Apolipoproteins—New Biomarkers of Overweight and Obesity among Childhood Acute Lymphoblastic Leukemia Survivors?
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Group
2.2. The Comparison of Apolipoprotein Concentrations between ALL Survivors (With Normal and Abnormal Weight) and Control Patients
2.3. The Concentration of Apolipoproteins in ALL Survivors, Taking into Account Gender, Age at Diagnosis, and Radiotherapy
2.4. The Distribution of Apolipoprotein Concentrations in ALL Survivors by Weight Status
2.5. The Analysis of Apolipoprotein Concentrations for the Prediction of the Occurrence of Overweight and Obesity in ALL Survivors
2.6. The Correlation of Apolipoprotein Concentrations with Selected Basic Parameters in ALL Survivors
2.7. The Correlation of Apolipoprotein Concentrations with Selected Treatment-Related Factors in ALL Survivors
3. Discussion
4. Materials and Methods
4.1. Study Population and Anthropometric Measurements of Body Composition
4.2. Blood Collection
4.3. Determination of Triacylglycerol Concentrations
4.4. Determination of the Apolipoprotein Concentrations
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALL | Acute lymphoblastic leukemia |
Apo | Apolipoprotein |
AUC | Area under the curve |
BMI | Body mass index |
BP | Blood pressure |
CCS | Childhood cancer survivors |
CETP | Cholesteryl ester transfer protein |
CRP | C-reactive protein |
CRT | Cranial radiotherapy |
DBP | Diastolic blood pressure |
HDL-C | High-density lipoprotein cholesterol |
HL | Hepatic lipase |
HP | Hypothalamic–pituitary |
HSCT | Hematopoietic stem-cell transplantation |
HT | Hypertension |
LCAT | Lecithin–cholesterol acyltransferase |
LDL-C | Low-density lipoprotein cholesterol |
LPL | Lipoprotein lipase |
LRP | Low-density lipoprotein receptor-related protein |
MetS | Metabolic syndrome |
Non-RT | Non-radiotherapy |
ROC | Receiver operating characteristic |
RT | Radiotherapy |
SA–PE | Streptavidin–phycoerythrin |
SBP | Systolic blood pressure |
SD | Standard deviation |
TAG | Triacylglycerol |
TBI | Total body irradiation |
TRL | Triacylglycerol-rich lipoprotein |
VLDL–TAG | Very-low-density lipoprotein–triacylglycerol |
WHR | Waist–hip ratio |
References
- Ma, H.; Sun, H.; Sun, X. Survival improvement by decade of patients aged 0–14 years with acute lymphoblastic leukemia: A SEER analysis. Sci. Rep. 2014, 4, 4227. [Google Scholar] [CrossRef]
- Tebbi, C.K. Etiology of acute leukemia: A review. Cancers 2021, 13, 2256. [Google Scholar] [CrossRef] [PubMed]
- Tai, E.W.; Ward, K.C.; Bonaventure, A.; Siegel, D.A.; Coleman, M.P. Survival among Children Diagnosed with Acute Lymphoblastic Leukemia in the United States, by Race and Age, 2001 to 2009: Findings from the CONCORD-2 Study. Bull. Cancer 2019, 106, 206–215. [Google Scholar] [CrossRef]
- Brignardello, E.; Felicetti, F.; Castiglione, A.; Chiabotto, P.; Corrias, A.; Fagioli, F.; Ciccone, G.; Boccuzzi, G. Endocrine health conditions in adult survivors of childhood cancer: The need for specialized adult-focused follow-up clinics. Eur. J. Endocrinol. 2013, 168, 465–472. [Google Scholar] [CrossRef]
- Latoch, E.; Konończuk, K.; Konstantynowicz-Nowicka, K.; Muszyńska-Rosłan, K.; Sztolsztener, K.; Chabowski, A.; Krawczuk-Rybak, M. Asymptomatic Survivors of Childhood Acute Lymphoblastic Leukemia Demonstrate a Biological Profile of Inflamm-Aging Early in Life. Cancers 2022, 14, 2522. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Bansal, D.; Bhalla, A.K.; Attri, S.V.; Sachdeva, N.; Trehan, A.; Marwaha, R.K. Is there an increased risk of metabolic syndrome among childhood acute lymphoblastic leukemia survivors? A developing country experience. Pediatr. Hematol. Oncol. 2016, 33, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Essig, S.; Li, Q.; Chen, Y.; Hitzler, J.; Leisenring, W.; Greenberg, M.; Sklar, C.; Hudson, M.M.; Armstrong, G.T.; Krull, K.R.; et al. Estimating the risk for late effects of therapy in children newly diagnosed with standard risk acute lymphoblastic leukemia using an historical cohort: A report from the Childhood Cancer Survivor Study. Lancet Oncol. 2014, 15, 841–851. [Google Scholar] [CrossRef]
- Zhang, F.F.; Kelly, M.J.; Saltzman, E.; Must, A.; Roberts, S.B.; Parsons, S.K. Obesity in pediatric ALL survivors: A meta-analysis. Pediatrics 2014, 133, e704–e715. [Google Scholar] [CrossRef]
- Aktolan, T.; Acar-Tek, N. Prevalence of Obesity/Abdominal Obesity and Related Factors in Pediatric ALL Survivors. J. Am. Coll. Nutr. 2022, 41, 50–56. [Google Scholar] [CrossRef]
- Konończuk, K.; Muszyńska-Rosłan, K.; Konstantynowicz-Nowicka, K.; Krawczuk-Rybak, M.; Chabowski, A.; Latoch, E. Biomarkers of Glucose Metabolism Alterations and the Onset of Metabolic Syndrome in Survivors of Childhood Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2022, 23, 3712. [Google Scholar] [CrossRef]
- Morel, S.; Leahy, J.; Fournier, M.; Lamarche, B.; Garofalo, C.; Grimard, G.; Poulain, F.; Delvin, E.; Laverdière, C.; Krajinovic, M.; et al. Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors. J. Lipid Res. 2017, 58, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Laughton, S.J.; Merchant, T.E.; Sklar, C.A.; Kun, L.E.; Fouladi, M.; Broniscer, A.; Morris, E.B.; Sanders, R.P.; Krasin, M.J.; Shelso, J.; et al. Endocrine Outcomes for Children with Embryonal Brain Tumors after Risk-Adapted Craniospinal and Conformal Primary-Site Irradiation and High-Dose Chemotherapy with Stem-Cell Rescue on the SJMB-96 Trial. J. Clin. Oncol. 2022, 26, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Chemaitilly, W.; Cohen, L.E.; Mostoufi-Moab, S.; Patterson, B.; Simmons, J.; Meacham, L.R.; van Santen, H.M.; Sklar, C.A. Endocrine late effects in childhood cancer survivors. J. Clin. Oncol. 2018, 36, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Lowas, S.R.; Marks, D. Prevalence of Transient Hyperglycemia during Induction Chemotherapy for Pediatric Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 2009, 52, 814–818. [Google Scholar] [CrossRef]
- Krawczuk-Rybak, M.; Panasiuk, A.; Stachowicz-Stencel, T. Health status of Polish children and adolescents after cancer treatment. Eur. J. Pediatr. 2018, 177, 437–447. [Google Scholar] [CrossRef]
- Fulbright, J.M.; Raman, S.; McClellan, W.S.; August, K.J. Late effects of childhood leukemia therapy. Curr. Hematol. Malig. Rep. 2011, 6, 195–205. [Google Scholar] [CrossRef]
- Davidson, M.H. Apolipoprotein measurements: Is more widespread use clinically indicated? Clin. Cardiol. 2009, 32, 482–486. [Google Scholar] [CrossRef]
- Kuliszkiewicz-Janus, M.; Mohamed, A.S.; Abod, N. The biology of HDL lipoprotein and its antisclerotic activity. Adv. Hyg. Exp. Med. 2006, 60, 307–315. [Google Scholar]
- Xu, X.; Song, Z.; Mao, B.; Xu, G. Apolipoprotein A1-Related Proteins and Reverse Cholesterol Transport in Antiatherosclerosis Therapy: Recent Progress and Future Perspectives. Cardiovasc. Ther. 2022, 2022, 4610834. [Google Scholar] [CrossRef]
- Chan, D.C.; Ng, T.W.K.; Watts, G.F. Apolipoprotein A-II: Evaluating its significance in dyslipidaemia, insulin resistance, and atherosclerosis. Ann. Med. 2012, 44, 313–324. [Google Scholar] [CrossRef]
- Larsson, M.; Vorrsjo, E.; Talmud, P.; Lookene, A.; Olivecrona, G. Apolipoproteins C-I and C-III Inhibit Lipoprotein Lipase Activity by Displacement of the Enzyme from Lipid Droplets. J. Biol. Chem. 2013, 288, 33997–34008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jong, M.C.; Voshol, P.J.; Muurling, M.; Dahlmans, V.E.; Romijn, J.A.; Pijl, H.; Havekes, L.M. Protection from Obesity and Insulin Resistance in Mice Overexpressing Human Apolipoprotein C1. Diabetes 2001, 50, 2779–2785. [Google Scholar] [CrossRef] [PubMed]
- Berbée, J.F.P.; Van Der Hoogt, C.C.; Sundararaman, D.; Havekes, L.M.; Rensen, P.C.N. Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. J. Lipid Res. 2005, 46, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Czyzewska, M.; Wolska, A.; Ćwiklińska, A.; Kortas-Stempak, B.; Wróblewska, M. Disturbances of lipoprotein metabolism in metabolic syndrome. Adv. Hyg. Exp. Med. 2010, 64, 1–10. [Google Scholar]
- Cohen, H.; Bielorai, B.; Harats, D.; Toren, A.; Pinhas-Hamiel, O. Conservative Treatment of L-Asparaginase-Associated Lipid Abnormalities in Children with Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 2010, 54, 703–706. [Google Scholar] [CrossRef]
- Konończuk, K.; Latoch, E.; Żelazowska-Rutkowska, B.; Krawczuk-Rybak, M.; Muszyńska-Rosłan, K. Increased levels of adipocyte and epidermal fatty acid-binding proteins in acute lymphoblastic leukemia survivors. J. Clin. Med. 2021, 10, 1567. [Google Scholar] [CrossRef]
- Nottage, K.A.; Ness, K.K.; Li, C.; Srivastava, D.; Robison, L.L.; Hudson, M.M. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia—From the St. Jude Lifetime Cohort. Br. J. Haematol. 2014, 165, 364–374. [Google Scholar] [CrossRef]
- Finch, E.R.; Smith, C.A.; Yang, W.; Liu, Y.; Kornegay, N.M.; Panetta, J.C.; Crews, K.R.; Molinelli, A.R.; Cheng, C.; Pei, D.; et al. Asparaginase formulation impacts hypertriglyceridemia during therapy for acute lymphoblastic leukemia. Pediatr. Blood Cancer 2020, 67, e28040. [Google Scholar] [CrossRef]
- Mangaraj, M.; Nanda, R.; Panda, S. Apolipoprotein A-I: A Molecule of Diverse Function. Indian J. Clin. Biochem. 2016, 31, 253–259. [Google Scholar] [CrossRef]
- Julve, J.; Escolà-Gil, J.C.; Rotllan, N.; Fiévet, C.; Vallez, E.; De la Torre, C.; Ribas, V.; Sloan, J.H.; Blanco-Vaca, F. Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 232–238. [Google Scholar] [CrossRef]
- Koike, T.; Kitajima, S.; Yu, Y.; Li, Y.; Nishijima, K.; Liu, E.; Sun, H.; Waqar, A.B.; Shibata, N.; Inoue, T.; et al. Expression of human ApoAII in transgenic rabbits leads to dyslipidemia: A new model for combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Saha, N.; Tong, M.C.; Tay, J.S.H.; Jeyaseelan, K.; Humphries, S.E. DNA polymorphisms of the apolipoprotein B gene in Chinese coronary artery disease patients. Clin. Genet. 1992, 42, 164–170. [Google Scholar] [CrossRef]
- Alaupovic, P.; Mack, W.J.; Knight-Gibson, C.; Hodis, H.N. The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Baroni, S.; Scribano, D.; Zuppi, C.; Pagano, L.; Leone, G.; Giardina, B. Prognostic relevance of lipoprotein cholesterol levels in acute lymphocytic and nonlymphocytic leukemia. Acta Haematol. 1996, 96, 24–28. [Google Scholar] [CrossRef]
- Parsons, S.K.; Skapek, S.X.; Neufeld, E.J.; Kuhlman, C.; Young, M.L.; Donnelly, M.; Brunzell, J.D.; Otvos, J.D.; Sallan, S.E.; Rifai, N. Asparaginase-associated lipid abnormalities in children with acute lymphoblastic leukemia. Blood 1997, 89, 1886–1895. [Google Scholar] [CrossRef]
- Fuior, E.V.; Gafencu, A.V. Apolipoprotein c1: Its pleiotropic effects in lipid metabolism and beyond. Int. J. Mol. Sci. 2019, 20, 5939. [Google Scholar] [CrossRef] [PubMed]
- Gautier, T.; Deckert, V.; Aires, V.; Le Guern, N.; Proukhnitzky, L.; Patoli, D.; Lemaire, S.; Maquart, G.; Bataille, A.; Xolin, M.; et al. Human apolipoprotein C1 transgenesis reduces atherogenesis in hypercholesterolemic rabbits. Atherosclerosis 2021, 320, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, G.; Kim, D.H.; Zhang, T.; Qu, S.; Thomas, E.A.; Toledo, F.G.S.; Slusher, S.; Fan, Y.; Kelley, D.E.; Dong, H.H. A role of apolipoprotein D in triglyceride metabolism. J. Lipid Res. 2010, 51, 1298–1311. [Google Scholar] [CrossRef] [PubMed]
- Morel, S.; Léveillé, P.; Samoilenko, M.; Franco, A.; England, J.; Malaquin, N.; Tu, V.; Cardin, G.B.; Drouin, S.; Rodier, F.; et al. Biomarkers of cardiometabolic complications in survivors of childhood acute lymphoblastic leukemia. Sci. Rep. 2020, 10, 21507. [Google Scholar] [CrossRef] [PubMed]
- Follin, C.; Erfurth, E.M. Long-Term Effect of Cranial Radiotherapy on Pituitary-Hypothalamus Area in Childhood Acute Lymphoblastic Leukemia Survivors. Curr. Treat. Opt. Oncol. 2016, 17, 50. [Google Scholar] [CrossRef]
- Trimis, G.; Moschovi, M.; Papassotiriou, I.; Chrousos, G.; Tzortzatou-Stathopoulou, F. Early indicators of dysmetabolic syndrome in young survivors of acute lymphoblastic leukemia in childhood as a target for preventing disease. J. Pediatr. Hematol. Oncol. 2007, 29, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Oudin, C.; Berbis, J.; Bertrand, Y.; Vercasson, C.; Thomas, F.; Chastagner, P.; Ducassou, S.; Kanold, J.; Tabone, M.-D.; Paillard, C.; et al. Prevalence and characteristics of metabolic syndrome in adults from the french childhood leukemia survivors’ cohort: A comparison with controls from the french population. Haematologica 2018, 103, 645–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemaitilly, W.; Li, Z.; Huang, S.; Ness, K.K.; Clark, K.L.; Green, D.M.; Barnes, N.; Armstrong, G.T.; Krasin, M.J.; Srivastava, D.K.; et al. Anterior hypopituitarism in adult survivors of childhood cancers treated with cranial radiotherapy: A report from the st jude lifetime cohort study. J. Clin. Oncol. 2015, 33, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Baroni, S.; Scribano, D.; Pagano, L.; Zuppi, C.; Leone, G.; Giardina, B. Lipids and lipoproteins in acute lymphoblastic leukaemia (ALL). Leuk. Res. 1994, 18, 643–644. [Google Scholar] [CrossRef]
- Crook, M.A. Apolipoprotein H: Its relevance to cardiovascular disease. Atherosclerosis 2010, 209, 32–34. [Google Scholar] [CrossRef]
- Borén, J.; Packard, C.J.; Taskinen, M.R. The Roles of ApoC-III on the Metabolism of Triglyceride-Rich Lipoproteins in Humans. Front. Endocrinol. 2020, 11, 474. [Google Scholar] [CrossRef]
- Won, J.C.; Park, C.Y.; Oh, S.W.; Lee, E.S.; Youn, B.S.; Kim, M.S. Plasma Clusterin (ApoJ) levels are associated with adiposity and systemic inflammation. PLoS ONE 2014, 9, 3–9. [Google Scholar] [CrossRef]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2000; pp. 1–19. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26247089 (accessed on 7 September 2022).
- Kułaga, Z.; Tkaczyk, M.; Palczewska, I. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B. Polish 2012 growth references for preschool children. Eur. J. Pediatr. 2013, 172, 753–761. [Google Scholar] [CrossRef]
- Mccarthy, H.D.; Ashwell, M. ORIGINAL ARTICLE A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message—‘Keep your waist circumference to less than half your height’. Int. J. Obes. 2006, 30, 988–992. [Google Scholar] [CrossRef] [Green Version]
Total Number (%) or Mean ± SD | |
---|---|
Patients | 58 (100%) |
Sex | |
Female | 27 (46.55%) |
Male | 31 (53.45%) |
Age at diagnosis (years) | 5.01 ± 3.46 |
Age with treatment completion (years) | 7.18 ± 3.31 |
Follow-up after treatment (years) | 5.41 ± 4.29 |
Body Mass Index (BMI, kg/m2) | 21.95 ± 5.29 |
Weight status | |
Normal weight | 31 (53.45%) |
Overweight | 17 (29.31%) |
Obese | 10 (17.24%) |
Waist–Hip Ratio (WHR) | |
Female | 0.84 ± 0.06 |
Male | 0.89 ± 0.07 |
Systolic Blood Pressure (SBP, mmHg) | 109.10 ± 15.81 |
Diastolic Blood Pressure (DBP, mmHg) | 67.30 ± 12.02 |
Anticancer treatment | |
Hematopoietic Stem-Cell Transplantation (HSCT) | 6 (10.34%) |
Radiotherapy (RT) | 9 (15.52%) |
Cranial Radiotherapy (CRT) | 8 (13.79%) |
Total Body Irradiation (TBI) | 2 (3.45%) |
CRT and TBI | 1 (1.72%) |
Non-Radiotherapy (Non-RT) | 49 (84.48%) |
Cytostatic agents | 58 (100%) |
Cyclophosphamide (cumulative dose in mg/m2) | 58 (100%); 3957.00 ± 2633.00 |
Methotrexate (cumulative dose in mg/m2) | 58 (100%); 10,321.00 ± 6644.00 |
Glucocorticoids | 58 (100%) |
Cumulative corticosteroid dose (mg/m2) a | 58 (100%); 3538.00 ± 901.80 |
Dexamethasone (cumulative dose in mg/m2) | 58 (100%); 277.30 ± 134.60 |
Prednisone (cumulative dose in mg/m2) | 58 (100%); 1680.00 ± 0.00 |
Groups and Subgroups | Values | 95% Confidence Interval of Area under the ROC Curve, and p-Value | |||
---|---|---|---|---|---|
Normal Weight (ALL Group) vs. Overweight and Obese (ALL Group) | Normal Weight (ALL Group) vs. Normal Weight (Control Group) | Overweight and Obese (ALL Group) vs. Normal Weight (Control Group) | |||
Apo-A1 (mg/dL) | Normal weight—ALL group | 263.93 ± 139.68 | 0.36–0.66 0.911 | 0.65–0.90 0.001 | 0.68–0.93 0.001 |
Overweight and obese—ALL group | 254.32 ± 108.86 | ||||
Normal weight—control group | 135.25 ± 67.16 | ||||
Apo-A2 (mg/dL) | Normal weight—ALL group | 25.34 ± 6.07 | 0.39–0.70 0.560 | 0.58–0.86 0.007 | 0.52–0.84 0.040 |
Overweight and obese—ALL group | 24.04 ± 6.80 | ||||
Normal weight—control group | 18.00 ± 8.78 | ||||
Apo-B (mg/dL) | Normal weight—ALL group | 61.55 ± 14.75 | 0.36–0.67 0.863 | 0.37–0.70 0.666 | 0.39–0.73 0.512 |
Overweight and obese—ALL group | 60.69 ± 15.28 | ||||
Normal weight—control group | 61.26 ± 17.19 | ||||
Apo-C1 (mg/dL) | Normal weight—ALL group | 22.35 ± 6.97 | 0.52–0.81 0.034 | 0.39–0.74 0.442 | 0.52–0.85 0.036 |
Overweight and obese—ALL group | 18.37 ± 5.59 | ||||
Normal weight—control group | 24.31 ± 9.04 | ||||
Apo-C3 (mg/dL) | Normal weight—ALL group | 5.36 ± 1.81 | 0.35–0.66 0.934 | 0.44–0.78 0.196 | 0.43–0.77 0.260 |
Overweight and obese—ALL group | 5.30 ± 2.13 | ||||
Normal weight—control group | 6.00 ± 2.37 | ||||
Apo-D (mg/dL) | Normal weight—ALL group | 3.63 ± 0.72 | 0.38–0.68 0.683 | 0.78–1.00 0.001 | 0.78–1.00 0.001 |
Overweight and obese—ALL group | 3.60 ± 0.61 | ||||
Normal weight—control group | 28.74 ± 28.90 | ||||
Apo-E (mg/dL) | Normal weight—ALL group | 2.82 ± 1.31 | 0.35–0.66 0.948 | 0.41–0.74 0.394 | 0.42–0.77 0.283 |
Overweight and obese—ALL group | 2.58 ± 0.76 | ||||
Normal weight—control group | 3.03 ± 1.21 | ||||
Apo-H (mg/dL) | Normal weight—ALL group | 41.41 ± 11.62 | 0.38–0.69 0.608 | 0.34–0.70 0.803 | 0.34–0.70 0.830 |
Overweight and obese—ALL group | 41.73 ± 9.06 | ||||
Normal weight—control group | 41.04 ± 12.68 | ||||
Apo-J (mg/dL) | Normal weight—ALL group | 11.45 ± 3.70 | 0.42–0.73 0.353 | 0.52–0.82 0.045 | 0.40–0.74 0.415 |
Overweight and obese—ALL group | 10.69 ± 3.27 | ||||
Normal weight—control group | 9.59 ± 2.88 | ||||
CRP (mg/dL) | Normal weight—ALL group | 0.58 ± 0.38 | 0.62–0.88 0.001 | 0.45–0.79 0.180 | 0.65–0.95 0.001 |
Overweight and obese—ALL group | 1.17 ± 1.10 | ||||
Normal weight—control group | 0.65 ± 0.81 |
<6 Years—Age at Diagnosis of ALL n = 39 | >6 Years—Age at Diagnosis of ALL n = 19 | p-Value | |
---|---|---|---|
TAG (mg/dL) | 95.93 ± 41.10 | 101.60 ± 63.39 | 0.860 |
Apo-A1 (mg/dL) | 267.27 ± 115.99 | 219.50 ± 119.85 | 0.175 |
Apo-A2 (mg/dL) | 24.87 ± 6.12 | 22.96 ± 6.31 | 0.439 |
Apo-B (mg/dL) | 61.06 ± 14.91 | 59.77 ± 15.50 | 0.778 |
Apo-C1 (mg/dL) | 20.20 ± 6.18 | 19.80 ± 7.02 | 0.836 |
Apo-C3 (mg/dL) | 5.10 ± 1.65 | 5.46 ± 2.30 | 0.528 |
Apo-D (mg/dL) | 3.59 ± 0.49 | 3.51 ± 0.88 | 0.851 |
Apo-E (mg/dL) | 2.72 ± 1.14 | 2.57 ± 0.98 | 0.848 |
Apo-H (mg/dL) | 41.17 ± 8.24 | 40.35 ± 13.49 | 0.670 |
Apo-J (mg/dL) | 10.91 ± 2.62 | 10.97 ± 4.67 | 0.952 |
CRP (mg/dL) | 0.84 ± 0.94 | 0.91 ± 0.61 | 0.142 |
Variable | Spearman’s r | p-Value | 95% Confidence Interval | |
---|---|---|---|---|
Apo-A1 | Normal weight | 0.01 | 0.965 | −0.44–0.46 |
Overweight and obese | 0.22 | 0.282 | −0.19–0.57 | |
Apo-A2 | Normal weight | −0.29 | 0.221 | −0.67–0.20 |
Overweight and obese | 0.30 | 0.145 | −0.12–0.63 | |
Apo-B | Normal weight | −0.01 | 0.977 | −0.47–0.46 |
Overweight and obese | 0.31 | 0.117 | −0.09–0.63 | |
Apo-C1 | Normal weight | −0.59 | 0.008 | −0.83–−0.17 |
Overweight and obese | 0.26 | 0.203 | −0.15–0.59 | |
Apo-C3 | Normal weight | −0.07 | 0.781 | −0.52–0.41 |
Overweight and obese | 0.60 | 0.001 | 0.27–0.81 | |
Apo-D | Normal weight | −0.04 | 0.867 | −0.48–0.42 |
Overweight and obese | 0.56 | 0.003 | 0.21–0.78 | |
Apo-E | Normal weight | −0.35 | 0.145 | −0.70–0.14 |
Overweight and obese | 0.37 | 0.063 | −0.03–0.67 | |
Apo-H | Normal weight | −0.34 | 0.144 | −0.69–0.14 |
Overweight and obese | 0.49 | 0.010 | 0.12–0.74 | |
Apo-J | Normal weight | −0.07 | 0.757 | −0.51–0.39 |
Overweight and obese | 0.41 | 0.037 | 0.01–0.69 | |
CRP | Normal weight | 0.42 | 0.072 | −0.05–0.74 |
Overweight and obese | 0.47 | 0.016 | 0.09–0.73 |
Variable | Spearman’s r | p-Value | 95% Confidence Interval | |
---|---|---|---|---|
Cyclophosphamide (cumulative dose in mg/m2) | Apo-A1 | 0.06 | 0.648 | −0.21–0.33 |
Apo-A2 | −0.01 | 0.979 | −0.28–0.27 | |
Apo-B | 0.07 | 0.599 | −0.20–0.34 | |
Apo-C1 | 0.07 | 0.602 | −0.21–0.34 | |
Apo-C3 | 0.07 | 0.613 | −0.21–0.34 | |
Apo-D | 0.08 | 0.557 | −0.20–0.35 | |
Apo-E | 0.08 | 0.576 | −0.20–0.34 | |
Apo-H | 0.08 | 0.543 | −0.19–0.35 | |
Apo-J | 0.02 | 0.853 | −0.25–0.30 | |
CRP | 0.13 | 0.356 | −0.15–0.39 | |
Methotrexate (cumulative dose in mg/m2) | Apo-A1 | 0.09 | 0.499 | −0.18–0.36 |
Apo-A2 | −0.01 | 0.952 | −0.28–0.27 | |
Apo-B | −0.05 | 0.701 | −0.32–0.22 | |
Apo-C1 | 0.10 | 0.459 | −0.18–0.37 | |
Apo-C3 | 0.05 | 0.715 | −0.23–0.32 | |
Apo-D | 0.08 | 0.574 | −0.20–0.34 | |
Apo-E | 0.22 | 0.103 | −0.05–0.47 | |
Apo-H | 0.04 | 0.747 | −0.23–0.31 | |
Apo-J | 0.13 | 0.359 | −0.15–0.38 | |
CRP | 0.26 | 0.060 | −0.02–0.50 | |
Cumulative corticosteroid dose (mg/m2) | Apo-A1 | 0.13 | 0.357 | −0.15–0.39 |
Apo-A2 | −0.07 | 0.637 | −0.34–0.21 | |
Apo-B | −0.04 | 0.764 | −0.31–0.24 | |
Apo-C1 | 0.01 | 0.971 | −0.27–0.28 | |
Apo-C3 | 0.01 | 0.974 | −0.27–0.28 | |
Apo-D | 0.12 | 0.387 | −0.16–0.38 | |
Apo-E | −0.01 | 0.989 | −0.28–0.27 | |
Apo-H | 0.09 | 0.517 | −0.19–0.35 | |
Apo-J | 0.10 | 0.458 | −0.17–0.36 | |
CRP | 0.12 | 0.389 | −0.16–0.38 | |
Dexamethasone (cumulative dose in mg/m2) | Apo-A1 | 0.13 | 0.357 | −0.15–0.39 |
Apo-A2 | −0.07 | 0.637 | −0.34–0.21 | |
Apo-B | −0.04 | 0.764 | −0.31–0.24 | |
Apo-C1 | 0.01 | 0.971 | −0.27–0.28 | |
Apo-C3 | 0.01 | 0.974 | −0.27–0.28 | |
Apo-D | 0.12 | 0.387 | −0.16–0.38 | |
Apo-E | −0.01 | 0.988 | −0.28–0.27 | |
Apo-H | 0.09 | 0.517 | −0.19–0.35 | |
Apo-J | 0.10 | 0.458 | −0.17–0.36 | |
CRP | 0.12 | 0.389 | −0.16–0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztolsztener, K.; Żywno, H.; Hodun, K.; Konończuk, K.; Muszyńska-Rosłan, K.; Latoch, E. Apolipoproteins—New Biomarkers of Overweight and Obesity among Childhood Acute Lymphoblastic Leukemia Survivors? Int. J. Mol. Sci. 2022, 23, 10634. https://doi.org/10.3390/ijms231810634
Sztolsztener K, Żywno H, Hodun K, Konończuk K, Muszyńska-Rosłan K, Latoch E. Apolipoproteins—New Biomarkers of Overweight and Obesity among Childhood Acute Lymphoblastic Leukemia Survivors? International Journal of Molecular Sciences. 2022; 23(18):10634. https://doi.org/10.3390/ijms231810634
Chicago/Turabian StyleSztolsztener, Klaudia, Hubert Żywno, Katarzyna Hodun, Katarzyna Konończuk, Katarzyna Muszyńska-Rosłan, and Eryk Latoch. 2022. "Apolipoproteins—New Biomarkers of Overweight and Obesity among Childhood Acute Lymphoblastic Leukemia Survivors?" International Journal of Molecular Sciences 23, no. 18: 10634. https://doi.org/10.3390/ijms231810634
APA StyleSztolsztener, K., Żywno, H., Hodun, K., Konończuk, K., Muszyńska-Rosłan, K., & Latoch, E. (2022). Apolipoproteins—New Biomarkers of Overweight and Obesity among Childhood Acute Lymphoblastic Leukemia Survivors? International Journal of Molecular Sciences, 23(18), 10634. https://doi.org/10.3390/ijms231810634