Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae
Abstract
:1. Introduction
2. Resistance to Beta-Lactam Antibiotics
2.1. Resistance to Oxyimino-Cephalosporins (Ceftriaxone and Cefixime)
2.2. Penicillin Resistance
3. Macrolide (Azithromycin) Resistance
4. Resistance to Fluoroquinolones (Ciprofloxacin)
5. Resistance to Tetracyclines
6. Resistance to Spectinomycin
7. Resistance to Gentamicin
8. Other Drugs Active against N. gonorrhoeae
8.1. Zoliflodacin
8.2. Sitafloxacin
8.3. Delafloxacin
8.4. Gepotidacin
8.5. Solithromycin
8.6. Lefamulin
8.7. Ertapenem
8.8. Modithromycin and EDP 322
8.9. Aminoethyl Spectinomycins
8.10. Fosfomycin
8.11. TP0480066 and Other Antimicrobials
9. Epidemiological Typing of N. gonorrhoeae
9.1. Whole-Genome Sequencing (WGS)
9.2. Neisseria gonorrhoeae Multi-Antigen Sequence Typing (NG-MAST)
9.3. Multi-Locus Sequence Typing (MLST)
9.4. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR)
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CLSI | Clinical and Laboratory Standards Institute |
CDC | Centers for Disease Control and Prevention |
ECDC | European Centre for Disease Prevention and Control |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
Euro-GASP | European Gonococcal Antimicrobial Surveillance Programme |
MIC | minimum inhibitory concentration |
MLST | multi-locus sequence typing |
NG-MAST | Neisseria gonorrhoeae multi-antigen sequence typing |
NG-STAR | Neisseria gonorrhoeae sequence typing for antimicrobial resistance |
PBP | penicillin-binding protein |
ST | sequence type |
WGS | whole-genome sequencing |
References
- WHO. Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections. 2021. Available online: https://www.who.int/publications/i/item/9789240027077 (accessed on 18 June 2022).
- European Centre for Disease Prevention and Control [ECDC]. Data from the ECDC Surveillance Atlas of Infectious Diseases. 2021. Available online: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4 (accessed on 18 June 2022).
- Hadad, R.; Golparian, D.; Velicko, I.; Ohlsson, A.-K.; Lindroth, Y.; Ericson, E.-L.; Fredlund, H.; Engstrand, L.; Unemo, M. First National Genomic Epidemiological Study of Neisseria gonorrhoeae Strains Spreading Across Sweden in 2016. Front. Microbiol. 2022, 12, 820998. [Google Scholar] [CrossRef] [PubMed]
- Sexually Transmitted Diseases—Reported Cases and Rates of Reported Cases, United States, 1941–2020. Available online: https://www.cdc.gov/std/statistics/2020/tables/1.htm (accessed on 16 June 2022).
- Cole, M.J.; Quinten, C.; Jacobsson, S.; Day, M.; Amato-Gauci, A.J.; Woodford, N.; Spiteri, G.; Unemo, M.; Euro-GASP Network. The European gonococcal antimicrobial surveillance programme (Euro-GASP) appropriately reflects the antimicrobial resistance situation for Neisseria gonorrhoeae in the European Union/European Economic Area. BMC Infect. Dis. 2019, 19, 1040. [Google Scholar] [CrossRef]
- Cole, M.J.; Quaye, N.; Jacobsson, S.; Day, M.; Fagan, E.; Ison, C.; Pitt, R.; Seaton, S.; Woodford, N.; Stary, A.; et al. Ten years of external quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in Europe elucidate high reliability of data. BMC Infect. Dis. 2019, 19, 281. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.J.; Spiteri, G.; Jacobsson, S.; Pitt, R.; Grigorjev, V.; Unemo, M. Is the tide turning again for cephalosporin resistance in Neisseria gonorrhoeae in Europe? Results from the 2013 European surveillance. BMC Infect. Dis. 2015, 15, 321. [Google Scholar] [CrossRef]
- Jacobsson, S.; Cole, M.J.; Spiteri, G.; Day, M.; Unemo, M. Associations between antimicrobial susceptibility/resistance of Neisseria gonorrhoeae isolates in European Union/European Economic Area and patients’ gender, sexual orientation and anatomical site of infection, 2009–2016. BMC Infect. Dis. 2021, 21, 273. [Google Scholar] [CrossRef]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/Geneva2017 (accessed on 18 June 2022).
- Harris, S.R.; Cole, M.J.; Spiteri, G.; Sánchez-Busó, L.; Golparian, D.; Jacobsson, S.; Goater, R.; Abudahab, K.; Yeats, C.A.; Bercot, B.; et al. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: A genomic survey. Lancet Infect. Dis. 2018, 18, 758–768. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST) v. 12.0. 2022. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf (accessed on 18 June 2022).
- M100-S32; Performance Standarts for Antimicrobial Susceptibility Testing; Twenty-First Information Supplement. Clinical and Laboratory Standarts Institute (CLSI): Wayne, PA, USA, 2022.
- Bowie, W.R.; Shaw, C.E.; Chan, D.G.; Jones, H.D.; Black, W.A. In-vitro susceptibility of 400 isolates of Neisseria gonorrhoeae in Vancouver, 1982-84. Can. Med. Assoc. J. 1986, 135, 489–493. [Google Scholar]
- Katz, A.R. Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 2018, 24, 608. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Sexually Transmitted Diseases Surveillance. 2016. Available online: https://www.cdc.gov/std/stats16/CDC_2016_STDS_Report-for508WebSep21_2017_1644.pdf (accessed on 18 June 2022).
- Chen, S.-C.; Han, Y.; Yuan, L.-F.; Zhu, X.-Y.; Yin, Y.-P. Identification of Internationally Disseminated Ceftriaxone-Resistant Neisseria gonorrhoeae Strain FC428, China. Emerg. Infect. Dis. 2019, 25, 1427–1429. [Google Scholar] [CrossRef]
- Lee, K.; Nakayama, S.-I.; Osawa, K.; Yoshida, H.; Arakawa, S.; Furubayashi, K.-I.; Kameoka, H.; Shimuta, K.; Kawahata, T.; Unemo, M.; et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J. Antimicrob. Chemother. 2019, 74, 1812–1819. [Google Scholar] [CrossRef]
- Lahra, M.M.; Martin, I.; Demczuk, W.; Jennison, A.V.; Lee, K.-I.; Nakayama, S.-I.; Lefebvre, B.; Longtin, J.; Ward, A.; Mulvey, M.R.; et al. Cooperative Recognition of Internationally Disseminated Ceftriaxone-Resistant Neisseriagonorrhoeae Strain. Emerg. Infect. Dis. 2018, 24, 735–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golparian, D.; Rose, L.; Lynam, A.; Mohamed, A.; Bercot, B.; Ohnishi, M.; Crowley, B.; Unemo, M. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Eurosurveillance 2018, 23, 1800617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, C.; Zeng, Y.; Li, Y.; Huang, S.; Wang, F.; Peng, J. Emergence and Characterization of a Ceftriaxone-Resistant Neisseria gonorrhoeae FC428 Clone Evolving Moderate-Level Resistance to Azithromycin in Shenzhen, China. Infect. Drug Resist. 2021, 14, 4271–4276. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Li, Y.; Xiu, L.; Zhang, C.; Fu, Y.; Jiang, C.; Tang, L.; Peng, J. Identification of multidrug-resistant Neisseria gonorrhoeae isolates with combined resistance to both ceftriaxone and azithromycin, China, 2017–2018. Emerg. Microbes Infect. 2019, 8, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Yong, G.; Li, X.; Yu, L.; Ma, S.; Luo, T. Emergence and genomic characterization of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in Chengdu, China. J. Antimicrob. Chemother. 2020, 75, 2495–2498, Erratum in J. Antimicrob. Chemother. 2020, 75, 2714. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.; Yang, F.; Ling, X.; Jiang, S.; Zhao, F.; Yu, Y.; van der Veen, S. High percentage of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone among isolates from a single hospital in Hangzhou, China. J. Antimicrob. Chemother. 2021, 76, 936–939. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, W.; Xie, Q.; Yu, Y.; Liao, Y.; Feng, Z.; Qin, X.; Wu, X.; Tang, S.; Zheng, H. Dissemination and genome analysis of high-level ceftriaxone-resistant penA 60.001 Neisseria gonorrhoeae strains from the Guangdong Gonococcal antibiotics susceptibility Programme (GD-GASP), 2016–2019. Emerg. Microbes Infect. 2022, 11, 344–350. [Google Scholar] [CrossRef]
- Trinh, T.M.; Nguyen, T.T.; Le, T.V.; Nguyen, T.T.; Ninh, D.T.; Duong, B.H.; Van Nguyen, M.; Kesteman, T.; Pham, L.T.; van Doorn, H.R. Neisseria gonorrhoeae FC428 Subclone, Vietnam, 2019–2020. Emerg. Infect. Dis. 2022, 28, 432–435. [Google Scholar] [CrossRef]
- Li, X.; Le, W.; Lou, X.; Genco, C.A.; Rice, P.A.; Su, X. In Vitro Activity of Ertapenem against Neisseria gonorrhoeae Clinical Isolates with Decreased Susceptibility or Resistance to Extended-Spectrum Cephalosporins in Nanjing, China (2013 to 2019). Antimicrob. Agents Chemother. 2022, 66, e0010922. [Google Scholar] [CrossRef]
- Sánchez-Busó, L.; Cole, M.J.; Spiteri, G.; Day, M.; Jacobsson, S.; Golparian, D.; Sajedi, N.; Yeats, C.A.; Abudahab, K.; Underwood, A.; et al. Europe-wide expansion and eradication of specific Neisseria gonorrhoeae lineages elucidate an increased azithromycin resistance and decreased cephalosporin resistance: A genomic surveillance study. Lancet Microbe 2022, 3, e452–e463. [Google Scholar] [CrossRef]
- Unemo, M.; Ross, J.; Serwin, A.; Gomberg, M.; Cusini, M.; Jensen, J. Background review for the ‘2020 European guideline for the diagnosis and treatment of gonorrhoea in adults’. Int. J. STD AIDS 2021, 32, 108–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, F.; Zhu, C.; Xiu, L.; Li, Y.; Li, L.; Liu, B.; Li, Y.; Zeng, Y.; Guo, B.; et al. Determining antimicrobial resistance profiles and identifying novel mutations of Neisseria gonorrhoeae genomes obtained by multiplexed MinION sequencing. Sci. China Life Sci. 2020, 63, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.-I.; Shimuta, K.; Furubayashi, K.-I.; Kawahata, T.; Unemo, M.; Ohnishi, M. New Ceftriaxone- and Multidrug-Resistant Neisseria gonorrhoeae Strain with a Novel Mosaic penA Gene Isolated in Japan. Antimicrob. Agents Chemother. 2016, 60, 4339–4341. [Google Scholar] [CrossRef] [PubMed]
- Terkelsen, D.; Tolstrup, J.; Johnsen, C.H.; Lund, O.; Larsen, H.K.; Worning, P.; Unemo, M.; Westh, H. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Eurosurveillance 2017, 22, 17–00659. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, B.; Martin, I.; Demczuk, W.; Deshaies, L.; Michaud, S.; Labbé, A.-C.; Beaudoin, M.-C.; Longtin, J. Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 2018, 24, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Whiley, D.M.; Jennison, A.; Pearson, J.; Lahra, M.M. Genetic characterisation of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect. Dis. 2018, 18, 717–718. [Google Scholar] [CrossRef]
- Eyre, D.W.; Town, K.; Street, T.; Barker, L.; Sanderson, N.; Cole, M.J.; Mohammed, H.; Pitt, R.; Gobin, M.; Irish, C.; et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Eurosurveillance 2019, 24, 1900147. [Google Scholar] [CrossRef]
- Berenger, B.M.; Demczuk, W.; Gratrix, J.; Pabbaraju, K.; Smyczek, P.; Martin, I. Genetic Characterization and Enhanced Surveillance of Ceftriaxone-Resistant Neisseria gonorrhoeae Strain, Alberta, Canada, 2018. Emerg. Infect. Dis. 2019, 25, 1660–1667. [Google Scholar] [CrossRef]
- Poncin, T.; Fouere, S.; Braille, A.; Camelena, F.; Agsous, M.; Bebear, C.; Kumanski, S.; Lot, F.; Mercier-Delarue, S.; Ngangro, N.N.; et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Eurosurveillance 2018, 23, 1800264. [Google Scholar] [CrossRef]
- Fifer, H.; Hughes, G.; Whiley, D.; Lahra, M.M. Lessons learnt from ceftriaxone-resistant gonorrhoea in the UK and Australia. Lancet Infect. Dis. 2020, 20, 276–278. [Google Scholar] [CrossRef]
- Gianecini, R.; Oviedo, C.; Stafforini, G.; Galarza, P. Neisseria gonorrhoeae resistant to ceftriaxone and cefixime, Argentina. Emerg. Infect. Dis. 2016, 22, 1139–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golparian, D.; Sánchez-Busó, L.; Cole, M.; Unemo, M. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) clonal complexes are consistent with genomic phylogeny and provide simple nomenclature, rapid visualization and antimicrobial resistance (AMR) lineage predictions. J. Antimicrob. Chemother. 2021, 76, 940–944. [Google Scholar] [CrossRef]
- Unemo, M.; Golparian, D.; Nicholas, R.; Ohnishi, M.; Gallay, A.; Sednaoui, P. High-Level Cefixime- and Ceftriaxone-Resistant Neisseria gonorrhoeae in France: Novel penA Mosaic Allele in a Successful International Clone Causes Treatment Failure. Antimicrob. Agents Chemother. 2012, 56, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Hanao, M.; Aoki, K.; Ishii, Y.; Shimuta, K.; Ohnishi, M.; Tateda, K. Molecular characterization of Neisseria gonorrhoeae isolates collected through a national surveillance programme in Japan, 2013: Evidence of the emergence of a ceftriaxone-resistant strain from a ceftriaxone-susceptible lineage. J. Antimicrob. Chemother. 2021, 76, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Yin, Y.-P.; Dai, X.-Q.; Unemo, M.; Chen, X.-S. First nationwide study regarding ceftriaxone resistance and molecular epidemiology of Neisseria gonorrhoeae in China. J. Antimicrob. Chemother. 2016, 71, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Yin, Y.-P.; Dai, X.-Q.; Unemo, M.; Chen, X.-S. Antimicrobial resistance, genetic resistance determinants for ceftriaxone and molecular epidemiology of Neisseria gonorrhoeae isolates in Nanjing, China. J. Antimicrob. Chemother. 2014, 69, 2959–2965. [Google Scholar] [CrossRef]
- Ohnishi, M.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.; Watanabe, H.; Kitawaki, J. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg. Infect. Dis. 2011, 17, 148–149. [Google Scholar] [CrossRef]
- Lahra, M.M.; Ryder, N.; Whiley, D.M. A New Multidrug-Resistant Strain of Neisseria gonorrhoeae in Australia. New Engl. J. Med. 2014, 371, 1850–1851, Erratum in New Engl. J. Med. 2015, 373, 982. [Google Scholar] [CrossRef]
- Càmara, J.; Serra-Pladevall, J.; Ayats, J.; Bastida, T.; Carnicer-Pont, D.; Andreu, A.; Ardanuy, C. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J. Antimicrob. Chemother. 2012, 67, 1858–1860. [Google Scholar] [CrossRef]
- Lee, S.-G.; Lee, H.; Jeong, S.H.; Yong, D.; Chung, G.T.; Lee, Y.S.; Chong, Y.; Lee, K. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J. Antimicrob. Chemother. 2010, 65, 669–675. [Google Scholar] [CrossRef]
- Lee, H.; Unemo, M.; Kim, H.J.; Seo, Y.; Lee, K.; Chong, Y. Emergence of decreased susceptibility and resistance to extended-spectrum cephalosporins in Neisseria gonorrhoeae in Korea. J. Antimicrob. Chemother. 2015, 70, 2536–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, O.B.; Clemence, M.; Dillard, J.P.; Tang, C.M.; Trees, D.; Grad, Y.H.; Maiden, M. Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J. Infect. 2016, 73, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Gernert, K.M.; Seby, S.; Schmerer, M.W.; Thomas, J.C.; Pham, C.D.; Cyr, S.S.; Schlanger, K.; Weinstock, H.; Shafer, W.M.; Raphael, B.H.; et al. Azithromycin susceptibility of Neisseria gonorrhoeae in the USA in 2017: A genomic analysis of surveillance data. Lancet Microbe 2020, 1, e154–e164. [Google Scholar] [CrossRef]
- Gose, S.; Nguyen, D.; Lowenberg, D.; Samuel, M.; Bauer, H.; Pandori, M. Neisseria gonorrhoeae and extended-spectrum cephalosporins in California: Surveillance and molecular detection of mosaic penA. BMC Infect. Dis. 2013, 13, 570. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.C.; Seby, S.; Abrams, A.J.; Cartee, J.; Lucking, S.; Vidyaprakash, E.; Schmerer, M.; Pham, C.D.; Hong, J.; Torrone, E.; et al. Evidence of Recent Genomic Evolution in Gonococcal Strains With Decreased Susceptibility to Cephalosporins or Azithromycin in the United States, 2014–2016. J. Infect. Dis. 2019, 220, 294–305. [Google Scholar] [CrossRef]
- Mlynarczyk, A.; Mlynarczyk, B.; Kmera-Muszynska, M.; Majewski, S.; Mlynarczyk, G. Mechanisms of the resistance and tolerance to beta-lactam and glycopeptide antibiotics in pathogenic gram-positive cocci. Mini-Rev. Med. Chem. 2009, 9, 1527–1537. [Google Scholar] [CrossRef]
- Palace, S.G.; Wang, Y.; Rubin, D.H.; Welsh, M.A.; Mortimer, T.; Cole, K.; Eyre, D.; Walker, S.; Grad, Y.H. RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates. Elife 2020, 9, e51407. [Google Scholar] [CrossRef]
- Takahata, S.; Senju, N.; Osaki, Y.; Yoshida, T.; Ida, T. Amino Acid Substitutions in Mosaic Penicillin-Binding Protein 2 Associated with Reduced Susceptibility to Cefixime in Clinical Isolates of Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2006, 50, 3638–3645. [Google Scholar] [CrossRef]
- Ameyama, S.; Onodera, S.; Takahata, M.; Minami, S.; Maki, N.; Endo, K.; Goto, H.; Suzuki, H.; Oishi, Y. Mosaic-Like Structure of Penicillin-Binding Protein 2 Gene (penA) in Clinical Isolates of Neisseria gonorrhoeae with Reduced Susceptibility to Cefixime. Antimicrob. Agents Chemother. 2002, 46, 3744–3749. [Google Scholar] [CrossRef]
- Młynarczyk-Bonikowska, B.; Majewska, A.; Malejczyk, M.; Młynarczyk, G.; Majewski, S. Multiresistant Neisseria gonorrhoeae: A new threat in second decade of the XXI century. Med. Microbiol. Immunol. 2019, 209, 95–108. [Google Scholar] [CrossRef]
- Tomberg, J.; Unemo, M.; Davies, C.; Nicholas, R.A. Molecular and Structural Analysis of Mosaic Variants of Penicillin-Binding Protein 2 Conferring Decreased Susceptibility to Expanded-Spectrum Cephalosporins in Neisseria gonorrhoeae: Role of Epistatic Mutations. Biochemistry 2010, 49, 8062–8070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomberg, J.; Unemo, M.; Ohnishi, M.; Davies, C.; Nicholas, R.A. Identification of Amino Acids Conferring High-Level Resistance to Expanded-Spectrum Cephalosporins in the penA Gene from Neisseria gonorrhoeae Strain H041. Antimicrob. Agents Chemother. 2013, 57, 3029–3036. [Google Scholar] [CrossRef] [PubMed]
- Tomberg, J.; Fedarovich, A.; Vincent, L.R.; Jerse, A.E.; Unemo, M.; Davies, C.; Nicholas, R.A. Alanine 501 Mutations in Penicillin-Binding Protein 2 from Neisseria gonorrhoeae: Structure, Mechanism, and Effects on Cephalosporin Resistance and Biological Fitness. Biochemistry 2017, 56, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Fenton, B.A.; Tomberg, J.; Sciandra, C.A.; Nicholas, R.A.; Davies, C.; Zhou, P. Mutations in PBP2 from ceftriaxone-resistant Neisseria gonorrhoeae alter the dynamics of the β3–β4 loop to favor a low-affinity drug-binding state. J. Biol. Chem. 2021, 297, 101188. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.J.; Tomberg, J.; Deacon, A.M.; Nicholas, R.A.; Davies, C. Crystal Structures of Penicillin-binding Protein 2 from Penicillin-susceptible and -resistant Strains of Neisseria gonorrhoeae Reveal an Unexpectedly Subtle Mechanism for Antibiotic Resistance. J. Biol. Chem. 2009, 284, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Gianecini, R.A.; Golparian, D.; Zittermann, S.; Litvik, A.; Gonzalez, S.; Oviedo, C.; Melano, R.G.; Unemo, M.; Galarza, P.; Gonococcal Antimicrobial Susceptibility Surveillance Programme-Argentina (GASSP-AR) Working Group. Genome-based epidemiology and antimicrobial resistance determinants of Neisseria gonorrhoeae isolates with decreased susceptibility and resistance to extended-spectrum cephalosporins in Argentina in 2011-16. J. Antimicrob. Chemother. 2019, 74, 1551–1559. [Google Scholar] [CrossRef]
- Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (PubMLST NG-STAR). Available online: https://pubmlst.org/bigsdb?db=pubmlst_neisseria_seqdef&page=schemeInfo&scheme_id=67 (accessed on 18 June 2022).
- Demczuk, W.; Sidhu, S.; Unemo, M.; Whiley, D.M.; Allen, V.G.; Dillon, J.R.; Cole, M.; Seah, C.; Trembizki, E.; Trees, D.L.; et al. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance, a Novel Antimicrobial Resistance Multilocus Typing Scheme for Tracking Global Dissemination of N. gonorrhoeae Strains. J. Clin. Microbiol. 2017, 55, 1454–1468. [Google Scholar] [CrossRef]
- Warner, D.M.; Shafer, W.M.; Jerse, A.E. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol. 2008, 70, 462–478. [Google Scholar] [CrossRef]
- Shafer, W.M.; Balthazar, J.T.; Hagman, K.E.; Morse, S.A. Missense mutations that alter the DNA-binding domain of the MtrR protein occur frequently in rectal isolates of Neisseria gonorrhoeae that are resistant to faecal lipids. Microbiology 1995, 141, 907–911. [Google Scholar] [CrossRef]
- Ohneck, E.A.; Zalucki, Y.M.; Johnson, P.J.T.; Dhulipala, V.; Golparian, D.; Unemo, M.; Jerse, A.E.; Shafer, W.M. A Novel Mechanism of High-Level, Broad-Spectrum Antibiotic Resistance Caused by a Single Base Pair Change in Neisseria gonorrhoeae. mBio 2011, 2, e00187-11. [Google Scholar] [CrossRef]
- Rouquette-Loughlin, C.E.; Reimche, J.L.; Balthazar, J.T.; Dhulipala, V.; Gernert, K.M.; Kersh, E.N.; Pham, C.D.; Pettus, K.; Abrams, A.J.; Trees, D.L.; et al. Mechanistic Basis for Decreased Antimicrobial Susceptibility in a Clinical Isolate of Neisseria gonorrhoeae Possessing a Mosaic-Like mtr Efflux Pump Locus. mBio 2018, 9, e02281-18. [Google Scholar] [CrossRef] [Green Version]
- Wadsworth, C.B.; Arnold, B.J.; Sater, M.R.A.; Grad, Y.H. Azithromycin resistance through interspecific acquisition of an epi-stasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 2018, 9, e01419-18. [Google Scholar] [CrossRef] [PubMed]
- Smolarczyk, K.; Mlynarczyk-Bonikowska, B.; Rudnicka, E.; Szukiewicz, D.; Meczekalski, B.; Smolarczyk, R.; Pieta, W. The Impact of Selected Bacterial Sexually Transmitted Diseases on Pregnancy and Female Fertility. Int. J. Mol. Sci. 2021, 22, 2170. [Google Scholar] [CrossRef] [PubMed]
- Olesky, M.; Hobbs, M.; Nicholas, R.A. Identification and Analysis of Amino Acid Mutations in Porin IB That Mediate Intermediate-Level Resistance to Penicillin and Tetracycline in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2002, 46, 2811–2820. [Google Scholar] [CrossRef] [PubMed]
- Olesky, M.; Zhao, S.; Rosenberg, R.L.; Nicholas, R.A. Porin-Mediated Antibiotic Resistance in Neisseria gonorrhoeae: Ion, Solute, and Antibiotic Permeation through PIB Proteins with penB Mutations. J. Bacteriol. 2006, 188, 2300–2308. [Google Scholar] [CrossRef]
- Ropp, P.A.; Hu, M.; Olesky, M.; Nicholas, R.A. Mutations in ponA, the Gene Encoding Penicillin-Binding Protein 1, and a Novel Locus, penC, Are Required for High-Level Chromosomally Mediated Penicillin Resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2002, 46, 769–777. [Google Scholar] [CrossRef]
- Guymon, L.F.; Walstad, D.L.; Sparling, P.F. Cell envelope alterations in antibiotic-sensitive and-resistant strains of Neisseria gonorrhoeae. J. Bacteriol. 1978, 136, 391–401. [Google Scholar] [CrossRef]
- Costa-Lourenço, A.P.R.; dos Santos, K.T.B.; Moreira, B.M.; Fracalanzza, S.E.L.; Bonelli, R.R. Antimicrobial resistance in Neisseria gonorrhoeae: History, molecular mechanisms and epidemiological aspects of an emerging global threat. Braz. J. Microbiol. 2017, 48, 617–628. [Google Scholar] [CrossRef]
- Whiley, D.M.; Jacobsson, S.; Tapsall, J.W.; Nissen, M.D.; Sloots, T.P.; Unemo, M. Alterations of the pilQ gene in Neisseria gonorrhoeae are unlikely contributors to decreased susceptibility to ceftriaxone and cefixime in clinical gonococcal strains. J. Antimicrob. Chemother. 2010, 65, 2543–2547. [Google Scholar] [CrossRef]
- Sánchez-Busó, L.; Yeats, C.A.; Taylor, B.; Goater, R.J.; Underwood, A.; Abudahab, K.; Argimón, S.; Ma, K.C.; Mortimer, T.D.; Golparian, D.; et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med. 2021, 13, 61. [Google Scholar] [CrossRef]
- Unemo, M.; Golparian, D.; Sánchez-Busó, L.; Grad, Y.; Jacobsson, S.; Ohnishi, M.; Lahra, M.M.; Limnios, A.; Sikora, A.E.; Wi, T.; et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: Phenotypic, genetic and reference genome characterization. J. Antimicrob. Chemother. 2016, 71, 3096–3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veal, W.L.; Nicholas, R.A.; Shafer, W.M. Overexpression of the MtrC-MtrD-MtrE Efflux Pump Due to an mtrR Mutation Is Required for Chromosomally Mediated Penicillin Resistance in Neisseria gonorrhoeae. J. Bacteriol. 2002, 184, 5619–5624. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, M.; Ono, E.; Shimuta, K.; Watanabe, H.; Okamura, N. Identification of TEM-135 β-Lactamase in Penicillinase-Producing Neisseria gonorrhoeae Strains in Japan. Antimicrob. Agents Chemother. 2010, 54, 3021–3023. [Google Scholar] [CrossRef] [PubMed]
- Gianecini, R.A.; Oviedo, C.; Guantay, C.; Piccoli, L.; Stafforini, G.; Galarza, P. Prevalence of bla TEM-220 gene in Penicillinase-producing Neisseria gonorrhoeae strains carrying Toronto/Rio plasmid in Argentina, 2002–2011. BMC Infect. Dis. 2015, 15, 571. [Google Scholar] [CrossRef] [PubMed]
- Gianecini, R.; Oviedo, C.; Littvik, A.; Mendez, E.; Piccoli, L.; Montibello, S.; Galarza, P. Identification of TEM-135 β-Lactamase in Neisseria gonorrhoeae Strains Carrying African and Toronto Plasmids in Argentina. Antimicrob. Agents Chemother. 2015, 59, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Golparian, D.; Dillon, J.-A.R.; Johansson, A.; Ohnishi, M.; Sethi, S.; Chen, S.-C.; Nakayama, S.-I.; Sundqvist, M.; Bala, M.; et al. Characterisation of bla TEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae—The prevalent and conserved bla TEM-135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infect. Dis. 2014, 14, 454. [Google Scholar] [CrossRef] [PubMed]
- Micaëlo, M.; Goubard, A.; La Ruche, G.; Denamur, E.; Tenaillon, O.; Cambau, E.; Jacquier, H.; Bercot, B. Molecular epidemiology of penicillinase-producing Neisseria gonorrhoeae isolates in France. Clin. Microbiol. Infect. 2017, 23, 968–973. [Google Scholar] [CrossRef]
- Golparian, D.; Kittiyaowamarn, R.; Paopang, P.; Sangprasert, P.; Sirivongrangson, P.; Franceschi, F.; Jacobsson, S.; Wi, T.; Unemo, M. Genomic surveillance and antimicrobial resistance in Neisseria gonorrhoeae isolates in Bangkok, Thailand in 2018. J. Antimicrob. Chemother. 2022, dkac158. [Google Scholar] [CrossRef]
- Pagottoa, F.; Amanb, A.T.; Ng, L.-K.; Yeung, K.-H.; Brettd, M.; Dillon, J.-A.R. Sequence Analysis of the Family of Penicillinase-Producing Plasmids of Neisseria gonorrhoeae. Plasmid 2000, 43, 24–34. [Google Scholar] [CrossRef]
- Pagotto, F.; Salimnia, H.; Totten, P.; Dillon, J. Stable shuttle vectors for Neisseria gonorrhoeae, Haemophilus spp. and other bacteria based on a single origin of replication. Gene 2000, 244, 13–19. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, J.; van der Veen, S. High prevalence of TEM-135 expression from the Asian plasmid in penicillinase-producing Neisseria gonorrhoeae from Hangzhou, China. Int. J. Antimicrob. Agents 2019, 54, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Dillon, J.; Li, H.; Yeung, K.-H.; Aman, T. A PCR assay for discriminating Neisseria gonorrhoeae β-lactamase-producing plasmids. Mol. Cell. Probes 1999, 13, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Scharbaai-Vázquez, R.; Candelas, T.; Torres-Bauzá, L. Mobilization of the gonococcal 5.2kb β-lactamase plasmid pSJ5.2 into Escherichia coli by cointegration with several gram-conjugative plasmids. Plasmid 2007, 57, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Müller, E.E.; Fayemiwo, S.A.; Lewis, D.A. Characterization of a novel -lactamase-producing plasmid in Neisseria gonorrhoeae: Sequence analysis and molecular typing of host gonococci. J. Antimicrob. Chemother. 2011, 66, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Trembizki, E.; Buckley, C.; Lawrence, A.; Lahra, M.; Whiley, D.; GRAND Study Investigators. Characterization of a Novel Neisseria gonorrhoeae Penicillinase-Producing Plasmid Isolated in Australia in 2012. Antimicrob. Agents Chemother. 2014, 58, 4984–4985. [Google Scholar] [CrossRef] [PubMed]
- Bala, M.; Kakran, M.; Singh, V.; Sood, S.; Ramesh, V.; Members of WHO GASP SEAR Network. Monitoring antimicrobial resistance in Neisseria gonorrhoeae in selected countries of the WHO South-East Asia Region between 2009 and 2012: A retrospective analysis. Sex. Transm. Infect. 2013, 89, iv28–iv35. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef]
- National Library of Medicine; National Center for Bitechnology Information. Available online: https://www.ncbi.nlm.nih.gov/pathogens/refgene/#TEM (accessed on 20 May 2022).
- Chisholm, S.A.; Dave, J.; Ison, C.A. High-Level Azithromycin Resistance Occurs in Neisseria gonorrhoeae as a Result of a Single Point Mutation in the 23S rRNA Genes. Antimicrob. Agents Chemother. 2010, 54, 3812–3816. [Google Scholar] [CrossRef]
- Ng, L.-K.; Martin, I.; Liu, G.; Bryden, L. Mutation in 23S rRNA Associated with Macrolide Resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2002, 46, 3020–3025. [Google Scholar] [CrossRef]
- Jacobsson, S.; Golparian, D.; Cole, M.; Spiteri, G.; Martin, I.; Bergheim, T.; Borrego, M.J.; Crowley, B.; Crucitti, T.; Van Dam, A.P.; et al. Whole genome sequence analysis and molecular resistance mechanisms in azithromycin resistant Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J. Antimicrob. Chemother. 2016, 71, 3109–3116. [Google Scholar] [CrossRef]
- Cousin, S.L., Jr.; Whittington, W.L.; Roberts, M.C. Acquired macrolide resistance genes and the 1 bp deletion in the mtrR promoter in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2002, 51, 131–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimche, J.L.; Chivukula, V.L.; Schmerer, M.W.; Joseph, S.J.; Pham, C.D.; Schlanger, K.; Cyr, S.B.S.; Weinstock, H.S.; Raphael, B.H.; Kersh, E.N.; et al. Genomic Analysis of the Predominant Strains and Antimicrobial Resistance Determinants within 1479 Neisseria gonorrhoeae Isolates from the US Gonococcal Isolate Surveillance Project in 2018. Sex. Transm. Dis. 2021, 48, S78–S87. [Google Scholar] [CrossRef] [PubMed]
- Grad, Y.H.; Harris, S.R.; Kirkcaldy, R.D.; Green, A.G.; Marks, D.S.; Bentley, S.D.; Trees, D.; Lipsitch, M. Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000–2013. J. Infect. Dis. 2016, 214, 1579–1587. [Google Scholar] [CrossRef]
- Ma, K.C.; Mortimer, T.D.; Duckett, M.A.; Hicks, A.L.; Wheeler, N.E.; Sánchez-Busó, L.; Grad, Y.H. Increased power from conditional bacterial genome-wide association identifies macrolide resistance mutations in Neisseria gonorrhoeae. Nat. Commun. 2020, 11, 5374. [Google Scholar] [CrossRef]
- Rouquette-Loughlin, C.E.; Balthazar, J.T.; Shafer, W.M. Characterization of the MacA–MacB efflux system in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2005, 56, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C.; Chung, W.O.; Roe, D.; Xia, M.; Marquez, C.; Borthagaray, G.; Whittington, W.L.; Holmes, K.K. Erythromycin-Resistant Neisseria gonorrhoeae and Oral Commensal Neisseria spp. Carry Known rRNA Methylase Genes. Antimicrob. Agents Chemother. 1999, 43, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Cousin, S.; Whittington, W.L.H.; Roberts, M.C. Acquired Macrolide Resistance Genes in Pathogenic Neisseria spp. Isolated between 1940 and 1987. Antimicrob. Agents Chemother. 2003, 47, 3877–3880. [Google Scholar] [CrossRef]
- Mlynarczyk, B.; Mlynarczyk, A.; Kmera-Muszynska, M.; Majewski, S.; Mlynarczyk, G. Mechanisms of Resistance to Antimicrobial Drugs in Pathogenic Gram-Positive Cocci. Mini-Rev. Med. Chem. 2010, 10, 928–937. [Google Scholar] [CrossRef]
- Day, M.J.; Jacobsson, S.; Spiteri, G.; Kulishev, C.; Sajedi, N.; Woodford, N.; Blumel, B.; van der Werf, M.J.; Amato-Gauci, A.J.; Unemo, M.; et al. Significant increase in azithromycin “resistance” and susceptibility to ceftriaxone and cefixime in Neisseria gonorrhoeae isolates in 26 European countries, 2019. BMC Infect. Dis. 2022, 22, 524. [Google Scholar] [CrossRef]
- Cassu-Corsi, D.; Santos, F.F.; Cayô, R.; Martins, W.M.B.S.; Nodari, C.S.; Almeida, L.G.P.; Martins, R.A.; Carvalho da Silva, R.J.; Vasconcelos, A.T.R.; Pignatari, A.C.C.; et al. Genomic analyses of ciprofloxacin-resistant Neisseria gonorrhoeae isolates recovered from the largest South American metropolitan area. Genomics 2022, 114, 110287. [Google Scholar] [CrossRef]
- Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century past, evolution, and future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [Green Version]
- Młynarczyk-Bonikowska, B.; Kujawa, M.; Malejczyk, M.; Młynarczyk, G.; Majewski, S. Plasmid-mediated resistance to tetracyclines among Neisseria gonorrhoeae strains isolated in Poland between 2012 and 2013. Adv. Dermatol. Allergol. 2016, 33, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Gough, K.R.; Leeming, J.P. Molecular epidemiology of tetM genes in Neisseria gonorrhoeae. Sex. Transm. Infect. 1999, 75, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Pachulec, E.; van der Does, C. Conjugative Plasmids of Neisseria gonorrhoeae. PLoS ONE 2010, 5, e9962. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Nandi, S.; Davies, C.; Nicholas, R.A. High-Level Chromosomally Mediated Tetracycline Resistance in Neisseria gonorrhoeae Results from a Point Mutation in the rpsJ Gene Encoding Ribosomal Protein S10 in Combination with the mtrR and penB Resistance Determinants. Antimicrob. Agents Chemother. 2005, 49, 4327–4334. [Google Scholar] [CrossRef]
- Bilgin, N.; Richter, A.A.; Ehrenberg, M.; Dahlberg, A.E.; Kurland, C.G. Ribosomal RNA and protein mutants resistant to spectinomycin. EMBO J. 1990, 9, 735–739. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; White, S.W. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature 1992, 358, 768–771. [Google Scholar] [CrossRef]
- Moazed, D.; Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987, 327, 389–394. [Google Scholar] [CrossRef]
- Sigmund, C.D.; Ettayebi, M.; Morgan, E.A. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 1984, 12, 4653–4663. [Google Scholar] [CrossRef]
- Unemo, M.; Golparian, D.; Skogen, V.; Olsen, A.O.; Moi, H.; Syversen, G.; Hjelmevoll, S.O. Neisseria gonorrhoeae Strain with High-Level Resistance to Spectinomycin Due to a Novel Resistance Mechanism (Mutated Ribosomal Protein S5) Verified in Norway. Antimicrob. Agents Chemother. 2013, 57, 1057–1061. [Google Scholar] [CrossRef]
- Holley, C.L.; Dhulipala, V.; Balthazar, J.T.; Le Van, A.; Begum, A.A.; Chen, S.-C.; Read, T.D.; Matoga, M.; Hoffman, I.F.; Golparian, D.; et al. A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2022, 25, e0025122. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, S.; Golparian, D.; Alm, R.A.; Huband, M.; Mueller, J.; Jensen, J.S.; Ohnishi, M.; Unemo, M. High In Vitro Activity of the Novel Spiropyrimidinetrione AZD0914, a DNA Gyrase Inhibitor, against Multidrug-Resistant Neisseria gonorrhoeae Isolates Suggests a New Effective Option for Oral Treatment of Gonorrhea. Antimicrob. Agents Chemother. 2014, 58, 5585–5588. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Ahlstrand, J.; Sánchez-Busó, L.; Day, M.; Aanensen, D.; Golparian, D.; Jacobsson, S.; Cole, M.J.; European Collaborative Group. High susceptibility to zoliflodacin and conserved target (GyrB) for zoliflodacin among 1209 consecutive clinical Neisseria gonorrhoeae isolates from 25 European countries, 2018. J. Antimicrob. Chemother. 2021, 76, 1221–1228. [Google Scholar] [CrossRef]
- Unemo, M.; Ringlander, J.; Wiggins, C.; Fredlund, H.; Jacobsson, S.; Cole, M.; The European Collaborative Group Collaborators. High in vitro susceptibility to the novel spiropyrimidinetrione AZD0914 among contemporary clinical Neisseria gonorrhoeae isolates in 21 European countries. Antimicrob. Agents Chemother. 2015, 59, 5220–5225. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.N.; Marrazzo, J.; Batteiger, B.E.; Hook, E.W.; Seña, A.C.; Long, J.; Wierzbicki, M.R.; Kwak, H.; Johnson, S.M.; Lawrence, K.; et al. Single-Dose Zoliflodacin (ETX0914) for Treatment of Urogenital Gonorrhea. New Engl. J. Med. 2018, 379, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Förster, S.; Golparian, D.; Jacobsson, S.; Hathaway, L.J.; Low, N.; Shafer, W.M.; Althaus, C.L.; Unemo, M. Genetic Resistance Determinants, In Vitro Time-Kill Curve Analysis and Pharmacodynamic Functions for the Novel Topoisomerase II Inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front. Microbiol. 2015, 6, 1377. [Google Scholar] [CrossRef]
- Jönsson, A.; Foerster, S.; Golparian, D.; Hamasuna, R.; Jacobsson, S.; Lindberg, M.; Jensen, J.S.; Ohnishi, M.; Unemo, M. In vitro activity and time-kill curve analysis of sitafloxacin against a global panel of antimicrobial-resistant and multidrug-resistant Neisseria gonorrhoeae isolates. APMIS 2018, 126, 29–37. [Google Scholar] [CrossRef]
- Hamasuna, R.; Ohnishi, M.; Matsumoto, M.; Okumura, R.; Unemo, M.; Matsumoto, T. In Vitro Activity of Sitafloxacin and Additional Newer Generation Fluoroquinolones against Ciprofloxacin-Resistant Neisseria gonorrhoeae Isolates. Microb. Drug Resist. 2018, 24, 30–34. [Google Scholar] [CrossRef]
- Soge, O.O.; Salipante, S.J.; No, D.; Duffy, E.; Roberts, M.C. In Vitro Activity of Delafloxacin against Clinical Neisseria gonorrhoeae Isolates and Selection of Gonococcal Delafloxacin Resistance. Antimicrob. Agents Chemother. 2016, 60, 3106–3111. [Google Scholar] [CrossRef]
- Jacobsson, S.; Golparian, D.; Scangarella-Oman, N.; Unemo, M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2018, 73, 2072–2077. [Google Scholar] [CrossRef]
- Farrell, D.J.; Sader, H.S.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Flamm, R.K. In Vitro Activity of Gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2017, 61, e02047-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.N.; Morris, D.H.; Avery, A.K.; Workowski, K.A.; Batteiger, B.E.; Tiffany, C.A.; Perry, C.R.; Raychaudhuri, A.; Scangarella-Oman, N.E.; Hossain, M.; et al. Gepotidacin for the Treatment of Uncomplicated Urogenital Gonorrhea: A Phase 2, Randomized, Dose-Ranging, Single-Oral Dose Evaluation. Clin. Infect. Dis. 2018, 67, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Hook, I.E.W.; Golden, M.; Jamieson, B.D.; Dixon, P.B.; Harbison, H.S.; Lowens, S.; Fernandes, P. A Phase 2 Trial of Oral Solithromycin 1200 mg or 1000 mg as Single-Dose Oral Therapy for Uncomplicated Gonorrhea. Clin. Infect. Dis. 2015, 61, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Alirol, E.; Wi, T.E.; Bala, M.; Bazzo, M.L.; Chen, X.S.; Deal, C.; Dillon, J.R.; Kularatne, R.; Heim, J.; Hooft van Huijsduijnen, R.; et al. Multidrug-resistant gonorrhea: A research and development roadmap to discover new medicines. PLoS Med. 2017, 14, e1002366. [Google Scholar] [CrossRef] [PubMed]
- Mallegol, J.; Fernandes, P.; Seah, C.; Guyard, C.; Melano, R.G. Determination of In Vitro Activities of Solithromycin at Different pHs and Its Intracellular Activity against Clinical Isolates of Neisseria gonorrhoeae from a Laboratory Collection. Antimicrob. Agents Chemother. 2013, 57, 4322–4328. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; McNulty, A.; Avery, A.; Whiley, D.; Tabrizi, S.N.; Hardy, D.; Das, A.F.; Nenninger, A.; Fairley, C.K.; Hocking, J.S.; et al. Solithromycin versus ceftriaxone plus azithromycin for the treatment of uncomplicated genital gonorrhoea (SOLITAIRE-U): A randomised phase 3 non-inferiority trial. Lancet Infect. Dis. 2019, 19, 833–842. [Google Scholar] [CrossRef]
- Jacobsson, S.; Paukner, S.; Golparian, D.; Jensen, J.S.; Unemo, M. In Vitro Activity of the Novel Pleuromutilin Lefamulin (BC-3781) and Effect of Efflux Pump Inactivation on Multidrug-Resistant and Extensively Drug-Resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2017, 61, e01497-17. [Google Scholar] [CrossRef]
- Paukner, S.; Gruss, A.; Jensen, J.S. In Vitro Activity of Lefamulin against Sexually Transmitted Bacterial Pathogens. Antimicrob. Agents Chemother. 2018, 62, e02380-17. [Google Scholar] [CrossRef]
- Suay-García, B.; Pérez-Gracia, M.T. Future Prospects for Neisseria gonorrhoeae Treatment. Antibiotics 2018, 7, 49. [Google Scholar] [CrossRef]
- Jacobsson, S.; Golparian, D.; Phan, L.T.; Ohnishi, M.; Fredlund, H.; Or, Y.S.; Unemo, M. In vitro activities of the novel bicyclolides modithromycin (EDP-420, EP-013420, S-013420) and EDP-322 against MDR clinical Neisseria gonorrhoeae isolates and international reference strains. J. Antimicrob. Chemother. 2014, 70, 173–177. [Google Scholar] [CrossRef]
- Butler, M.M.; Waidyarachchi, S.L.; Connolly, K.; Jerse, A.E.; Chai, W.; Lee, R.E.; Kohlhoff, S.A.; Shinabarger, D.L.; Bowlin, T.L. Aminomethyl Spectinomycins as Therapeutics for Drug-Resistant Gonorrhea and Chlamydia Coinfections. Antimicrob. Agents Chemother. 2018, 65, e00325-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, C.; Hirzberger, L.; Unemo, M.; Furrer, H.; Endimiani, A. In Vitro Activity of Fosfomycin Alone and in Combination with Ceftriaxone or Azithromycin against Clinical Neisseria gonorrhoeae Isolates. Antimicrob. Agents Chemother. 2015, 59, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Masuko, A.; Takata, I.; Fujita, K.; Okumura, H.; Ushiyama, F.; Amada, H.; Sugiyama, H. In Vitro and In Vivo Activities of TP0480066, a Novel Topoisomerase Inhibitor, against Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 2021, 65, e02145-20. [Google Scholar] [CrossRef]
- Naclerio, G.A.; Abutaleb, N.S.; Alhashimi, M.; Seleem, M.N.; Sintim, H.O. N-(1,3,4-Oxadiazol-2-yl)Benzamides as Antibacterial Agents against Neisseria gonorrhoeae. Int. J. Mol. Sci. 2021, 22, 2427. [Google Scholar] [CrossRef] [PubMed]
- Neisseria gonorrhoeae Multi Antigen Sequence Typing V2.0 (PubMLST NG-MAST V2.0). Available online: https://pubmlst.org/bigsdb?db=pubmlst_neisseria_seqdef&page=schemeInfo&scheme_id=71 (accessed on 20 July 2022).
- Kwong, J.C.; da Silva, A.G.; Dyet, K.; Williamson, D.A.; Stinear, T.P.; Howden, B.P.; Seemann, T. NGMASTER: In Silico multi-antigen sequence typing for Neisseria gonorrhoeae. Microb. Genom. 2016, 2, e000076. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Molecular Typing of Neisseria gonorrhoeae—A Study of 2013 Isolates; ECDC: Stockholm, Sweden, 2008. [Google Scholar] [CrossRef]
- Młynarczyk-Bonikowska, B.; Malejczyk, M.; Majewski, S.; Unemo, M. Antibiotic resistance and NG-MAST sequence types of Neisseria gonorrhoeae isolates in Poland compared to the world. Adv. Dermatol. Allergol. 2018, 35, 346–551. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Molecular Typing of Neisseria gonorrhoeae—Results from a Pilot Study 2010–2011; ECDC: Stockholm, Sweden, 2012. [CrossRef]
- National Surveillance of Antimicrobial Susceptibilities of Neisseria gonorrhoeae Annual Summary. 2018. Available online: https://www.canada.ca/en/public-health/services/publications/drugs-health-products/national-surveillance-antimicrobial-susceptibilities-neisseria-gonorrhoeae-annual-summary-2018.html (accessed on 18 June 2022).
- National Surveillance of Antimicrobial Susceptibilities of Neisseria gonorrhoeae Annual Summary 2013. Available online: https://www.canada.ca/en/public-health/services/publications/drugs-health-products/national-surveillance-antimicrobial-susceptibilities-neisseria-gonorrhoeae-annual-summary-2013.html (accessed on 18 June 2022).
- Shaskolskiy, B.; Dementieva, E.; Kandinov, I.; Chestkov, A.; Kubanov, A.; Deryabin, D.; Gryadunov, D. Genetic diversity of Neisseria gonorrhoeae multi-antigen sequence types in Russia and Europe. Int. J. Infect. Dis. 2020, 93, 1–8. [Google Scholar] [CrossRef]
- Multi-Locus Sequence Typing (Pub MLST). Available online: https://pubmlst.org/bigsdb?db=pubmlst_neisseria_iso-lates&page=query&prov_field1=f_species&prov_value1=Neisseria%20gonorrhoeae&submit=1 (accessed on 18 June 2022).
- Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR Version 2.0). Available online: https://ngstar.canada.ca/sequence_types?lang=enhttps://ngstar.canada.ca/sequence_types?lang=en (accessed on 20 June 2022).
Country | Year | Strain | CRO MIC mg/L | ST NG-STAR (CC) | PenA | PorB G120/A121 | mtrR/MtrR | ST NG-MAST (GST) | ST MLST |
---|---|---|---|---|---|---|---|---|---|
China | 2020 | YL201 * | 0.75 | 2238 (NA) | 60.001 | K/D | −35A Del | new | 1600 |
Vietnam | 2019–20 | VN128T | 0.5 | 233 | 60.001 | K/D | −35A Del | 7237 (G431) | 13,871 |
Vietnam | 2019–20 | VN20T | 0.75 | 233 | 60.001 | K/D | −35A Del | 1086 (G431) | 13,871 |
Singapore | 2019–20 | 18DG342 | 1 | 233 | 60.001 | K/D | −35A Del | 1086 (G431) | 13,871 |
China | 2019 | SRRSH214 | 1 | 2208 (NA) | 60.001 | K/D | −35A Del | 19,972 a | 1600 |
China | 2019 | SRRSH229 | 1 | 2208 (NA) | 60.001 | K/D | −35A Del | 19972 a | 1600 |
China | 2019 | DG19112 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 20408 a | 13943 |
China | 2019 | SS74 | 0.5 | new | 60.001 | NA | −35A Del | new | 1903 |
China | 2018 | ZH545 | 0.5 | 2239 (NA) | 60.001 | D/wt | −35A Del | 13272 (G13272) | 7365 |
China | 2018 | GC250 * | 0.5 | 1143 (199) | 60.001 | K/G | −35A Del | new | 7365 |
China | 2018 | SC18-25 | ≥0.5 | 233 (199) | 60.001 | K/D | −35A Del | new | 1903 |
China | 2018 | SC18-26 | ≥0.5 | 233 (199) | 60.001 | K/D | −35A Del | new | 1903 |
China | 2018 | SC18-68 | ≥0.5 | 233 (199) | 60.001 | K/D | −35A Del | 16059 (G564) | 7363 |
China | 2018 | DG18193 | 0.5 | new | 60.001 | NA | −35A Del | new | 1903 |
China | 2018 | MM14 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 1086 (G359) | 1903 |
Canada | 2018 | 51742 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 3435 (G564) | 1903 |
Ireland | 2018 | IR72 | 0.5 | 1133 (199) | 60.001 | K/N | −35A Del | 17842 (G564) | 1903 |
Australia | 2018 | A2543 ** | 0.5 | 996 (73) | 60.001 | K/D | −35 Del; G45D | 16848 (G1866) | 12039 |
The UK | 2018 | G97687 * | 0.5 | 996 (73) | 60.001 | K/D | −35 Del; G45D | 16848 (G1866) | 12039 |
The UK | 2018 | G7944 * | 0.5 | 996 (73) | 60.001 | K/D | −35 Del; G45D | 16848 (G1866) | 12039 |
The UK | 2018 | H18-502 | 1.0 | 233 (199) | 60.001 | K/D | −35A Del | 1614 (G5267) | 1903 |
The UK | 2018 | H18-209 | 1.0 | 233 (199) | 60.001 | K/D | −35A Del | 1614 (G5267) | 1903 |
China | 2017 | GC185 | 1 | 1143 (199) | 60.001 | K/G | −35A Del | new | 1903 |
China | 2017 | SZ2017191 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 15240 (G564) | 1903 |
France | 2017 | F90 | 0.5 | 133 (38) | 54.00 | K/D | −35 Del; G45D | 3435 (G564) | 1903 |
Denmark | 2017 | GK124 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 1614 (G5267) | 1903 |
Canada | 2017 | 47707 | 1.0 | 233 (199) | 60.001 | K/D | −35A Del | 1614 (G5267) | 1903 |
Australia | 2017 | A7536 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 15925 (G11110) | 1903 |
Australia | 2017 | A7846 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 1614 (G5267) | 1903 |
Japan | 2017 | KM383 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 16186 (G431) | 1903 |
Japan | 2017 | KU17039 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 16186 (G431) | 1903 |
Japan | 2016 | KU16054 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 3435 (G564) | 1903 |
China | 2016 | BJ16148 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 3435 (G564) | 1903 |
Japan | 2015 | FC498 | 0.75 | 233 (199) | 60.001 | K/D | −35A Del | 3435 (G564) | 1903 |
Japan | 2015 | FC428 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 3435 (G564) | 1903 |
Japan | 2015 | FC460 | 0.5 | 233 (199) | 60.001 | K/D | −35A Del | 3435 (G564) | 1903 |
Argentina | 2014 | CCETS-7069 | 0.5 | 139 (139) | 9.001 | K/D | −35A Del | 13064 (G21) | 13637 |
Japan | 2013 | Tum15748 | 0.5 | NA | 169.001 | NA | ND | 6771 (G9909) | 7359 |
Australia | 2013 | A8806; WHO-Z | 0.5 | 227 (348) | 64.001 | K/D | wt | 4015 (G11018) | 7363 |
China | 2012/13 | GD4 | 0.5 | NA | II | NA | ND | 10208 (G5062) | NA |
China | 2012/13 | HN9 | 0.5 | NA | XXI | NA | ND | 5913 (G1791) | NA |
Spain | 2012 | F89; WHO-Y | 1.0 | 16 (90) | 34.001 | K/N | −35A Del | 1407 (G1407) | 1901 |
France | 2010 | F89; WHO-Y | 1.0 | 16 (90) | 42.001 | K/N | −35A Del | 1407 (G1407) | 1901 |
Japan | 2009 | HO41; WHO-X | 2.0 | 226 (348) | 37.001 | K/D | −35A Del | 4220 (G4019) | 7363 |
China | 2007 | NA | 0.5 | NA | XVII | NA | ND | 2288 (G1791) | NA |
Strain | RpoB | RpoD | PenA * | PorB G120/A121 | PonA | Ceftriaxone MIC mg/L | Cefixime MIC mg/L |
---|---|---|---|---|---|---|---|
GCGS0364 | wt | wt | 9.001 | K/D | L421P | 0.023 | NA |
GCGS0364 | G158V | wt | 9.001 | K/D | L421P | 0.5 | NA |
GCGS0364 | P157L | wt | 9.001 | K/D | L421P | 0.75 | NA |
GCGS0457 | wt | wt | 9.001 | G/V | L421P | 0.012 | 0.016 |
GCGS0457 | R201H | wt | 9.001 | G/V | L421P | 0.19 | >0.5 |
GCGS0457 | wt | E98K | 9.001 | G/V | L421P | 0.125 | 0.5 |
GCGS0457 | wt | 92–95 del | 9.001 | G/V | L421P | 0.19 | 0.5 |
PenA | Substitution * | PenA | Substitution * | PenA | Substitution * |
---|---|---|---|---|---|
I (18) | 88 (1) | A501V, A516G | 170 (2) | - | |
II (56) abc | F504L, A516G | 90 (1) | A516G | 174 (1) | A516G |
III (4) | A516G | 94 (1) | N512Y | 175 (1) | A516G |
IV (1) | A516G, G542S | 95 (1) | - | 176 (1) | - |
V (15) bc | F504L, A516G, G542S | 96 (1) | - | 178 (1) | N512Y |
VII (1) c | A501V, A516G, G542S | 97 (1) | - | 179 (1) | - |
IX (11) abc | A516G | 98 (2) | - | 181 (1) | A501V, A516G, G542S |
XI (2) | A501V, A516G | 99 (1) | A311V | 182 (1) | N512Y |
XII (10) bc | F504L, A516G | 100 (15) | wt | 183 (1) | - |
XIII (9) bc 13.008 | A501V, A516G A201V | 102 (1) | A516G | 184 (1) | - |
XIV (19) | A516G | 103 (6) 103.006 | A501V, A516G A516G | 185 (1) | - |
XV (10) | - | 104 (1) | A501T, A516G, G542S | 186 (1) | - |
XVI (1) | A516G | 106 (1) | A516G, G542S | 187 (1) | - |
XVII (1) abc | A501V, A516G, G542S | 107 (1) c | A501T, A516G, G542S | 189 (1) | A516G, N542S |
XVIII (5) bc 18.005 | A501V, A516G, G542S A516G, G542S | 109 (1) c | A501V, A516G | 190 (1) | A516G |
XIX (18) | A516G | 119 (1) | - | 191 (1) | A516G |
XXI (4) abc | A501V, A516G | 120 (1) | A501V, A516G | 192 (1) | A516G |
XXII (16) | F504L, A516G | 122 (1) | A501V, A516G | 193 (1) | A516G |
40 (1) | - | 123 (1) | - | 194 (1) | A516G |
41 (2) | A516G, G542S | 125 (1) | A501T, A516G, G542S | 197 (1) | A501P, A516G |
43 (7) c | A501V, A516G | 126 (1) | A501T, A516G, G542S | 199 (1) | A516G |
44 (7) | A501T, A516G | 127 (1) | N512Y | 200 (1) | A516G |
45 (3) | A516G | 132 (1) | A516G | 201 (1) | A516G |
46 (1) c | A516G | 137 (1) | A516G, G542S | 202 (1) | A311V, A516G |
48 (2) | A516G | 141 (1) | A501V, A516G | 203 (1) | A516G |
49 (1) | A501T, A516G | 142 (1) | A501V, A516G | 204 (1) | A516G |
50 (2) c | A516G | 143 (1) | A501V, A516G | 208 (1) | A516G |
54 (3) | A501V, A516G | 144 (1) | A501V, A516G | 209 (1) | A501P, A516G |
56 (1) | A501V, A516G | 146 (1) | A501T, A516G, G542S | 210 (1) | A516G |
57 (1) | A501V, A516G | 147 (1) | A501V, A516G | 213 (1) | A501P, A516G |
61 (1) | A516G | 148 (1) bc | A516G | 218 (2) | A516G |
66 (1) | N512Y | 151 (1) | A516G | 220 (1) | - |
68 (1) c | A516G | 153 (1) | A516G | 221 (1) | A516G |
69 (5) | A516G | 154 (1) | A501V A516G | 222 (1) | A516G |
70 (1) | A516G | 155 (1) | A501V A516G | 224 (1) | A516G |
76 (3) | - | 156 (1) | A311V A516G | 225 (1) | A516G |
77 (1) | A501T, A516G | 157 (1) | A516G | 226 (1) | A516G, G542S |
79 (2) | - | 158 (1) | A501V A516G | 227 (1) | A516G, G542S |
82 (1) | - | 159 (1) | A516G | 228 (1) | A516G |
83 (1) | A516G | 160 (1) | A516G | 229 (1) | A516G |
84 (1) | - | 161 (1) | A516G | 230 (1) | |
86 (1) | A516G | 162 (1) | A516G | 231 (1) | A501V, A516G |
87 (2) | A501T, A516G | 163 (1) | A516G G542S | 234 (1) |
PenA | Substitution * | PenA | Substitution * | PenA | Substitution * |
---|---|---|---|---|---|
Mosaic-type PenA | |||||
X (12) c | V316T, F504L, N512Y | 85 (1) | A501V, N512Y | 166 (1) | N512Y |
XXVII (4) c | N512Y | 92 (1) | N512Y | 168 (1) | A501V, N512Y |
XXXIV (27) abc | N512Y | 101 (1) | A501V | 169 (1) a | A311V, N512Y |
XXXV (3) | 105 (1) | N512Y | 171 (1) | N512Y | |
37 (1) abc | A311V, N512Y | 108 (1) | N512Y | 172 (1) | |
38(1) abc | 110 (1) | N512Y | 180 (1) | N512Y | |
42 (1) abc | A501P, N512Y | 111 (1) | N512Y | 188 (1) | N512Y |
51 (1) c | N512Y | 115 (1) | 195 (1) | A311V, N512Y | |
52 (2) | N512Y | 117 (1) | N512Y | 196 (1) | N512Y |
53 (3) c | N512Y | 118 (1) | N512Y | 198 (1) | N512Y |
55 (1) c | N512Y | 121 (2) | A311V A516G | 205 (1) | N512Y |
58 (1) | N512Y | 124 (1) | A311V, N512Y | 206 (1) | N512Y |
59 (1) abc | A311V, N512Y | 129 (1) | A516G | 207 (1) | A501P, A516G |
60 (1) abc | A311V, N512Y | 131 (1) | 211 (1) | N512Y | |
62 (1) | N512Y | 133 (1) | N512Y | 212 (1) | N512Y |
63 (1) | 134 (1) | A516G | 214 (1) | A311V, N512Y | |
64 (1) abc | A311V, N512Y | 136 (1) | N512Y | 215 (1) | A516G, G542S |
67 (3) | N512Y | 138 (1) | N512Y | 217 (1) | N512Y |
71 (1) c | N512Y | 139 (1) | Mosaic wild-type | 219 (1) | N512Y |
72 (1) | N512Y | 145 (1) | N512Y | 223 (1) | N512Y |
74 (1) | N512Y | 149 (1) | A501V | 232 (1) | A311V, N512Y |
75 (1) | 152 (1) | N512Y | 233 (1) | ||
Semimosaic-type PenA | |||||
39 (1) c | 93 (1) | 150 (1) | A516G G542S | ||
47 (1) | 112 (1) | N512Y | 164 (1) | N512Y | |
65 (1) | 113 (1) | N512Y | 165 (1) | N512Y | |
73 (1) | N512Y | 114 (1) | 167 (1) | N512Y | |
78 (2) | A501T, N512Y | 116 (1) | 173 (1) | ||
80 (2) | A516G | 128 (1) | A501V, A516G | 177 (1) | |
81 (1) | N512Y | 130 (1) | N512Y | 216 (1) | N512Y |
89 (1) | 135 (1) | N512Y | |||
91 (1) | N512Y | 140 (1) | A516G |
Country | Year | n | NG-MAST ST (Genogroup) | % ST |
---|---|---|---|---|
Austria | 2013 2018 | 54 183 | 3785 (G3785)/11575 (G11575)/4995 (G4995)/387 (G387)/225 (G225) 12302 (G4822)/387 (G387)/11461 (G11461) | 16.7/11.1/7.4/7.4/7.4 11.5/5.5/4.4 |
Belgium | 2013 2018 | 55 76 | 1407 (G1407)/387 (G387)/2992 (G2992) 5441 (G5441)/1513 (G1407)/2992 (G2992) | 16.4/14.6/14.6 5.3/4/4 |
Denmark | 2013 2018 | 56 99 | 1993 (G1993)/1407 (G1407)/2400 (G2400) 1993 (G1993)/11461 (G11461)/5441 (G5441) | 17.9/12.5/7.1 31.3/5.1/4 |
France | 2013 2018 | 58 37 | 645 (G645)/11352 (G11352)/225 (G225)/2400 (G2400)/2992 (G2992) 14769 (G14769)/15589 (G15589)/2 (G2) | 8.6/5.2/3.5/3.5/3.5 10.8/8.1/5.4 |
Germany | 2013 2018 | 50 114 | 4995 (G4995)/25 (G51)/359 (G359)/5441 (G5441)/9500 (G9500) 10386 (G11352)/15589 (G15589)/387 (G387) | 8.3/6.3/6.3/6.3/6.3 5.3/5.3/4.4 |
Greece | 2013 2018 | 50 79 | 3128 (G1407)/225 (G225)/4730 (G4730)/11055 (G225) 14994 (G14994)/3128 (G1407)/7445 (G7445) | 18.8/10.4/10.4/10.4 10.1/6.3/6.3 |
Hungary | 2013 2018 | 48 89 | 1407 (G1407)/995 (G995)/387 (G387)/8115 (G2400)/11046 (G11046) 387 (G387)/11461 (G11461)/13113 (G387) | 20.8/12.5/6.3/6.3/6.3 6.7/5.3/5.3 |
Ireland | 2013 2018 | 45 169 | 2992 (G2992)/384 (G30)/21 (G21)/437 (G225)/10843 (G225) 14769 (G14769)/10386 (G11352)/14700 (G11089) | 15.6/11.1/4.4/4.4/4.4 19.5/5.9/5.3 |
Italy | 2013 2018 | 49 98 | 2992 (G2992)/6360 (G2400)/2400 (G2400)/1407 (G1407) 5441 (G5441)/10386 (G11352)/11461 (G11461) | 18.4/12.2/12.2/10.2 8.2/7.1/5.1 |
The Netherlands | 2013 2018 | 89 190 | 2992 (G2992)/2400 (G2400)/8919 (G8919) 11461 (G11461)/15589 (G15589)/14994 (G14994) | 10.1/10.1/5.6 6.8/5.3/4.7 |
Norway | 2013 2018 | 55 113 | 1407 (G1407)/4275 (G1407)/2400 (G2400) 14700 (G11089)/4186 (G9909)/3935 (G4822) | 9.1/7.3/5.5 10.6/8/7.1 |
Poland | 2012 2018 | 108 73 | 1407 (G1407)/8391 (G225)/1861 (G225)/2992 (G2992) 11461 (G11461)/14769 (G14769)/1407 (G1407) | 43.3/7.4/4.1/4.1 25/9.4/6.3 |
Portugal | 2013 2018 | 109 122 | 1407 (G1407)/7445 (G7445)/2 (G2) 645 (G645)/4261 (G4261)/5441 (G5441) | 15.6/11.0/4.6 11.4/5.2/5.2 |
Slovakia | 2013 2018 | 56 76 | 1407 (G1407)/359 (G359)/11042 (G51) 10800 (G51)/9918 (G9918)/13595 (G225) | 14.3/14.3/12.5 31.6/5.3/5.3 |
Slovenia | 2013 2018 | 55 104 | 21 (G21)/10801 (G10801) /10800 (G51)/10798 (G10798) 15589 (G15589)/11461 (G11461)/5441 (G5441) | 12.7/12.7/9.1/9.1 22.1/10.6/3.9 |
Spain | 2013 2018 | 119 173 | 1407 (G1407)/2992 (G2992)/21 (G21) 14994 (G14994)/4186 (G9909)/5743 (G387) | 10.9/6.7/6.7 6.9/5.8/2.9 |
Sweden | 2013 2018 | 50 199 | 5445 (G21)/7445 (G7445)7164 (G7164) 9909 (G9909)/225 (G225)/5441 (G5441) | 10/6/6 8/7/6 |
The UK | 2013 2018 | 127 207 | 2992 (G2992)/51 (G51)/4995 (G4995) 11461 (G11461)/5441 (G5441)/14769 (G14769) | 10.2/10.2/9.5 6.3/5.8/4.8 |
Europe (Euro-GASP) | 2013 2018 | 1189 2375 | 1407 (G1407)/2992 (G2992)/2400 (G2400) ST11461 (G11461)/ ST5441 (G5441)/ ST12302 (G4822), | 7.6/6.6/3.9 4.7/3.7/3.4 |
Canada | 2013 2018 | 1183 3379 | 2400 (G2400)/9663(G9663)/5985 (G1710) 12302 (G4822)/14994 (G14994)/5985 (G1710) | 12.1/7.4/6.1 18.2/16.6/5.8 |
China | 2012–13 2013–19 | 920 259 | 2318 (G11352)/1866 (G1866)/4846 (G1933) 5308 (G5308)/7554 (G5308)/3356 (G2160)/270 (G809)/4539 (G10799) | 3.6/2.7/2.0 8.5/6.6/2.2/2.7/2.7 |
Russia | 2013 2018 | 142 151 | 807 (G51)/1152 (G387)/5941 (G51) 228 (G228)/14942 (G14942)/807 (G51) | 11.3/6.3/4.2 14.6/5.3/4.6 |
The US | 2014–16 2015–17 2018 | 649 399 1479 | 3935 (G4822)/8241 (G4822)/1407 (G1407) 3935 (G4822)/3169 (G225)/7638 (G7638)/8241 (G4822) 9918 (G9918)/11461 (G11461)/3935 (G4822) | 5.3/3.4/3.2 7.3/4.8/3.8/3.0 3.6/2.6/2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. Int. J. Mol. Sci. 2022, 23, 10499. https://doi.org/10.3390/ijms231810499
Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. International Journal of Molecular Sciences. 2022; 23(18):10499. https://doi.org/10.3390/ijms231810499
Chicago/Turabian StyleMlynarczyk-Bonikowska, Beata, Cezary Kowalewski, Aneta Krolak-Ulinska, and Wojciech Marusza. 2022. "Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae" International Journal of Molecular Sciences 23, no. 18: 10499. https://doi.org/10.3390/ijms231810499
APA StyleMlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., & Marusza, W. (2022). Molecular Mechanisms of Drug Resistance and Epidemiology of Multidrug-Resistant Variants of Neisseria gonorrhoeae. International Journal of Molecular Sciences, 23(18), 10499. https://doi.org/10.3390/ijms231810499