Pst and Bgt Originating from Qinling Rye
3.2. Breeding Value of the T6RS.6AL Translocation Line 117-6
4. Materials and Methods
4.1. Plant Materials
4.2. Cytogenetic and Molecular Analyses
4.3. Resistance Analysis
4.4. Agronomic Trait Analysis
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaves, M.S.; Martinelli, J.A.; Wesp-Guterres, C.; Graichen, F.A.; Brammer, S.P.; Scagliusi, S.M.; da Silva, P.B.; Wiethölter, P.; Torres, G.A.M.; Lau, E.Y.; et al. The importance for food security of maintaining rust resistance in wheat. Food Secur. 2013, 5, 157–176. [Google Scholar] [CrossRef]
- Ren, T.; Fan, T.; Chen, S.; Ou, X.; Chen, Y.; Jiang, Q.; Diao, Y.; Sun, Z.; Peng, W.; Ren, Z.; et al. QTL Mapping and validation for kernel area and circumference in common wheat via high-density SNP-based genotyping. Front. Plant Sci. 2021, 12, 713890. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Q.; Wellings, C.; Chen, X.M.; Kang, Z.S.; Liu, T.G. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.H.; Yang, Z.J.; Yan, B.J.; Zhang, H.Q.; Fu, S.L.; Ren, Z.L. Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 2009, 169, 207–213. [Google Scholar] [CrossRef]
- Ren, T.; Li, Z.; Tan, F.; Jiang, C.; Luo, P. Advances in identifying stripe rust resistance genes in cereals. In Achieving Durable Disease Resistance in Cereals; Oliver, R., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 1–41. [Google Scholar]
- Wan, A.; Chen, X.; He, Z. Wheat stripe rust in China. Aust. J. Agric. Res. 2007, 58, 605–619. [Google Scholar] [CrossRef]
- Hou, Z.G.; Liu, W.C.; Shao, Z.R.; Jiang, R.Z. On developing long-term meteorological prediction research of crops pests and diseases prevailing in China. J. Nat. Disasters 2000, 9, 117–121. [Google Scholar]
- Schlegel, R.; Korzun, V. About the origin of 1RS.1BL wheat–rye chromosome translocations from Germany. Plant Breed. 1997, 116, 537–540. [Google Scholar] [CrossRef]
- Han, G.; Yan, H.; Wang, J.; Cao, L.; Liu, S.; Li, X.; Zhou, Y.; Fan, J.; Li, L.; An, D. Molecular cytogenetic identification of a new wheat-rye 6R addition line and physical localization of its powdery mildew resistance gene. Front. Plant Sci. 2022, 13, 889494. [Google Scholar] [CrossRef]
- Li, Z.; Ren, Z.; Tan, F.; Tang, Z.; Fu, S.; Yan, B.; Ren, T. Molecular cytogenetic characterization of new wheat-rye 1R(1B) substitution and translocation lines from a Chinese Secale cereal L. Aigan with resistance to stripe rust. PLoS ONE 2016, 11, e0163642. [Google Scholar]
- Chen, P.D.; Qi, L.L.; Zhou, B.; Zhang, S.Z.; Liu, D.J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet. 1995, 91, 1125–1128. [Google Scholar] [CrossRef]
- Luo, P.G.; Luo, H.Y.; Chang, Z.J.; Zhang, H.Y.; Zhang, M.; Ren, Z.L. Characterization and chromosomal location of Pm40, in common wheat: A new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 2009, 118, 1059–1064. [Google Scholar] [CrossRef]
- Wang, X.; Han, B.; Sun, Y.; Kang, X.; Zhang, M.; Han, H.; Zhou, S.; Liu, W.; Lu, Y.; Yang, X.; et al. Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theor. Appl. Genet. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Xu, H.; Xu, Y.; Li, L.; Qie, Y.; Luo, Q.; Zhang, X.; Li, X.; Zhou, Y.; An, D. Molecular mapping of a new powdery mildew resistance gene Pm2b in Chinese breeding lineKM2939. Theor. Appl. Genet. 2015, 128, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Deng, Z.; Wang, M.; Wang, X.; Jing, J.; Zhang, X.; Shang, H.; Li, Z. Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. Plant Sci. 2008, 174, 544–549. [Google Scholar] [CrossRef]
- Marais, G.F.; Mccallum, B.; Snyman, J.E.; Pretorius, Z.A.; Marais, A.S. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed. 2005, 124, 538–541. [Google Scholar] [CrossRef]
- Liu, J.; Chang, Z.; Zhang, X.; Yang, Z.; Li, X.; Jia, J. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theo. Appl. Genet. 2013, 126, 265–274. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, J.; He, F.; Ma, H.; Wang, H. Molecular cytogenetic, identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust. Genet. Mol. Res. 2012, 11, 3198–3206. [Google Scholar] [CrossRef]
- Sharma, P.; Chaudhary, H.K.; Kapoor, C.; Manoj, N.V.; Singh, K.; Sood, V.K.A. Molecular cytogenetic analysis of novel wheat-rye translocation lines and their characterization for drought tolerance and yellow rust resistance. Cereal Res. Comm. 2021; in press. [Google Scholar] [CrossRef]
- Howell, T.; Hale, I.; Jankuloski, L.; Bonafede, M.; Gilbert, M.; Dubcovsky, J. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status. Theor. Appl. Genet. 2014, 127, 2695–2709. [Google Scholar] [CrossRef]
- Mago, R.; Miah, H.; Lawrence, G.J.; Wellings, C.R.; Spielmeyer, W.; Bariana, H.S.; McIntosh, R.A.; Pryor, A.J.; Ellis, J.G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 2005, 112, 41–50. [Google Scholar] [CrossRef]
- Ren, T.; Tang, Z.; Fu, S.; Yan, B.; Tan, F.; Ren, Z.; Li, Z. Molecular cytogenetic characterization of novel wheat-rye T1RS.1BL translocation lines with high resistance to diseases and great agronomic traits. Front. Plant Sci. 2017, 8, 799. [Google Scholar] [CrossRef]
- Rabinovich, S.V. Importance of wheat–rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 1998, 100, 323–340. [Google Scholar] [CrossRef]
- Gong, W.; Han, R.; Ren, T.; Wang, C.; Yang, Z.; Yan, M.; Luo, P.; Liu, A.; Li, H.; Liu, C.; et al. Molecular detection of 1RS/1BL translocation and stripe rust resistance gene Yr41 in 1293 wheat cultivars (lines). Shandong Agric. Sci. 2020, 52, 1–6. [Google Scholar]
- Ren, T.H.; Chen, F.; Zou, Y.T.; Jia, Y.H.; Zhang, H.Q.; Yan, B.J.; Ren, Z.L. Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome 2011, 54, 316–326. [Google Scholar] [CrossRef]
- Ren, T.; Jiang, Q.; Sun, Z.; Zhao, L.; Peng, W.; Ren, Z.; Tan, F.; Luo, P.; Li, Z. Development and molecular cytogenetic characterization of novel primary wheat-rye 1RS.1BL translocation lines from multiple rye sources with resistance to stripe rust. Plant Dis. 2022, 106, 2191–2200. [Google Scholar] [CrossRef] [PubMed]
- Han, G.H.; Liu, S.Y.; Wang, J.; Jin, Y.L.; Zhou, Y.L.; Luo, Q.L.; Liu, H.; Zhao, H.; An, D.G. Identification of an elite wheat-rye T1RS∙1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Dis. 2020, 104, 2940–2948. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Yang, J.; He, H.; Jin, H.; Li, X.; Ren, T.; Ren, Z.; Li, F.; Han, X.; et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 2021, 53, 574. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Fu, S.; Wang, L.; Li, H.; Wang, M.; Huang, Y.; Shi, Q.; Zhou, Y.; Guo, X.; et al. Establishment of a set of wheat-rye addition lines with resistance to stem rust. Theor. Appl. Genet. 2022, 135, 2469–2480. [Google Scholar] [CrossRef]
- Ren, T.; Sun, Z.; Ren, Z.; Tan, F.; Luo, P.; Tang, Z.; Fu, S.; Li, Z. Molecular and cytogenetic characterization of a wheat-rye 7BS.7RL translocation line with resistance to stripe rust, powdery mildew and Fusarium head blight. Phytopathology 2020, 110, 1713–1720. [Google Scholar] [CrossRef]
- Friebe, B.; Kynast, R.G.; Hatchett, J.H.; Sears, R.G.; Wilson, D.L.; Gill, B.S. Transfer of wheat-rye translocation chromosomes conferring resistance to Hessian Fly from bread wheat into durum wheat. Crop Sci. 1999, 39, 1692–1696. [Google Scholar] [CrossRef]
- Friebe, B.; Heun, M.; Tuleen, N.; Zeller, F.J.; Gill, B.S. Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 1994, 34, 621–625. [Google Scholar] [CrossRef]
- Hao, M.; Liu, M.; Luo, J.; Fan, C.; Yi, Y.; Zhang, L.; Yuan, Z.; Ning, S.; Zheng, Y.; Liu, D. Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front. Plant Sci. 2018, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dundas, I.; Dong, C.; Li, G.; Trethowan, R.; Yang, Z.; Hoxha, S.; Zhang, P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 2020, 133, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Luo, J.; Yang, Z.; Li, G.; Tang, Z.; Fu, S. The physical location of stripe rust resistance genes on chromosome 6 of Rye (Secale cereale L.) AR106BONE. Front. Plant Sci. 2022, 13, 928014. [Google Scholar] [CrossRef]
- Grdzielewska, A.; Milczarski, P.; Molik, K.; Pawowska, E. Identification and mapping of a new recessive dwarfing gene dw9 on the 6RL rye chromosome and its phenotypic effects. PLoS ONE 2020, 15, e0229564. [Google Scholar] [CrossRef]
- An, D.; Zheng, Q.; Luo, Q.; Ma, P.; Zhang, H.; Li, L.; Han, F.; Xu, H.; Xu, Y.; Zhang, X.; et al. Molecular cytogenetic identification of a new wheat-rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS ONE 2015, 10, e0134534. [Google Scholar] [CrossRef]
- Friebe, B.; Jiang, J.; Raupp, W.J.; McIntosh, R.A.; Gill, B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica 1996, 91, 58–87. [Google Scholar] [CrossRef]
- Baum, M.; Appels, R. The cytogenetic and molecular architecture of chromosome 1R-one of the most widely utilized sources of alien chromatin in wheat varieties. Chromosoma 1991, 101, 1–10. [Google Scholar] [CrossRef]
- Lelley, T.; Eder, C.; Grausgruber, H. Influence of 1BL.1RS wheat–rye chromosome translocation on genotype by environment interaction. J. Cereal Sci. 2004, 39, 313–320. [Google Scholar] [CrossRef]
- Friebe, B.; Hatchett, J.H.; Sears, R.G.; Gill, B.S. Transfer of Hessian fly resistance from ‘Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet. 1990, 79, 385–389. [Google Scholar] [CrossRef]
- Hysing, S.C.; Hsam, S.L.K.; Singh, R.P.; Huerta-Espino, J.; Boyd, L.A.; Koebner, R.M.D.; Cambron, S.; Johnson, J.W.; Bland, D.E.; Liljeroth, E.; et al. Agronomic performance and multiple disease resistance in T2BS.2RL wheat-rye translocation lines. Crop Sci. 2007, 47, 254–260. [Google Scholar] [CrossRef]
- Rahmatov, M.; Rouse, M.N.; Nirmala, J.; Danilova, T.; Friebe, B.; Steffenson, B.J.; Johansson, E. A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor. Appl. Genet. 2016, 129, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Marais, G.F.; Marais, A.S. The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica 1994, 79, 75–80. [Google Scholar] [CrossRef]
- Li, M.; Tang, Z.; Qiu, L.; Wang, Y.; Tang, S.; Fu, S. Identification and physical mapping of new PCR-based markers specific for the long arm of rye (Secale cereale L.) Chromosome 6. J. Genet. Genom. 2016, 43, 199–206. [Google Scholar] [CrossRef]
- Mukai, Y.; Friebe, B.; Hatchett, J.H.; Yamamoto, M.; Gill, B.S. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 1993, 102, 88–95. [Google Scholar] [CrossRef]
- Dundas, I.S.; Frappell, D.E.; Crack, D.M.; Fisher, J.M. Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci. 2001, 41, 1771–1778. [Google Scholar] [CrossRef]
- Du, H.; Tang, Z.; Duan, Q.; Tang, S.; Fu, S. Using the 6RLKu minichromosome of rye (Secale cereale L.) to create wheat-rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. Int. J. Mol. Sci. 2018, 19, 3933. [Google Scholar] [CrossRef]
- Miller, T.E. The homoeologous relationships between the chromosome of rye and wheat. Current status. Can. J. Genet. Cytol. 1984, 26, 578–589. [Google Scholar] [CrossRef]
- Li, G.; Tang, L.; Yin, Y.; Zhang, A.; Yu, Z.; Yang, E.; Tang, Z.; Fu, S.; Yang, Z. Molecular dissection of Secale africanum chromosome 6Rafr in wheat enabled localization of genes for resistance to powdery mildew and stripe rust. BMC Plant Biol. 2020, 20, 134. [Google Scholar] [CrossRef]
- Schneider, A.; Rakszegi, M.; Molnár-Láng, M.; Szakács, É. Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor. Appl. Genet. 2016, 129, 1045–1059. [Google Scholar] [CrossRef]
- Chen, P.; You, C.; Hu, Y.; Chen, S.; Zhou, B.; Cao, A.; Wang, X. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol. Breed. 2013, 31, 477–484. [Google Scholar] [CrossRef]
- Sears, E.R. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol. 1977, 19, 585–593. [Google Scholar] [CrossRef]
- Molnár-Láng, M.; Cseh, A.; Szakács, E.; Molnár, I. Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. Theor. Appl. Genet. 2010, 120, 1535–1545. [Google Scholar] [CrossRef]
- Tan, G.X. Monosomic alien addition lines: A new tool for studying and using plant genomics. Yi Chuan 2008, 30, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Jena, K.K.; Khush, G.S. Monosomic alien addition lines of rice: Production, morphology, cytology, and breeding behavior. Genome 1989, 32, 449–455. [Google Scholar] [CrossRef]
- Fu, S.; Sun, C.; Yang, M.; Fei, Y.; Tan, F.; Yan, B.; Ren, Z.; Tang, Z. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines. PLoS ONE 2013, 8, e54057. [Google Scholar] [CrossRef]
- Ren, T.; Li, Z.; Yan, B.; Tan, F.; Tang, Z.; Fu, S.; Yang, M.; Ren, Z. Targeted segment transfer from rye chromosome 2R to wheat chromosomes 2A, 2B, and 7B. Cytogenet. Genome Res. 2017, 151, 50–59. [Google Scholar] [CrossRef]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicher, T.; Gundlash, H.; Baez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 2021, 53, 564–573. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, E.; Hu, Y.; Wu, D.; Feng, Y.; Lao, S.; Dong, C.; Du, T.; Hua, W.; Ye, C.; et al. Population genomic analysis reveals domestication of cultivated rye from weedy rye. Mol. Plant 2022, 15, 552–561. [Google Scholar] [CrossRef]
- Ren, T.H.; Chen, F.; Yan, B.J.; Zhang, H.Q.; Ren, Z.L. Genetic diversity of wheat-rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica 2012, 183, 133–146. [Google Scholar] [CrossRef]
- Li, Q.; Huang, L.; Li, Y.; Fan, C.; Xie, D.; Zhao, L.; Zhang, S.; Chen, X.; Ning, S.; Yuan, Z.; et al. Genetic stability of wheat rye 6RS/6AL translocation chromosome and its transmission through gametes. Acta Agric. Sin. 2020, 46, 513–519. [Google Scholar] [CrossRef]
- Lukaszewski, A.J. Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci. 2006, 46, 2183–2194. [Google Scholar] [CrossRef]
- Müller, M.C.; Kunz, L.; Schudel, S.; Lawson, A.W.; Kammerecker, S.; Isaksson, J.; Wyler, M.; Graf, J.; Sotiropoulos, A.G.; Praz, C.R.; et al. Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat. Proc. Natl. Acad. Sci. USA 2022, 119, E2108808119. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tang, C.; Fan, X.; He, M.; Gan, P.; Zhang, S.; Hu, Z.; Wang, X.; Yan, T.; Shu, W.; et al. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 2022, 185, 2961–2974. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; He, M.; Sun, Z.; Tan, F.; Luo, P.; Tang, Z.; Fu, S.; Yan, B.; Ren, Z.; Li, Z. The Polymorphisms of oligonucleotide probes in wheat cultivars determined by ND-FISH. Molecules 2019, 24, 1126. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, Á.; Jouve, N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 2010, 119, 495–503. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, Z.; Fu, S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J. Appl. Genet. 2014, 55, 313–318. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Qiu, L.; Tang, Z.; Li, M.; Fu, S. Development of new PCR-based markers specific for chromosome arms of rye (Secale cereal L.). Genome 2016, 59, 159–165. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, S.; Chen, C.; Yang, H.; Chen, W.; Tan, F.; Zhang, M.; Chen, W.; Ren, T.; Li, Z.; et al. Identification and cloning of a CC-NBS-NBS-LRR gene as a candidate of Pm40 by integrated analysis of both the available transcriptional data and published linkage mapping. Int. J. Mol. Sci. 2021, 22, 10239. [Google Scholar] [CrossRef]
- Ren, T.; Ren, Z.; Yang, M.; Yan, B.; Tan, F.; Fu, S.; Tang, Z.; Li, Z. Novel source of 1RS from Baili rye conferred high resistance to diseases and enhanced yield traits to common wheat. Mol. Breed. 2018, 38, 101. [Google Scholar] [CrossRef]
- Wan, A.; Zhao, Z.; Chen, X.; He, Z.; Jin, S.; Jia, Q.; Yao, G.; Yang, J.; Wang, B.; Li, G. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis. 2004, 88, 896–904. [Google Scholar] [CrossRef]
- Xie, C.J.; Sun, Q.X.; Ni, T.; Nevo, E.; Fahima, F. Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31. Plant Breed. 2004, 123, 198–200. [Google Scholar] [CrossRef]
- Kim, W.; Johnson, J.W.; Baenziger, P.S.; Lukaszewski, A.J.; Gaines, C.S. Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 2004, 44, 1254–1258. [Google Scholar] [CrossRef]
Lines | Chromosome Type | Pst Analysis | Bgt Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CYR32 | CYR33 | CYR34 | In Field | E20 | In Field | ||||||
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | ||||||
CN25 | 6A | 4 | 3 | 5 | 5 | 7 | 5 | 4 | 4 | 4 | 4 |
117-6 | T6RS.6AL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Qinling rye | 6R | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Chromosome Types | Resistance to Pst | Resistance to Bgt |
---|---|---|
T6RS.6AL (117-6) | 0 | 0 |
6R monosomic addition plants | 0 | 0 |
6RS addition plants | 0 | 0 |
6R disomic addition plants | 0 | 0 |
Heterozygous T6RS.6AL plants | 0 | 0 |
Plants that lost 6R (AABBDD) | 5 | 4 |
CN25 (AABBDD, control) | 5 | 4 |
Lines | PH | LS | SNPS | KNPS | KWPP | TKW | SNPP | KWPS |
---|---|---|---|---|---|---|---|---|
CN25(2021) | 93.8 ± 2.7 | 13.4 ± 0.9 | 22.4 ± 1.1 | 55.3 ± 5.9 | 18.2 ± 4.7 | 56.0 ± 2.0 | 5.8 ± 0.8 | 3.1 ± 0.4 |
117-6(2021) | 93.7 ± 2.5 | 12.8 ± 0.8 | 21.3 ± 0.6 | 59.7 ± 5.4 | 33.8 ± 1.2 * | 56.8 ± 1.3 | 10.0 ± 1.0 * | 3.4 ± 0.3 |
CN25(2022) | 88.0 ± 2.0 | 12.5 ± 0.5 | 21.4 ± 0.5 | 57.1 ± 2.5 | 14.2 ± 4.7 | 51.5 ± 1.3 | 4.8 ± 0.7 | 2.9 ± 0.1 |
117-6(2022) | 85.6 ± 4.3 | 13.3 ± 0.1 | 22.6 ± 0.5 * | 72.4 ± 7.7 * | 22.4 ± 4.7 * | 53.7 ± 5.4 | 5.8 ± 1.5 | 3.9 ± 0.5 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, T.; Sun, Z.; Ren, Z.; Tan, F.; Luo, P.; Li, Z. Development and Molecular Cytogenetic Characterization of a Novel Wheat-Rye T6RS.6AL Translocation Line from Secale cereale L. Qinling with Resistance to Stripe Rust and Powdery Mildew. Int. J. Mol. Sci. 2022, 23, 10495. https://doi.org/10.3390/ijms231810495
Ren T, Sun Z, Ren Z, Tan F, Luo P, Li Z. Development and Molecular Cytogenetic Characterization of a Novel Wheat-Rye T6RS.6AL Translocation Line from Secale cereale L. Qinling with Resistance to Stripe Rust and Powdery Mildew. International Journal of Molecular Sciences. 2022; 23(18):10495. https://doi.org/10.3390/ijms231810495
Chicago/Turabian StyleRen, Tianheng, Zixin Sun, Zhenglong Ren, Feiquan Tan, Peigao Luo, and Zhi Li. 2022. "Development and Molecular Cytogenetic Characterization of a Novel Wheat-Rye T6RS.6AL Translocation Line from Secale cereale L. Qinling with Resistance to Stripe Rust and Powdery Mildew" International Journal of Molecular Sciences 23, no. 18: 10495. https://doi.org/10.3390/ijms231810495
APA StyleRen, T., Sun, Z., Ren, Z., Tan, F., Luo, P., & Li, Z. (2022). Development and Molecular Cytogenetic Characterization of a Novel Wheat-Rye T6RS.6AL Translocation Line from Secale cereale L. Qinling with Resistance to Stripe Rust and Powdery Mildew. International Journal of Molecular Sciences, 23(18), 10495. https://doi.org/10.3390/ijms231810495