Modulating Activity Evaluation of Gut Microbiota with Versatile Toluquinol
Abstract
:1. Introduction
2. Results and Discussion
2.1. The PKS Gene for Toluquinol Biosynthesis Was Widely Distributed in Fungi and Predominant in Penicillium Species
2.2. Toluquinol as a Natural Metabolite in Food and Fruits with Penicillium Species
2.3. Evaluation of the Modulating Activity of 17 Gut Microbes with Toluquinol
2.4. Characterization of Toluquinol-Derived Metabolites in E. faecalis and E. faecium
2.5. Effect of the Structural Modification on the Biological Activity
3. Materials and Methods
3.1. Penicillium Fungal Strain and Cultivation
3.2. Gut Microbial Strains and Cultivation
3.3. LC–MS Analysis
3.4. Isolation of Targeted Metabolites in E. faecalis or Enterococcus faecium
3.5. General Spectra for Structural Characterization
3.6. Cell Culture and Cell Viability Assay
3.7. Flow Cytometry Analysis
3.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 2016, 14, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, Y.S.; Ding, N.; Saedi, M.; Choi, G.V.; Sridharan, D.H.; Sherr, M.L.; Yarmush, R.C.; Alaniz, A.J.; Lee, K. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018, 23, 1099–1111. [Google Scholar] [CrossRef]
- Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356, eaag2770. [Google Scholar] [CrossRef]
- Hehemann, J.H.; Kelly, A.G.; Pudlo, N.A.; Martens, E.C.; Boraston, A.B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl. Acad. Sci. USA 2012, 109, 19786–19791. [Google Scholar] [CrossRef]
- Pizzolato Montanha, F.; Anater, A.; Burchard, J.F.; Luciano, F.B.; Meca, G.; Manyes, L.; Pimpao, C.T. Mycotoxins in dry-cured meats. Food Chem. Toxicol. 2018, 111, 494–502. [Google Scholar] [CrossRef]
- Guerre, P. Mycotoxin and Gut Microbiota Interactions. Toxins 2020, 12, 769. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, L.; Liu, H.; Wang, J.; Zheng, N. The compromised intestinal barrier induced by mycotoxins. Toxins 2020, 12, 619. [Google Scholar] [CrossRef]
- Elmassry, M.M.; Zayed, A.; Farag, M.A. Gut homeostasis and microbiota under attack: Impact of the different types of food contaminants on gut health. Crit. Rev. Food Sci. Nutr. 2022, 62, 738–763. [Google Scholar] [CrossRef]
- Puel, O.; Galtier, P.; Oswald, I.P. Biosynthesis and toxicological effects of patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Tannous, J.; Keller, N.P.; Atoui, A.; El Khoury, A.; Lteif, R.; Oswald, I.P.; Puel, O. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research. Crit. Rev. Food. Sci. Nutr. 2018, 58, 582082–582098. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, Y.; Zong, Y.; Shang, Y.; Zhang, Z.; Xu, X.; Wang, X.; Long, M.; Tian, S. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum. Environ. Microbiol. 2019, 21, 1124–1139. [Google Scholar] [CrossRef] [PubMed]
- García-Caballero, M.; Marí-Beffa, M.; Cañedo, L.; Medina, M.Á.; Quesada, A.R. Toluquinol, a marine fungus metabolite, is a new angiosuppressor that interferes with the Akt pathway. Biochem. Pharmacol. 2013, 85, 1727–1740. [Google Scholar] [CrossRef] [PubMed]
- Cheng-Sánchez, I.; Torres-Vargas, J.A.; Martínez-Poveda, B.; Guerrero-Vásquez, G.A.; Medina, M.Á.; Sarabia, F.; Quesada, A.R. Synthesis and antitumor activity evaluation of compounds based on toluquinol. Mar. Drugs. 2019, 17, 492. [Google Scholar] [CrossRef] [PubMed]
- Holm, D.K.; Petersen, L.M.; Klitgaard, A.; Knudsen, P.B.; Jarczynska, Z.D.; Nielsen, K.F.; Gotfredsen, C.H.; Larsen, T.O.; Mortensen, U.H. Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger. Chem. Biol. 2014, 21, 519–529. [Google Scholar] [CrossRef]
- Tang, M.C.; Cui, X.; He, X.; Ding, Z.; Zhu, T.; Tang, Y.; Li, D. Late-stage terpene cyclization by an integral membrane cyclase in the biosynthesis of isoprenoid epoxycyclohexenone natural products. Org. Lett. 2017, 19, 5376–5379. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Ji, X.; Feng, Y.; Li, X.; Zou, C.; Xu, J.; Ren, Y.; Mi, Q.; Wu, J.; et al. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation. PLoS Pathog. 2011, 7, e1002179. [Google Scholar] [CrossRef]
- Yang, C.T.; Vidal-Diez de Ulzurrun, G.; Gonçalves, A.P.; Lin, H.C.; Chang, C.W.; Huang, T.Y.; Chen, S.A.; Lai, C.K.; Tsai, I.J.; Schroeder, F.C.; et al. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proc. Natl. Acad. Sci. USA 2020, 117, 6762–6770. [Google Scholar] [CrossRef]
- Zhang, H.X.; Tan, J.L.; Wei, L.X.; Wang, Y.L.; Zhang, C.P.; Wu, D.K.; Zhu, C.Y.; Zhang, Y.; Zhang, K.Q.; Niu, X.M. Morphology regulatory metabolites from Arthrobotrys oligospora. J. Nat. Prod. 2012, 75, 1419–1423. [Google Scholar] [CrossRef]
- He, Z.Q.; Tan, J.L.; Li, N.; Zhang, H.X.; Chen, Y.H.; Wang, L.J.; Zhang, K.Q.; Niu, X.M. Sesquiterpenyl Epoxy-Cyclohexenoids and their Signaling Functions in Nematode-Trapping Fungus Arthrobotrys oligospora. J. Agric. Food Chem. 2019, 67, 13061–13072. [Google Scholar] [CrossRef]
- He, Z.Q.; Wang, L.J.; Wang, Y.J.; Chen, Y.H.; Wen, Y.; Zhang, K.Q.; Niu, X.M. Polyketide synthase–terpenoid synthase hybrid pathway regulation of trap formation through ammonia metabolism controls soil colonization of predominant nematode-trapping fungus. J. Agric. Food. Chem. 2021, 69, 4464–4479. [Google Scholar] [CrossRef] [PubMed]
- Song, T.Y.; Xu, Z.F.; Chen, Y.H.; Ding, Q.Y.; Sun, Y.R.; Miao, Y.; Zhang, K.Q.; Niu, X.M. Potent nematicidal activity and new hybrid metabolite production by disruption of a cytochrome p450 gene involved in the biosynthesis of morphological regulatory arthrosporols in nematode-trapping fungus Arthrobotrys oligospora. J. Agric. Food Chem. 2017, 65, 4111–4120. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Song, T.; Xu, Z.; Liu, X.; Dai, R.; Chen, Y.; Li, S.; Zhang, K.; Niu, X. Selected Mutations Revealed Intermediates and Key Precursors in the Biosynthesis of Polyketide–Terpenoid Hybrid Sesquiterpenyl Epoxy-cyclohexenoids. Org. Lett. 2017, 19, 3923–3926. [Google Scholar] [CrossRef]
- Chen, Y.H.; He, J.B.; Bai, X.; Li, X.N.; Lu, L.F.; Liu, Y.C.; Zhang, K.Q.; Li, S.H.; Niu, X.M. Unexpected biosynthesis of fluorescein-Like Arthrocolins against resistant strains in an engineered Escherichia coli. Org. Lett. 2019, 21, 6499–6503. [Google Scholar] [CrossRef] [PubMed]
- Haini, N.; Jau-Shya, L.; Mohd Rosli, R.G.; Mamat, H. Effects of high-amylose maize starch on the glycemic index of Chinese steamed buns (CSB). Heliyon 2022, 8, e09375. [Google Scholar] [CrossRef]
- Wu, G.A.; Terol, J.; Ibanez, V.; López-García, A.; Pérez-Román, E.; Borredá, C.; Domingo, C.; Tadeo, F.R.; Carbonell-Caballero, J.; Alonso, R.; et al. Genomics of the origin and evolution of Citrus. Nature 2018, 554, 311–316. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, M.; Li, Q.; Wang, T.; Zhang, B.; Zhao, H.; Fu, J. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int. J. Biol. Macromol. 2021, 182, 1874–1882. [Google Scholar] [CrossRef]
- Coton, E.; Jany, J.L.; Coton, M. Penicillium roqueforti. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Oxford, UK, 2022; pp. 599–606. [Google Scholar]
- Frisvad, J.C. Penicillium/Penicillium/Penicillia in food production. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 14–18. [Google Scholar]
- Liu, J.C.; Fu, J.J.; Li, W.L.; Zou, Y.; Huang, Z.J.; Xu, J.Y.; Peng, S.X.; Zhang, Y.H. Utilization of the inherent nucleophile for regioselective O-acylation of polyphenols via an intermolecular cooperative transesterification. Tetrahedron 2016, 72, 4103–4110. [Google Scholar] [CrossRef]
- Bertilsson, B.M.; Gustafsson, B.; Kühn, I.; Torssell, K. Generation of radicals from sulphoxides with fenton’s reagent. A new radical alkylation method. Acta. Chem. Scand. 1970, 24, 3590–3598. [Google Scholar] [CrossRef]
- Hentchel, K.L.; Escalante-Semerena, J.C. Acylation of biomolecules in prokaryotes: A widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev. 2015, 79, 321–346. [Google Scholar] [CrossRef] [Green Version]
- Rende-Fournier, R.; Leclercq, R.; Galimand, M.; Duval, J.; Courvalin, P. Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145. Antimicrob. Agents. Chemother. 1993, 37, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Arantes, V.; Jellison, J.; Goodell, B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl. Microbiol. Biotechnol. 2012, 94, 323–338. [Google Scholar] [CrossRef] [PubMed]
- García-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [PubMed]
- Franz, C.M.; Huch, M.; Abriouel, H.; Holzapfel, W.; Gálvez, A. Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol. 2011, 151, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Jamet, E.; Akary, E.; Poisson, M.A.; Chamba, J.F.; Bertrand, X.; Serror, P. Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiol. 2012, 31, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of animal origin. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Wu, Y.; Zhen, W.; Geng, Y.; Wang, Z.; Guo, Y. Effects of dietary Enterococcus faecium NCIMB 11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens. Poult. Sci. 2019, 9, 150–163. [Google Scholar] [CrossRef]
- Wang, W.; Gänzle, M. Toward rational selection criteria for selection of probiotics in pigs. Adv. Appl. Microbiol. 2019, 107, 83–112. [Google Scholar] [CrossRef]
- Hlivak, P.; Odraska, J.; Ferencik, M.; Ebringer, L.; Jahnova, E.; Mikes, Z. One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl. Lek. Listy. 2005, 106, 67–72. [Google Scholar]
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364. [Google Scholar] [CrossRef]
- Conrad, M.; Pratt, D.A. The chemical basis of ferroptosis. Nat. Chem. Biol. 2019, 15, 1137–1147. [Google Scholar] [CrossRef]
- Bar-Or, D.; Bar-Or, R.; Rael, L.T.; Brody, E.N. Oxidative stress in severe acute illness. Redox Biol. 2015, 4, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends. Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Pereira, C.; Grácio, D.; Teixeira, J.P.; Magro, F. Oxidative stress and DNA damage: Implications in inflammatory bowel disease. Inflamm. Bowel. Dis. 2015, 21, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
IC50 (μM) | ||||||
---|---|---|---|---|---|---|
Cell | A549 | A375 | A2780 | G401 | HCT116 | LM3 |
T | 4.781 | 1.716 | 0.687 | 0.602 | 0.91 | 0.613 |
1 | 0.224 | 4.175 | 0.204 | 0.597 | 3.767 | 4.993 |
2 | 1.275 | 1.951 | 0.741 | 3.412 | 7.0255 | 4.23 |
3 | - | - | - | - | - | - |
No. | Strains | T (°C) | M |
---|---|---|---|
1 | Bacillus coagulans GDMCC1.646 | 37 | MRS |
2 | Bacillus licheniformis BNCC132620 | 37 | NA |
3 | Bacillus subtilis BNCC188062 | 30 | NA |
4 | Enterococcus faecalis BNCC194769 | 30 | MRS |
5 | Enterococcus faecium BNCC194768 | 30 | MRS |
6 | Lactobacillus bulgaricus GDMCC1.189 | 37 | MRS |
7 | Lactococcus lactis subsp. Lactis ATCC11007 | 37 | LAB |
8 | Lactobacillus planturum BNCC336421 | 37 | MRS |
9 | Lactobacillus salivarius BNCC194720 | 37 | MRS |
10 | Leuconstoc meseteroides GDMCC1.774 | 37 | MRS |
11 | Kluyveromyces marx ATCC36534 | 25~28 | YM |
12 | Pediococcus acidilactici GDMCC1.263 | 37 | MRS |
13 | Pediococcus pentosaceus BNCC193259 | 37 | MRS |
14 | Saccharomyces cerevisiae BNCC336503 | 28~30 | YM |
15 | Staphylococcus vitulinus DMS15615 | 37 | TSA |
16 | Staphylococcus xylosus BNCC37469 | 30 | NA |
17 | Stretpococcus thermophilus GDMCC1.1808 | 37 | LAB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-L.; Liu, Y.-J.; Chen, Y.-H.; Wu, Z.; Liu, B.-R.; Cheng, Q.-Y.; Zhang, K.-Q.; Niu, X.-M. Modulating Activity Evaluation of Gut Microbiota with Versatile Toluquinol. Int. J. Mol. Sci. 2022, 23, 10700. https://doi.org/10.3390/ijms231810700
Zhang L-L, Liu Y-J, Chen Y-H, Wu Z, Liu B-R, Cheng Q-Y, Zhang K-Q, Niu X-M. Modulating Activity Evaluation of Gut Microbiota with Versatile Toluquinol. International Journal of Molecular Sciences. 2022; 23(18):10700. https://doi.org/10.3390/ijms231810700
Chicago/Turabian StyleZhang, Long-Long, Ya-Jun Liu, Yong-Hong Chen, Zhuang Wu, Bo-Ran Liu, Qian-Yi Cheng, Ke-Qin Zhang, and Xue-Mei Niu. 2022. "Modulating Activity Evaluation of Gut Microbiota with Versatile Toluquinol" International Journal of Molecular Sciences 23, no. 18: 10700. https://doi.org/10.3390/ijms231810700
APA StyleZhang, L. -L., Liu, Y. -J., Chen, Y. -H., Wu, Z., Liu, B. -R., Cheng, Q. -Y., Zhang, K. -Q., & Niu, X. -M. (2022). Modulating Activity Evaluation of Gut Microbiota with Versatile Toluquinol. International Journal of Molecular Sciences, 23(18), 10700. https://doi.org/10.3390/ijms231810700