The Association between Clusterin Sialylation Degree and Levels of Oxidative–Antioxidant Balance Markers in Seminal Plasmas and Blood Sera of Male Partners with Abnormal Sperm Parameters
Abstract
:1. Introduction
2. Results
2.1. Sialic Acids Expression in the Glycans of Serum and Seminal Plasma Clusterin
2.2. The Comparison of Sialylation Profile in the Seminal Plasma and Blood Serum
2.3. SIRTs Concentrations
2.4. TAS Measurement
2.5. FRAP Determination
2.6. ROC Curves Analysis
2.7. Cluster Analysis
2.8. Relationships between the Group Classification of Patients vs. Seminal Plasma and Serum Parameters
3. Discussion
3.1. Clusterin Concentration
3.2. Sialic Acids Expression in the Glycans of Seminal Plasma and Blood Serum Clusterin
3.3. SIRTs Concentrations
3.4. TAS Measurement
3.5. FRAP Determination
3.6. ROC Curve Analysis
3.7. Cluster Analysis
3.8. The Relationships between the Selected Markers and Classifying Patients into Study Groups
4. Materials and Methods
4.1. Patient Samples
4.2. Methods
4.2.1. Clusterin Concentration
4.2.2. Determination of Sialic Acid Expression in the Seminal Plasma and Blood Serum Clusterin Glycans
4.2.3. Lectin-ELISA Procedure
ELISA-Plate Coating
Sample Dilution
Lectin-SA Interactions
The Detection Clusterin–Lectin Complexes
4.2.4. SIRTs Concentration
4.2.5. Total Antioxidant Capacity Assessment
Total Antioxidant Status Measurement
Ferric Reducing Antioxidant Power Assessment
4.2.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGP | α1-acid glycoprotein |
ApoJ | apolipoprotein J |
AT | asthenoteratozoospermia |
ATP | adenosine triphosphate |
AUC | area under the curve |
BMI | body mass index |
BS | blood serum |
BSA | bovine serum albumin |
CAT | catalase |
CaCl2 | calcium dichloride |
CLU | clusterin |
CV | coefficients of variations |
DNA | deoxyribonucleic acid |
ELISA | Enzyme-Linked Immunosorbent Assay |
Fe2+ | ferrous iron |
Fe3+ | ferric ion |
FeCl3 × 6H2O | ferric chloride hexahydrate |
FeSO4 | ferrous sulfate |
FRAP | ferric reducing antioxidant power |
FRAPPL | seminal plasma ferric reducing antioxidant power |
FRAPS | serum ferric reducing antioxidant power |
Gal | galactose |
GPX | glutathione peroxidase |
HCl | hydrochloric acid |
IQR | interquartile range |
Lea | Lewisa oligosaccharide structure |
Leb | Lewisb oligosaccharide structure |
Lex | Lewisx oligosaccharide structure |
Ley | Lewisy oligosaccharide structure |
MAA | Maackia amurensis agglutinin |
MAAPL | relative reactivity of seminal plasma CLU glycans with Maackia amurensis agglutinin |
MAAPL/SNAPL | seminal plasma sialylation ratio |
MAAS | relative reactivity of serum CLU glycans with Maackia amurensis agglutinin |
MAAS/SNAS | serum sialylation ratio |
MgCl2 × 6H2O | magnesium dichloride hexahydrate |
MnCl2 × 4H2O | manganese(II) chloride tetrahydrate |
mRNA | messenger RNA |
mtDNA | mitochondrial DNA |
N | normozoospermia |
NAD+ | nicotinamide adenine dinucleotide |
Neu5Ac/NANA | N-acetylneuraminic acid |
OAT | oligoasthenoteratozoospermia |
OS | oxidative stress |
PGC-1α | peroxisome proliferator-activated receptor γ coactivator 1α |
RNA | ribonucleic acid |
ROC | receiver operating characteristics |
ROS | reactive oxygen species |
SA | sialic acid |
SIRT3 | sirtuin-3 |
SIRT3PL | seminal plasma SIRT3 concentration |
SIRT3S | serum SIRT3 concentration |
SIRT5 | sirtuin-5 |
SIRT5PL | seminal plasma SIRT5 concentration |
SIRT5S | serum SIRT5 concentration |
SIRTs | sirtuins |
SNA | Sambucus nigra agglutinin |
SNAPL | relative reactivity of seminal plasma CLU glycans with Sambucus nigra agglutinin |
SNAS | relative reactivity of serum CLU glycans with Sambucus nigra agglutinin |
SOD | superoxidase dismutase |
SP | seminal plasma |
T | teratozoospermia |
TAC | total antioxidant capacity |
TAS | total antioxidant status |
TASPL | seminal plasma total antioxidant status |
TASS | serum total antioxidant status |
TBS | Tris-buffered saline |
TPTZ | 2,4,6-tripyridyl-s-triazine |
WHO | World Health Organization |
References
- Zegers-Hochschild, F.; Adamson, G.D.; De Mouzon, J.; Ishihara, O.; Mansour, R.; Nygren, K.; Sullivan, E.; Van Der Poel, S. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum. Reprod. 2009, 24, 2683–2687. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.A.; Rambhatla, A.; Schon, S.; Agarwal, A.; Krawetz, S.A.; Dupree, J.M.; Avidor-Reiss, T. Male Infertility is a Women’s Health Issue-Research and Clinical Evaluation of Male Infertility Is Needed. Cells 2020, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Swerdloff, R.S. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil. Steril. 2014, 102, 1502–1507. [Google Scholar] [CrossRef]
- Patel, Z.P.; Niederberger, C.S. Male factor assessment in infertility. Med. Clin. N. Am. 2011, 95, 223–234. [Google Scholar] [CrossRef]
- Esteves, S.C.; Miyaoka, R.; Agarwal, A. An update on the clinical assessment of the infertile male. Clinics 2011, 66, 691–700. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Lanzafame, F.; La Vignera, S.; Vicari, E.; Calogero, A.E. Oxidative stress and medical antioxidant treatment in male infertility. Reprod. Biomed. Online 2009, 19, 638–659. [Google Scholar] [CrossRef]
- De Lamirande, E.; O’Flaherty, C. Sperm activation: Role of reactive oxygen species and kinases. Biochim. Biophys. Acta Proteins Proteom. 2008, 1784, 106–115. [Google Scholar] [CrossRef]
- Bisht, S.; Faiq, M.; Tolahunase, M.; Dada, R. Oxidative stress and male infertility. Nat. Rev. Urol. 2017, 14, 470–485. [Google Scholar] [CrossRef]
- Alahmar, A. Role of oxidative stress in male infertility: An updated review. J. Hum. Reprod. Sci. 2019, 12, 4–18. [Google Scholar] [CrossRef]
- Kratz, E.M.; Kałuza, A.; Ferens-Sieczkowska, M.; Olejnik, B.; Fiutek, R.; Zimmer, M.; Piwowar, A. Gelatinases and their tissue inhibitors are associated with oxidative stress: A potential set of markers connected with male infertility. Reprod. Fertil. Dev. 2016, 28, 1029–1037. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, H.X.; Huang, X.F.; Chen, G.W.; Yang, Z.X.; Sun, W.J.; Tao, M.H.; Yuan, Y.; Wu, J.Q.; Sun, F.; et al. Does high load of oxidants in human semen contribute to male factor infertility? Antioxidants Redox Signal. 2012, 16, 754–759. [Google Scholar] [CrossRef]
- Kratz, E.M.; Piwowar, A. Melatonin, advanced oxidation protein products and total antioxidant capacity as seminal parameters of prooxidant-antioxidant balance and their connection with expression of metalloproteinases in context of male fertility. J. Physiol. Pharmacol. 2017, 68, 659–668. [Google Scholar]
- Takeshima, T.; Usui, K.; Mori, K.; Asai, T.; Yasuda, K.; Kuroda, S.; Yumura, Y. Oxidative stress and male infertility. Reprod. Med. Biol. 2021, 20, 41–52. [Google Scholar] [CrossRef]
- Kratz, E.M.; Achcińska, M.K. Molecular mechanisms of fertilization: The role of male factor. Postepy Hig. Med. Dosw. 2011, 65, 784–795. [Google Scholar] [CrossRef]
- Duncan, M.W.; Thompson, H.S. Proteomics of semen and its constituents. Proteom. Clin. Appl. 2007, 1, 861–875. [Google Scholar] [CrossRef]
- Amaral, A.; Castillo, J.; Ramalho-Santos, J.; Oliva, R. The combined human sperm proteome: Cellular pathways and implications for basic and clinical science. Hum. Reprod. Update 2014, 20, 40–62. [Google Scholar] [CrossRef]
- Milardi, D.; Grande, G.; Vincenzoni, F.; Messana, I.; Pontecorvi, A.; De Marinis, L.; Castagnola, M.; Marana, R. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil. Steril. 2012, 97, 67–73. [Google Scholar] [CrossRef]
- Blaschuk, O.; Burdzy, K.; Fritz, I.B. Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. J. Biol. Chem. 1983, 258, 7714–7720. [Google Scholar] [CrossRef]
- Wang, Z.; Widgren, E.E.; Richardson, R.T.; O’Rand, M.G. Characterization of an eppin protein complex from human semen and spermatozoa. Biol. Reprod. 2007, 77, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Merlotti, A.; Dantas, E.; Remes Lenicov, F.; Ceballos, A.; Jancic, C.; Varese, A.; Rubione, J.; Stover, S.; Geffner, J.; Sabatté, J. Fucosylated clusterin in semen promotes the uptake of stress-damaged proteins by dendritic cells via DC-SIGN. Hum. Reprod. 2015, 30, 1545–1556. [Google Scholar] [CrossRef]
- Moldenhauer, L.M.; Diener, K.R.; Thring, D.M.; Brown, M.P.; Hayball, J.D.; Robertson, S.A. Cross-Presentation of Male Seminal Fluid Antigens Elicits T Cell Activation to Initiate the Female Immune Response to Pregnancy. J. Immunol. 2009, 182, 8080–8093. [Google Scholar] [CrossRef]
- Robertson, S.A.; Prins, J.R.; Sharkey, D.J.; Moldenhauer, L.M. Seminal Fluid and the Generation of Regulatory T Cells for Embryo Implantation. Am. J. Reprod. Immunol. 2013, 69, 315–330. [Google Scholar] [CrossRef]
- Saraswat, M.; Joenväärä, S.; Tomar, A.K.; Singh, S.; Yadav, S.; Renkonen, R. N-Glycoproteomics of Human Seminal Plasma Glycoproteins. J. Proteome Res. 2016, 15, 991–1001. [Google Scholar] [CrossRef]
- Kratz, E.M.; Faundez, R.; Kątnik-Prastowska, I. Fucose and sialic acid expressions in human seminal fibronectin and α 1-acid glycoprotein associated with leukocytospermia of infertile men. Dis. Markers 2011, 31, 317–325. [Google Scholar] [CrossRef]
- Kątnik-Prastowska, I. Structure and Biology of Sialic Acids. Clin. Exp. Med 2003, 12, 653–663. [Google Scholar]
- Rohne, P.; Prochnow, H.; Wolf, S.; Renner, B.; Koch-Brandt, C. The chaperone activity of clusterin is dependent on glycosylation and redox environment. Cell. Physiol. Biochem. 2014, 34, 1626–1639. [Google Scholar] [CrossRef]
- Trougakos, I.P. The molecular chaperone apolipoprotein J/Clusterin as a sensor of oxidative stress: Implications in therapeutic approaches—A mini-review. Gerontology 2013, 59, 514–523. [Google Scholar] [CrossRef]
- Kratz, E.M.; Sołkiewicz, K.; Kubis-Kubiak, A.; Piwowar, A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int. J. Mol. Sci. 2021, 22, 630. [Google Scholar] [CrossRef]
- Kratz, E.M.; Sołkiewicz, K.; Kaczmarek, A.; Piwowar, A. Sirtuins: Enzymes with multidirectional catalytic activity. Postepy Hig. Med. Dosw. 2021, 75, 152–174. [Google Scholar] [CrossRef]
- Cheng, Y.; Ren, X.; Gowda, A.S.P.; Shan, Y.; Zhang, L.; Yuan, Y.S.; Patel, R.; Wu, H.; Huber-Keener, K.; Yang, J.W.; et al. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 2013, 4, e731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kupis, W.; Pałyga, J.; Tomal, E.; Niewiadomska, E. The role of sirtuins in cellular homeostasis. J. Physiol. Biochem. 2016, 72, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, W.; Sikora, E.; Bielak-Zmijewska, A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 2017, 18, 447–476. [Google Scholar] [CrossRef]
- Du, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; et al. Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science 2011, 334, 806–809. [Google Scholar] [CrossRef]
- Liang, F.; Wang, X.; Ow, S.H.; Chen, W.; Ong, W.C. Sirtuin 5 is Anti-apoptotic and Anti-oxidative in Cultured SH-EP Neuroblastoma Cells. Neurotox. Res. 2017, 31, 63–76. [Google Scholar] [CrossRef]
- Bossuyt, X. Clinical performance characteristics of a laboratory test. A practical approach in the autoimmune laboratory. Autoimmun. Rev. 2009, 8, 543–548. [Google Scholar] [CrossRef]
- Janiszewska, E.; Kokot, I.; Gilowska, I.; Faundez, R.; Kratz, E.M. The possible association of clusterin fucosylation changes with male fertility disorders. Sci. Rep. 2021, 11, 15674. [Google Scholar] [CrossRef]
- WHO World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization, Department of Reproductive Health and Research: Geneva, Switzerland, 2010. [Google Scholar]
- Kratz, E.; Poland, D.C.W.; Van Dijk, W.; Kątnik-Prastowska, I. Alterations of branching and differential expression of sialic acid on alpha-1-acid glycoprotein in human seminal plasma. Clin. Chim. Acta 2003, 331, 87–95. [Google Scholar] [CrossRef]
- Kratz, E.M.; Kałuża, A.; Zimmer, M.; Ferens-Sieczkowska, M. The analysis of sialylation, N -glycan branching, and expression of O -glycans in seminal plasma of infertile men. Dis. Markers 2015, 2015, 16–18. [Google Scholar] [CrossRef]
- Stockert, R.J.; Gartner, U.; Morell, A.G.; Wolkoff, A.W. Effects of receptor-specific antibody on the uptake of desialylated glycoproteins in the isolated perfused rat liver. J. Biol. Chem. 1980, 255, 3830–3831. [Google Scholar] [CrossRef]
- Ghosh, P.; Lakshman, R.; Hale, E.A. Loss of Sialic Acid from Apolipoprotein J as an Indicator of ALCOHOL intake and/or Alcohol Related Liver Damage. U.S. Patent No. 6,498,038, 24 December 2002. pp. 2–3. [Google Scholar]
- Javors, M.A.; Johnson, B.A. Current status of carbohydrate deficient transferrin, total serum sialic acid, sialic acid index of apolipoprotein J and serum β-hexosaminidase as markers for alcohol consumption. Addiction 2003, 98, 45–50. [Google Scholar] [CrossRef]
- Ghosh, P.; Liu, Q.H.; Lakshman, M.R. Long-term ethanol exposure impairs glycosylation of both N- and O-glycosylated proteins in rat liver. Metabolism 1995, 44, 890–898. [Google Scholar] [CrossRef]
- Hale, E.A.; Raza, S.K.; Ciecierski, R.G.; Ghosh, P. Deleterious actions of chronic ethanol treatment on the glycosylation of rat brain clusterin. Brain Res. 1998, 785, 158–166. [Google Scholar] [CrossRef]
- Kałuża, A.; Ferens-Sieczkowska, M.; Olejnik, B.; Kołodziejczyk, J.; Zimmer, M.; Kratz, E.M. The content of immunomodulatory glycoepitopes in seminal plasma glycoproteins of fertile and infertile men. Reprod. Fertil. Dev. 2019, 31, 579–589. [Google Scholar] [CrossRef]
- Rosenior, J.; Tung, P.S.; Fritz, I.B. Biosynthesis and Secretion of Clusterin by Ram Rete Testis Cell-Enriched Preparations in Culture. Biol. Reprod. 1987, 36, 1313–1320. [Google Scholar] [CrossRef]
- Nasiri, A.; Vaisi-Raygani, A.; Rahimi, Z.; Bakhtiari, M.; Bahrehmand, F.; Kiani, A.; Mozafari, H.; Pourmotabbed, T. Evaluation of the relationship among the levels of SIRT1 and SIRT3 with oxidative stress and DNA fragmentation in asthenoteratozoospermic men. Int. J. Fertil. Steril. 2021, 15, 135–140. [Google Scholar] [CrossRef]
- Bello, J.H.; Khan, M.J.; Amir, S.; Kakakhel, H.G.; Tahir, F.; Sultan, S.; Raza, S.Q.; Mamoulakis, C.; Zachariou, A.; Tsatsakis, A.; et al. Dysregulation of mitochondrial sirtuin genes is associated with human male infertility. Andrologia 2021, 54, e14274. [Google Scholar] [CrossRef]
- Rato, L.; Duarte, A.I.; Tomás, G.D.; Santos, M.S.; Moreira, P.I.; Socorro, S.; Cavaco, J.E.; Alves, M.G.; Oliveira, P.F. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim. Biophys. Acta Bioenerg. 2014, 1837, 335–344. [Google Scholar] [CrossRef]
- Tatone, C.; di Emidio, G.; Barbonetti, A.; Carta, G.; Luciano, A.M.; Falone, S.; Amicarelli, F. Sirtuins in gamete biology and reproductive physiology: Emerging roles and therapeutic potential in female and male infertility. Hum. Reprod. Update 2018, 24, 267–289. [Google Scholar] [CrossRef]
- Di Emidio, G.; Falone, S.; Artini, P.G.; Amicarelli, F.; D’alessandro, A.M.; Tatone, C. Mitochondrial sirtuins in reproduction. Antioxidants 2021, 10, 1047. [Google Scholar] [CrossRef]
- Kratz, E.M.; Zurawska-Plaksej, E.; Solkiewicz, K.; Kokot, I.; Faundez, R.; Piwowar, A. Investigation of seminal plasma chitotriosidase-1 and leukocyte elastase as potential markers for ‘silent’ inflammation of the reproductive tract of the infertile male—A pilot study. J. Physiol. Pharmacol. 2020, 71, 1–7. [Google Scholar] [CrossRef]
- Khosrowbeygi, A.; Zarghami, N. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters. BMC Clin. Pathol. 2007, 7, 6. [Google Scholar] [CrossRef]
- Hosen, M.B.; Islam, M.R.; Begum, F.; Kabir, Y.; Howlader, M.Z.H. Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iran. J. Reprod. Med. 2015, 13, 525–532. [Google Scholar]
- Ozer, O.F.; Akbulut, H.; Guler, E.M.; Caglar, H.G.; Gevher, F.; Koktasoglu, F.; Selek, S. Oxidative stress and phenotype frequencies of paraoxonase-1 in teratozoospermia. Andrologia 2019, 51, e13299. [Google Scholar] [CrossRef]
- Fatima, S.; Alwaznah, R.; Aljuraiban, G.S.; Wasi, S.; Abudawood, M.; Abulmeaty, M.; Berika, M.Y.; Aljaser, F.S. Effect of seminal redox status on lipid peroxidation, apoptosis and DNA fragmentation in spermatozoa of infertile Saudi males. Saudi Med. J. 2020, 41, 238–246. [Google Scholar] [CrossRef]
- Emokpae, M.A.; Nwaogu, A.; Urephu, E. Lipid Peroxidation Index Correlates with Sperm Indices in Oligospermic Male Subjects in Benin City, Nigeria. Br. J. Med. Health Res. 2020, 7, 24–32. [Google Scholar] [CrossRef]
- Gumus, K.; Gulum, M.; Yeni, E.; Ciftci, H.; Akin, Y.; Huri, E.; Çelik, H.; Erel, Ö. Effects of psychological status on the oxidation parameters of semen and blood in azoospermic men. Urol. J. 2019, 16, 295–299. [Google Scholar] [CrossRef]
- Fingerova, H.; Novotny, J.; Barborik, J.; Brezinova, J.; Svobodova, M.; Krskova, M.; Oborna, I. Antioxidant capacity of seminal plasma measured by TAS Randox. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2007, 151, 37–40. [Google Scholar] [CrossRef]
- Aktan, G.; Doǧru-Abbasoǧlu, S.; Küçükgergin, C.; Kadioǧlu, A.; Özdemirler-Erata, G.; Koçak-Toker, N. Mystery of idiopathic male infertility: Is oxidative stress an actual risk? Fertil. Steril. 2013, 99, 1211–1215. [Google Scholar] [CrossRef]
- Kratz, E.M.; Piwowar, A.; Zeman, M.; Stebelová, K.; Thalhammer, T. Decreased melatonin levels and increased levels of advanced oxidation protein products in the seminal plasma are related to male infertility. Reprod. Fertil. Dev. 2016, 28, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, S.J.; Al-Ali, I.A.; Hassan, T.A.A.; Qassim, A.M. Correlation of nerve growth factor with antioxidants and sperm parameters among Iraqi infertile males. Int. J. Res. Pharm. Sci. 2019, 10, 1307–1313. [Google Scholar] [CrossRef]
- Pahune, P.P.; Choudhari, A.R.; Muley, P.A. The total antioxidant power of semen and its correlation with the fertility potential of human male subjects. J. Clin. Diagn. Res. 2013, 7, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Colagar, A.H.; Karimi, F.; Jorsaraei, S.G.A. Correlation of sperm parameters with semen lipid peroxidation and total antioxidants levels in astheno- and oligoasheno- teratospermic men. Iran. Red Crescent Med. J. 2013, 15, 780–785. [Google Scholar] [CrossRef]
- Gholinezhad, M.; Aliarab, A.; Abbaszadeh-Goudarzi, G.; Yousefnia-Pasha, Y.; Samadaian, N.; Rasolpour-Roshan, K.; Aghagolzadeh-Haji, H.; Mohammadoo-Khorasani, M. Nitric oxide, 8-hydroxydeoxyguanosine, and total antioxidant capacity in human seminal plasma of infertile men and their relationship with sperm parameters. Clin. Exp. Reprod. Med. 2020, 47, 54–60. [Google Scholar] [CrossRef]
- Fazeli, F.; Salimi, S. Correlation of Seminal Plasma Total Antioxidant Capacity and Malondialdehyde Levels With Sperm Parameters in Men With Idiopathic Infertility. Avicenna J. Med. Biochem. 2016, 4, e29736. [Google Scholar] [CrossRef]
- Donatus, O.C.; Chukwuemeka, M.S.; Kester, N.; Ifeanyichukwu, J.; Emmanuel, D.C.; Ugochukwu, O. Comparison of serum oxidative stress markers among male partners of fertile and infertile couple at Nnamdi Azikiwe University Teaching Hospital, Nnewi, Anambra State, Nigeria. J. Sci. Innov. Res. 2017, 6, 126–128. [Google Scholar] [CrossRef]
- Rao, P.V.L.N.S.; Kiranmayi, V.S.; Swathi, P.; Jeyseelan, L.; Suchitra, M.M.; Bitla, A.R. Comparison Of Two Analytical Methods Used For The Measurement Of Total Antioxidant Status. J. Antioxid. Act. 2015, 1, 22–28. [Google Scholar] [CrossRef]
- Xie, Y.; Sheng, Y.; Li, Q.; Ju, S.; Reyes, J.; Lebrilla, C.B. Determination of the glycoprotein specificity of lectins on cell membranes through oxidative proteomics. Chem. Sci. 2020, 11, 9501–9512. [Google Scholar] [CrossRef]
- Kokot, I.; Piwowar, A.; Jędryka, M.; Kratz, E.M. Is There a Balance in Oxidative-Antioxidant Status in Blood Serum of Patients with Advanced Endometriosis? Antioxidants 2021, 10, 1097. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
Parameter | AT nPL = 22 nS = 15 Median (IQR) | N nPL = 43 nS = 18 Median (IQR) | OAT nPL = 29 nS = 27 Median (IQR) | T nPL = 38 nS = 31 Median (IQR) |
---|---|---|---|---|
SNAPL (AU) | 0.203 (0.148–0.244) | 0.199 (0.132–0.296) | 0.184 (0.133–0.299) | 0.202 (0.114–0.266) |
MAAPL (AU) | 0.933 (0.226–1.680) | 0.376 ♦ (0.177–1.348) | 0.171 †* (0.098–0.214) | 0.740 (0.354–1.476) |
MAAPL/SNAPL | 4.455 (1.256–7.423) | 1.731 (0.460–4.634) | 0.756 †* (0.377–1.513) | 3.781 (1.436–8.082) |
SIRT3PL (ng/mL) | 10.90 †♦ (9.23–12.32) | 9.35 †♦ (5.68–11.11) | 2.11 (1.76–2.42) | 2.64 (2.11–3.67) |
SIRT5PL (ng/mL) | 5.72 (4.72–8.31) | 7.28 ♦ (1.67–7.97) | 1.34 †* (1.17–1.49) | 6.89 (1.38–7.72) |
TASPL (mM) | 1.79 (1.59–1.99) | 1.71 (1.54–1.97) | 1.70 (1.51–1.93) | 1.72 (1.55–1.85) |
FRAPPL (mM) | 3.68 (3.27–4.14) | 3.65 (2.85–4.37) | 3.04 (2.45–3.81) | 3.72 (2.93–4.40) |
SNAS (AU) | 0.412 (0.366–0.477) | 0.881 †*♦ (0.630–1.140) | 0.495 (0.368–0.613) | 0.428 (0.356–0.525) |
MAAS (AU) | 0.016 (0.002–0.074) | 0.081 (0.054–0.106) | 0.020 (0.002–0.086) | 0.035 (0.004–0.072) |
MAAS/SNAS | 0.034 (0.005–0.152) | 0.081 (0.064–0.122) | 0.036 (0.005–0.167) | 0.085 (0.012–0.159) |
SIRT3S (ng/mL) | 8.94 (6.58–19.15) | 2.73 *♦ (1.61–7.35) | 6.27 (5.54–15.07) | 5.93 (4.29–11.53) |
SIRT5S (ng/mL) | 2.25 (2.06–3.22) | 2.01 (1.39–2.53) | 2.02 (1.84–4.11) | 2.05 (1.61–3.27) |
TASS (mM) | 1.37 (1.26–1.82) | 1.54 (1.42–1.70) | 1.40 (1.32–1.52) | 1.38 (1.29–1.75) |
FRAPS (mM) | 1.20 (1.00–1.35) | 1.49 * (1.43–1.59) | 1.33 (1.10–1.55) | 1.38 (1.22–1.56) |
Parameter | Compared Groups | AUC | AUC with 95% Confidence Interval | Cut Off Point | Sensitivity | Specificity | p | |
---|---|---|---|---|---|---|---|---|
SNAPL | AT | vs. N | 0.489 | 0.319–0.658 | 0.140 | 0.833 | 0.310 | 0.894 |
OAT | vs. N | 0.512 | 0.361–0.662 | 0.155 | 0.690 | 0.310 | 0.877 | |
T | vs. N | 0.479 | 0.333–0.624 | 0.165 | 0.676 | 0.414 | 0.774 | |
AT | vs. T | 0.504 | 0.342–0.667 | 0.12 | 0.889 | 0.265 | 0.961 | |
OAT | vs. T | 0.487 | 0.341–0.633 | 0.155 | 0.414 | 0.735 | 0.859 | |
OAT | vs. AT | 0.503 | 0.333–0.673 | 0.147 | 0.379 | 0.722 | 0.974 | |
MAAPL | AT | vs. N | 0.611 | 0.446–0.776 | 0.911 | 0.556 | 0.690 | 0.186 |
OAT | vs. N | 0.715 | 0.571–0.858 | 0.224 | 0.793 | 0.724 | 0.003 | |
T | vs. N | 0.375 | 0.229–0.521 | 2.111 | 1.000 | 0.103 | 0.094 | |
AT | vs. T | 0.484 | 0.303–0.666 | 0.226 | 0.278 | 0.912 | 0.867 | |
OAT | vs. T | 0.890 | 0.802–0.979 | 0.224 | 0.793 | 0.912 | 0.000 | |
OAT | vs AT | 0.883 | 0.786–0.980 | 0.214 | 0.759 | 0.944 | 0.000 | |
MAAPL/SNAPL | AT | vs. N | 0.632 | 0.473–0.792 | 0.837 | 1.000 | 0.345 | 0.104 |
OAT | vs. N | 0.671 | 0.531–0.811 | 1.545 | 0.793 | 0.552 | 0.017 | |
T | vs. N | 0.639 | 0.495–0.782 | 3.285 | 0.588 | 0.724 | 0.058 | |
AT | vs. T | 0.513 | 0.348–0.679 | 6.000 | 0.444 | 0.706 | 0.877 | |
OAT | vs. T | 0.836 | 0.738–0.934 | 2.033 | 0.897 | 0.676 | 0.000 | |
OAT | vs. AT | 0.837 | 0.724–0.950 | 0.824 | 0.552 | 1.000 | 0.000 | |
SIRT3PL | AT | vs. N | 0.624 | 0.472–0.776 | 10.859 | 0.636 | 0.649 | 0.110 |
OAT | vs. N | 0.951 | 0.905–0.996 | 2.500 | 0.821 | 0.946 | 0.000 | |
T | vs. N | 0.887 | 0.810–0.965 | 4.645 | 1.000 | 0.757 | 0.000 | |
AT | vs. T | 0.906 | 0.813–0.999 | 8.604 | 0.818 | 1.000 | 0.000 | |
OAT | vs. T | 0.646 | 0.500–0.791 | 2.500 | 0.821 | 0.533 | 0.050 | |
OAT | vs. AT | 0.948 | 0.882–1.000 | 7.985 | 1.000 | 0.818 | 0.000 | |
SIRT5PL | AT | vs. N | 0.491 | 0.330–0.653 | 5.840 | 0.324 | 0.455 | 0.917 |
OAT | vs. N | 0.812 | 0.698–0.926 | 2.084 | 0.964 | 0.730 | 0.000 | |
T | vs. N | 0.543 | 0.409–0.677 | 7.728 | 0.778 | 0.351 | 0.527 | |
AT | vs. T | 0.460 | 0.302–0.617 | 5.840 | 0.545 | 0.639 | 0.616 | |
OAT | vs. T | 0.759 | 0.631–0.887 | 2.084 | 0.964 | 0.694 | 0.000 | |
OAT | vs. AT | 0.916 | 0.829–1.000 | 2.084 | 0.964 | 0.818 | 0.000 | |
TASPL | AT | vs. N | 0.559 | 0.409–0.708 | 1.56 | 0.909 | 0.324 | 0.440 |
OAT | vs. N | 0.523 | 0.370–0.676 | 1.98 | 0.875 | 0.235 | 0.765 | |
T | vs. N | 0.455 | 0.316–0.594 | 1.62 | 0.694 | 0.382 | 0.525 | |
AT | vs. T | 0.618 | 0.468–0.768 | 1.53 | 1.000 | 0.250 | 0.124 | |
OAT | vs. T | 0.466 | 0.308–0.624 | 1.38 | 0.167 | 0.972 | 0.671 | |
OAT | vs. AT | 0.580 | 0.412–0.747 | 1.52 | 0.292 | 1.000 | 0.352 | |
FRAPPL | AT | vs. N | 0.509 | 0.365–0.653 | 3.393 | 0.727 | 0.442 | 0.902 |
OAT | vs. N | 0.629 | 0.498–0.759 | 3.141 | 0.586 | 0.698 | 0.054 | |
T | vs. N | 0.497 | 0.369–0.626 | 2.251 | 0.972 | 0.116 | 0.969 | |
AT | vs. T | 0.495 | 0.344–0.646 | 3.393 | 0.727 | 0.417 | 0.948 | |
OAT | vs. T | 0.641 | 0.505–0.778 | 3.678 | 0.724 | 0.528 | 0.043 | |
OAT | vs. AT | 0.345 | 0.192–0.497 | 4.585 | 0.103 | 0.955 | 0.046 |
Parameter | Compared Groups | AUC | AUC with 95% Confidence Interval | Cut Off Point | Sensitivity | Specificity | p | |
---|---|---|---|---|---|---|---|---|
SNAS | AT | vs. N | 0.892 | 0.774–1.000 | 0.609 | 0.867 | 0.813 | 0.000 |
OAT | vs. N | 0.837 | 0.703–0.971 | 0.694 | 0.889 | 0.688 | 0.000 | |
T | vs. N | 0.872 | 0.748–0.996 | 0.591 | 0.871 | 0.813 | 0.000 | |
AT | vs. T | 0.549 | 0.367–0.732 | 0.477 | 0.800 | 0.419 | 0.600 | |
OAT | vs. T | 0.575 | 0.423–0.728 | 0.532 | 0.444 | 0.774 | 0.334 | |
OAT | vs. AT | 0.615 | 0.436–0.794 | 0.437 | 0.667 | 0.667 | 0.208 | |
MAAS | AT | vs. N | 0.756 | 0.582–0.930 | 0.023 | 0.600 | 0.875 | 0.004 |
OAT | vs. N | 0.650 | 0.480–0.821 | 0.024 | 0.556 | 0.875 | 0.083 | |
T | vs. N | 0.716 | 0.551–0.880 | 0.035 | 0.516 | 0.875 | 0.010 | |
AT | vs. T | 0.544 | 0.364–0.724 | 0.023 | 0.600 | 0.613 | 0.632 | |
OAT | vs. T | 0.481 | 0.327–0.636 | 0.024 | 0.556 | 0.581 | 0.814 | |
OAT | vs. AT | 0.556 | 0.379–0.732 | 0.105 | 0.222 | 1.000 | 0.537 | |
MAAS/SNAS | AT | vs. N | 0.577 | 0.355–0.799 | 0.055 | 0.600 | 0.813 | 0.496 |
OAT | vs. N | 0.534 | 0.356–0.711 | 0.036 | 0.519 | 0.875 | 0.711 | |
T | vs. N | 0.510 | 0.341–0.679 | 0.138 | 0.355 | 0.938 | 0.907 | |
AT | vs. T | 0.546 | 0.372–0.720 | 0.055 | 0.600 | 0.548 | 0.602 | |
OAT | vs. T | 0.514 | 0.363–0.666 | 0.036 | 0.519 | 0.581 | 0.853 | |
OAT | vs. AT | 0.522 | 0.343–0.701 | 0.02 | 0.741 | 0.400 | 0.808 | |
SIRT3S | AT | vs. N | 0.830 | 0.690–0.969 | 4.979 | 1.000 | 0.611 | 0.000 |
OAT | vs. N | 0.761 | 0.605–0.918 | 5.000 | 1.000 | 0.611 | 0.001 | |
T | vs. N | 0.699 | 0.535–0.863 | 3.647 | 0.871 | 0.611 | 0.018 | |
AT | vs. T | 0.740 | 0.595–0.884 | 6.044 | 0.933 | 0.516 | 0.001 | |
OAT | vs. T | 0.621 | 0.477–0.765 | 5.000 | 1.000 | 0.290 | 0.010 | |
OAT | vs. AT | 0.607 | 0.433–0.782 | 6.010 | 0.444 | 0.933 | 0.229 | |
SIRT5S | AT | vs. N | 0.663 | 0.476–0.850 | 2.035 | 0.867 | 0.500 | 0.088 |
OAT | vs. N | 0.382 | 0.207–0.556 | 2.063 | 0.593 | 0.500 | 0.185 | |
T | vs. N | 0.525 | 0.352–0.698 | 1.414 | 0.871 | 0.278 | 0.776 | |
AT | vs. T | 0.647 | 0.492–0.803 | 1.798 | 1.000 | 0.387 | 0.064 | |
OAT | vs. T | 0.418 | 0.269–0.566 | 2.019 | 0.556 | 0.548 | 0.277 | |
OAT | vs. AT | 0.607 | 0.435–0.780 | 2.019 | 0.556 | 0.867 | 0.221 | |
TASS | AT | vs. N | 0.637 | 0.427–0.847 | 1.38 | 0.600 | 0.833 | 0.200 |
OAT | vs. N | 0.687 | 0.527–0.848 | 1.42 | 0.630 | 0.722 | 0.022 | |
T | vs. N | 0.639 | 0.477–0.801 | 1.38 | 0.581 | 0.833 | 0.094 | |
AT | vs. T | 0.514 | 0.322–0.706 | 1.28 | 0.333 | 0.806 | 0.886 | |
OAT | vs. T | 0.501 | 0.349–0.653 | 1.64 | 0.926 | 0.290 | 0.988 | |
OAT | vs. AT | 0.516 | 0.312–0.720 | 1.30 | 0.852 | 0.333 | 0.878 | |
FRAPS | AT | vs. N | 0.780 | 0.606–0.953 | 1.352 | 0.800 | 0.778 | 0.002 |
OAT | vs. N | 0.644 | 0.477–0.811 | 1.429 | 0.667 | 0.778 | 0.090 | |
T | vs. N | 0.618 | 0.453–0.784 | 1.422 | 0.581 | 0.778 | 0.162 | |
AT | vs. T | 0.701 | 0.531–0.871 | 1.208 | 0.600 | 0.774 | 0.021 | |
OAT | vs. T | 0.566 | 0.410–0.721 | 1.168 | 0.370 | 0.903 | 0.408 | |
OAT | vs. AT | 0.620 | 0.444–0.795 | 1.372 | 0.481 | 0.800 | 0.181 |
Predictor (Parameter) | Group | OR | Low 95% CI | High 95% CI | Wald Statistics | p |
---|---|---|---|---|---|---|
MAAPL (AU) | AT | 1.597 | 0.616 | 4.139 | 0.927 | 0.336 |
MAAPL/SNAPL | 0.947 | 0.838 | 1.070 | 0.773 | 0.379 | |
SIRT3PL (ng/mL) | 1.091 | 0.883 | 1.348 | 0.651 | 0.420 | |
SIRT5PL (ng/mL) | 1.019 | 0.811 | 1.279 | 0.026 | 0.873 | |
MAAPL (AU) | OAT | 1.966 | 0.093 | 41.407 | 0.189 | 0.664 |
MAAPL/SNAPL | 1.106 | 0.620 | 1.971 | 0.116 | 0.733 | |
SIRT3PL (ng/mL) | 0.236 | 0.093 | 0.603 | 9.104 | 0.003 | |
SIRT5PL (ng/mL) | 0.908 | 0.386 | 2.138 | 0.049 | 0.826 | |
MAAPL (AU) | T | 3.565 | 0.335 | 37.896 | 1.111 | 0.292 |
MAAPL/SNAPL | 1.038 | 0.703 | 1.532 | 0.035 | 0.851 | |
SIRT3PL (ng/mL) | 0.234 | 0.104 | 0.529 | 12.211 | <0.001 | |
SIRT5PL (ng/mL) | 2.008 | 1.226 | 3.287 | 7.681 | 0.006 |
Predictor (Parameter) | Group | OR | Low 95% CI | High 95% CI | Wald Statistics | p |
---|---|---|---|---|---|---|
SNAS (AU) | AT | 0.000 | 0.000 | 0.048 | 9.088 | 0.003 |
MAAS (AU) | 2.225 | 0.000 | 6.175 × 1010 | 0.004 | 0.948 | |
SIRT3S (ng/mL) | 1.084 | 0.894 | 1.316 | 0.677 | 0.411 | |
FRAPS (mM) | 0.016 | 0.000 | 0.822 | 4.237 | 0.040 | |
SNAS (AU) | OAT | 0.001 | 0.000 | 0.171 | 7.239 | 0.007 |
MAAS (AU) | 155.638 | 0.000 | 2.225 × 1011 | 0.220 | 0.639 | |
SIRT3S (ng/mL) | 1.101 | 0.909 | 1.334 | 0.967 | 0.326 | |
FRAPS (mM) | 0.205 | 0.007 | 6.049 | 0.843 | 0.359 | |
SNAS (AU) | T | 0.000 | 0.000 | 0.051 | 10.019 | 0.002 |
MAAS (AU) | 3.247 | 0.000 | 3.655 × 109 | 0.012 | 0.912 | |
SIRT3S (ng/mL) | 1.036 | 0.853 | 1.259 | 0.129 | 0.719 | |
FRAPS (mM) | 0.212 | 0.007 | 6.068 | 0.821 | 0.365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janiszewska, E.; Kokot, I.; Kmieciak, A.; Stelmasiak, Z.; Gilowska, I.; Faundez, R.; Kratz, E.M. The Association between Clusterin Sialylation Degree and Levels of Oxidative–Antioxidant Balance Markers in Seminal Plasmas and Blood Sera of Male Partners with Abnormal Sperm Parameters. Int. J. Mol. Sci. 2022, 23, 10598. https://doi.org/10.3390/ijms231810598
Janiszewska E, Kokot I, Kmieciak A, Stelmasiak Z, Gilowska I, Faundez R, Kratz EM. The Association between Clusterin Sialylation Degree and Levels of Oxidative–Antioxidant Balance Markers in Seminal Plasmas and Blood Sera of Male Partners with Abnormal Sperm Parameters. International Journal of Molecular Sciences. 2022; 23(18):10598. https://doi.org/10.3390/ijms231810598
Chicago/Turabian StyleJaniszewska, Ewa, Izabela Kokot, Agnieszka Kmieciak, Zuzanna Stelmasiak, Iwona Gilowska, Ricardo Faundez, and Ewa Maria Kratz. 2022. "The Association between Clusterin Sialylation Degree and Levels of Oxidative–Antioxidant Balance Markers in Seminal Plasmas and Blood Sera of Male Partners with Abnormal Sperm Parameters" International Journal of Molecular Sciences 23, no. 18: 10598. https://doi.org/10.3390/ijms231810598
APA StyleJaniszewska, E., Kokot, I., Kmieciak, A., Stelmasiak, Z., Gilowska, I., Faundez, R., & Kratz, E. M. (2022). The Association between Clusterin Sialylation Degree and Levels of Oxidative–Antioxidant Balance Markers in Seminal Plasmas and Blood Sera of Male Partners with Abnormal Sperm Parameters. International Journal of Molecular Sciences, 23(18), 10598. https://doi.org/10.3390/ijms231810598