New Insights into Ion Channels: Predicting hERG-Drug Interactions
Abstract
:1. Introduction
1.1. hERG and Potassium Channel History
1.2. Long QT Syndrome
1.3. Potassium Channel Research and Development
2. Results and Discussion
2.1. Fundamental Concepts: SAR, Drift Speed, and Effective Charge
2.2. Computing Atomic Charges
2.3. Generating a Modality That Predicts Drug-hERG Interaction: How Rational Drug Design Can Avoid This Pitfall
2.4. Examples Illustrating the QA Ion Model
2.4.1. Example One: Terfenadine versus Fexofenadine
2.4.2. Example Two: Cisapride, Mosapride, Prucalopride versus Renzapride
2.5. Testing the Ammonium Ion Model
3. Methods
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wempe, M. Quaternary ammonium ions can externally block voltage-gated K+ channels. Establishing a theoretical and experimental model that predicts KDs and the selectivity of K+ over Na+ ions. J. Mol. Struct. 2001, 562, 63–78. [Google Scholar] [CrossRef]
- Wang, W. MacKinnon R Cryo-EM Structure of the Open Human Ether-à-go-go-Related K+ Channel hERG. Cell 2017, 169, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.chemicool.com/definition/quadrupole_mass_spectrometry.html (accessed on 5 September 2022).
- Silverstein, R.M.; Bassler, G.C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Ranjan, R.; Logette, E.; Marani, M.; Herzog, M.; Tâche, V.; Scantamburlo, E.; Buchillier, V.; Markram, H. A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front. Cell. Neurosci. 2019, 13, 358. [Google Scholar] [CrossRef]
- Kim, D.M.; Nimigean, C. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating. Cold Spring Harb. Perspect. Biol. 2016, 8, a029231. [Google Scholar] [CrossRef] [PubMed]
- Kurachi, Y.; Jan, Y.; Lazdunski, M. Potassium Ion Channels: Molecular Structure, Function, and Diseases, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1999; ISBN 9780080585178. [Google Scholar]
- Warmke, J.W.; Ganetzky, B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 1994, 91, 3438–3442. [Google Scholar] [CrossRef]
- Curran, M.E.; Splawski, I.; Timothy, K.W.; Vincen, G.; Green, E.D.; Keating, M.T. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995, 80, 795–803. [Google Scholar] [CrossRef]
- Sanguinetti, M.C.; Jiang, C.; Curran, M.E.; Keating, M.T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995, 81, 299–307. [Google Scholar] [CrossRef]
- Dolly, J.O.; Parcej, D.N. Molecular properties of voltage-gated K+ channels. J. Bioenerg. Biomembr. 1996, 28, 231–253. [Google Scholar] [CrossRef]
- Doyle, D.A.; Morais Cabral, J.; Pfuetzner, R.A.; Kuo, A.; Gulbis, J.M.; Cohen, S.L.; Chait, B.T.; MacKinnon, R. The Structure of the Potassium Channel: Molecular Basis of K + Conduction and Selectivity. Science 1998, 280, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Viskin, S. Long QT syndromes and torsade de pointes. Lancet 1999, 354, 1625–1633. [Google Scholar] [CrossRef]
- Vilums, M.; Overman, J.; Klaasse, E.; Scheel, O.; Brussee, J.; Ijzerman, A.P. Understanding of molecular substructures that contribute to hERG K+ channel blockade: Synthesis and biological evaluation of E-4031 analogues. ChemMedChem 2011, 7, 107–113. [Google Scholar] [CrossRef]
- Carvalho, J.F.S.; Louvel, J.; Doornbos, M.L.J.; Klaasse, E.; Yu, Z.; Brussee, J.; Ijzerman, A.P. Strategies to reduce hERG K+channel blockade. Exploring heteroaromaticity and rigidity in novel pyridine analogues of dofetilide. J. Med. Chem. 2013, 56, 2828–2840. [Google Scholar] [CrossRef] [PubMed]
- Louvel, J.; Carvalho, J.F.S.; Yu, Z.; Soethoudt, M.; Lenselink, E.B.; Klaasse, E.; Brussee, J.; Ijzerman, A.P. Removal of human ether-à-go-go related gene (hERG) K+ channel affinity through rigidity: A case of clofilium Analogues. J. Med. Chem. 2013, 56, 9427–9440. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-B.; Zou, B.-Y.; Wang, X.-L.; Li, M. Investigation of miscellaneous hERG inhigition in large diverse compound collection using automated patch-clamp assay. Acta Pharmacol. Sin. 2016, 37, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Negami, T.; Araki, M.; Okuno, Y.; Terada, T. Calculation of absolute binding free energies between the hERG channel and structurally diverse drugs. Sci. Rep. 2019, 9, 16586. [Google Scholar] [CrossRef]
- Ding, W.; Nan, Y.; Wu, J.; Han, C.; Xin, X.; Li, S.; Liu, H.; Zhang, L. Combining multi-dimensional molecular fingerprints to predict the hERG cardiotoxicity of compounds. Comput. Biol. Med. 2022, 144, 105390. [Google Scholar] [CrossRef]
- Butler, A.S.; Helliwell, M.V.; Zhang, Y.; Hancox, J.C.; Dempsey, C.E. An Update on the Structure of hERG. Front. Pharmacol. 2020, 10, 1572. [Google Scholar] [CrossRef]
- Hansch, C.; Fujita, T. p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86, 1616–1626. [Google Scholar] [CrossRef]
- Hammett, L.P. Physical Organic Chemistry; McGraw-Hill: New York, NY, USA, 1940. [Google Scholar]
- Humiston, B. General Chemistry, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1986; Chapter 4. [Google Scholar]
- Atkins, P.W. Physical Chemistry, 4th ed.; W. H. Freeman and Company: New York, NY, USA, 1990; Chapter 13; p. 366. [Google Scholar]
- Foresman, J.B.; Frisch, Æ. Exploring Chemistry with Electronic Structure Method, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A.; Stratmann, R.E.; Burant, J.C.; et al. Gaussian 98W (Revision A.7); Gaussian, Inc.: Pittsburgh, PA, USA, 1998. [Google Scholar]
- E González, J.; Oades, K.; Leychkis, Y.; Harootunian, A.; A Negulescu, P. Cell-based assays and instrumentation for screening ion-channel targets. Drug Discov. Today 1999, 4, 431–439. [Google Scholar] [CrossRef]
- Potet, F.; Bouyssou, T.; Escande, D.; Baró, I. Gastrointestinal prokinetic drugs have different affinity for the human cardiac human ether-à-gogo K(+) channel. J. Pharmacol. Exp. Ther. 2001, 299, 1007–1012. [Google Scholar] [PubMed]
- Taglialatela, M.; Pannaccione, A.; Castaldo, P.; Giorgio, G.; Zhou, Z.; January, C.T.; Genovese, A.; Marone, G.; Annunziato, L. Molecular basis for the lack of herg K+channel block-related cardiotoxicity by the h1receptor blocker cetirizine compared with other second-generation antihistamines. Mol. Pharmacol. 1998, 54, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, A.; Poluzzi, E.; De Ponti, F.; Recanatini, M. Toward a Pharmacophore for Drugs Inducing the Long QT Syndrome: Insights from a CoMFA Study of HERG K+ Channel Blockers. J. Med. Chem. 2002, 45, 3844–3853. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Crumb, W.J.; Sarazan, R.D.; Wikel, J.H.; Wrighton, S.A. Three-Dimensional Quantitative Structure-Activity Relationship for Inhibition of Human Ether-a-Go-Go-Related Gene Potassium Channel. J. Pharmacol. Exp. Ther. 2002, 301, 427–434. [Google Scholar] [CrossRef]
- Roche, O.; Trube, G.; Zuegge, J.; Pflimlin, P.; Alanine, A.; Schneider, G. A Virtual Screening Method for Prediction of the hERG Potassium Channel Liability of Compound Libraries. ChemBioChem 2002, 3, 455–459. [Google Scholar] [CrossRef]
- Thomas, D.; Gut, B.; Wendt-Nordahl, G.; Kiehn, J. The Antidepressant Drug Fluoxetine Is an Inhibitor of Human Ether-A-Go-Go-Related Gene (HERG) Potassium Channels. J. Pharmacol. Exp. Ther. 2002, 300, 543–548. [Google Scholar] [CrossRef]
- Ridley, J.M.; Milnes, J.T.; Benest, A.V.; Masters, J.D.; Witchel, H.J.; Hancox, J.C. Characterisation of recombinant HERG K+ channel blockade by the Class Ia antiarrhythmic drug procainamide. Biochem. Biophys. Res. Commun. 2003, 306, 388–393. [Google Scholar] [CrossRef]
- Kuryshev, Y.A.; Ficker, E.; Wang, L.; Hawryluk, P.; Dennis, A.T.; Wible, B.A.; Brown, A.M.; Kang, J.; Chen, X.-L.; Sawamura, K.; et al. Pentamidine-Induced Long QT Syndrome and Block of hERG Trafficking. J. Pharmacol. Exp. Ther. 2004, 312, 316–323. [Google Scholar] [CrossRef]
- Katchman, A.N.; Koerner, J.; Tosaka, T.; Woosley, R.L.; Ebert, S.N. Comparative Evaluation of HERG Currents and QT Intervals following Challenge with Suspected Torsadogenic and Nontorsadogenic Drugs. J. Pharmacol. Exp. Ther. 2006, 316, 1098–1106. [Google Scholar] [CrossRef]
- Martin, R.L.; Su, Z.; Limberis, J.T.; Palmatier, J.D.; Cowart, M.D.; Cox, B.F.; Gintant, G.A. In vitro preclinical cardiac as-sessment of tolterodine and terodiline: Multiple factors predict the clinical experience. J. Cardiovasc. Pharmacol. 2006, 48, 199–206. [Google Scholar] [CrossRef]
- Duncan, R.S.; McPate, M.J.; Ridley, J.M.; Gao, Z.; James, A.F.; Leishman, D.J.; Leaney, J.L.; Witchel, H.J.; Hancox, J.C. Inhi-bition of the HERG Potassium Channel by the Tricyclic Antidepressant Doxepin. Biochem. Pharmacol. 2007, 74, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Toga, T.; Kohmura, Y.; Kawatsu, R. The 5-HT(4) Agonists Cisapride, Mosapride, and CJ-033466, a Novel Potent Compound, Exhibit Different Human Ether-A-Go-Go-Related Gene (hERG)-blocking Activities. J. Pharmacol. Sci. 2007, 105, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.-N.; Zou, A.-R.; Liao, Y.-H.; Du, Y.-M.; Wang, X.-P.; Li, L. Blockade of the human ether-a-go-go-related gene potassium channel by ketanserin. Sheng Li Xue Bao 2008, 60, 525–534. [Google Scholar] [PubMed]
- Mittelstadt, S.W.; Hemenway, C.L.; Craig, M.P.; Hove, J.R. Evaluation of zebrafish embryos as a model for assessing inhi-bition of hERG. J. Pharmacol. Toxicol. Methods 2008, 57, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.-H.; Hong, H.-K.; Chong, S.H.; Lee, H.S.; Choe, H. H1 antihistamine drug promethazine directly blocks hERG K+ channel. Pharmacol. Res. 2009, 60, 429–437. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, S.H.; Chu, D.; Hyun, J.W.; Choe, H.; Choi, B.H.; Jo, S.-H. Effects of the histamine H1 receptor antagonist hydroxyzine on hERG K+ channels and cardiac action potential duration. Acta Pharmacol. Sin. 2011, 32, 1128–1137. [Google Scholar] [CrossRef]
- El Harchi, A.; Zhang, Y.H.; Hussein, L.; Dempsey, C.E.; Hancox, J.C. Molecular determinants of hERG potassium channel inhibition by disopyramide. J. Mol. Cell. Cardiol. 2012, 52, 185–195. [Google Scholar] [CrossRef]
- Lee, H.-A.; Kim, K.-S.; Hyun, S.-A.; Park, S.-G.; Kim, S.J. Wide Spectrum of Inhibitory Effects of Sertraline on Cardiac Ion Channels. Korean J. Physiol. Pharmacol. 2012, 16, 327–332. [Google Scholar] [CrossRef]
- Takahara, A.; Fujiwara, K.; Ohtsuki, A.; Oka, T.; Namekata, I.; Tanaka, H. Effects of the antitussive drug cloperastine on ventricular repolarization in halothane-anesthetized guinea pigs. J. Pharmacol. Sci. 2012, 120, 165–175. [Google Scholar] [CrossRef]
- Lee, S.H.; Sung, M.J.; Lee, H.M.; Chu, D.; Hahn, S.J.; Jo, S.H.; Choe, H.; Choi, B.H. Blockade of HERG Human K+ Channels by the Antidepressant Drug Paroxetine. Biol. Pharm. Bull. 2014, 37, 1495–1504. [Google Scholar] [CrossRef] [Green Version]
- Chae, Y.J.; Lee, K.J.; Lee, H.J.; Sung, K.-W.; Jin-Sung, C.; Choi, J.-S.; Lee, E.H.; Hahn, S.J. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels. Eur. J. Pharmacol. 2015, 752, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Melgari, D.; Zhang, Y.; El Harchi, A.; Dempsey, C.E.; Hancox, J.C. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J. Mol. Cell. Cardiol. 2015, 86, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Colenso, C.K.; El Harchi, A.; Cheng, H.H.J.; Dempsey, C.E.; Hancox, J.C. Interactions between Amioda-rone and the hERG Potassium Channel Pore Determined With Mutagenesis and in Silico Docking. Biochem. Pharmacol. 2016, 113, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Tsubouchi, T.; Kunimatsu, T.; Tsujimoto, S.; Kiyoshi, A.; Katsura, Y.; Oku, S.; Chihara, K.; Mine, Y.; Yamada, T.; Shimizu, I.; et al. The in vitro pharmacology and non-clinical cardiovascular safety studies of a novel 5-HT 4 receptor agonist, DSP-6952. Eur. J. Pharmacol. 2018, 826, 96–105. [Google Scholar] [CrossRef]
- Cataldi, M.; Maurer, M.; Taglialatela, M.; Church, M.K. Cardiac safety of second-generation H1-antihistamines when up-dosed in chronic spontaneous urticaria. Clin. Exp. Allergy 2019, 49, 1615–1623. [Google Scholar] [CrossRef]
- Orvos, P.; Kohajda, Z.; Szlovák, J.; Gazdag, P.; Árpádffy-Lovas, T.; Tóth, D.; Geramipour, A.; Tálosi, L.; Jost, N.; Varró, A.; et al. Evaluation of Possible Proarrhythmic Potency: Comparison of the Effect of Dofetilide, Cisapride, Sotalol, Terfenadine, and Verapamil on hERG and Native IKr Currents and on Cardiac Action Potential. Toxicol. Sci. 2018, 168, 365–380. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, Q.; Epstein, M.L.; January, C.T. HERG channel dysfunction in human long QT syndrome. J. Biol. Chem. 1998, 273, 21061–21066. [Google Scholar] [CrossRef]
- Kang, J.; Wang, L.; Chen, X.L.; Triggle, D.J.; Rampe, D. Interactions of a series of fluoroquinolone anti-bacterial drugs with the human cardiac K+ channel hERG. Mol. Pharmacol. 2001, 59, 122–126. [Google Scholar] [CrossRef]
- Jones, B.C.; Hyland, R.; Ackland, M.; Tyman, C.A.; Smith, D.A. Interaction of Terfenadine and Its Primary Metabolites with Cyto-chrome P450 2D6. Drug Metab. Dispos. 1998, 26, 875–882. [Google Scholar]
- Honig, P.K.; Wortham, D.C.; Zamani, K.; Conner, D.P.; Mullin, J.C.; Cantilena, L.R. Terfenadine-ketoconazole interaction. Pharmacokinetic and electrocardiographic consequences. JAMA 1993, 269, 1513–1518. [Google Scholar] [CrossRef]
- Goto, A.; Sakamoto, K.; Hagiwara-Nagasawa, M.; Kambayashi, R.; Chiba, K.; Nunoi, Y.; Izumi-Nakaseko, H.A.; Sugiyama, A. Utilization of the Chronic Atrioventricular Block Cynomolgus Monkey as an in Vivo Model to Evaluate Drug Interac-tion-Associated Torsade De Pointes. J. Pharmacol. Sci. 2020, 142, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; Zhou, Z.; Gong, Q.; January, C.T. Blockage of the HERG human cardiac K+ channel by the gastrointestinal prokinetic agent cisapride. Am. J. Physiol. Circ. Physiol. 1997, 273, H2534–H2538. [Google Scholar] [CrossRef] [PubMed]
- Rampe, D.; Roy, M.-L.; Dennis, A.; Brown, A.M. A mechanism for the proarrhythmic effects of cisapride (Propulsid): High affinity blockade of the human cardiac potassium channel HERG. FEBS Lett. 1997, 417, 28–32. [Google Scholar] [CrossRef]
- Drolet, B.; Khalifa, M.; Daleau, P.; Hamelin, B.A.; Turgeon, J. Block of the Rapid Component of the Delayed Rectifier Po-tassium Current by the Prokinetic Agent Cisapride Underlies Drug-Related Lengthening of the QT Interval. Circulation 1998, 97, 204–210. [Google Scholar] [CrossRef] [Green Version]
Drug | Classification | Drug | Classification | ||
---|---|---|---|---|---|
1 | Amiodarone | Antiarrhythmic | 29 | Isradipine | Anti-hypertensive |
2 | Amitriptyline | Anti-depressant | 30 | Ketanserin | Anti-hypertensive |
3 | Astemizole | Antihistamine | 31 | Loratadine | Antihistaminic |
4 | Bepridil | Anti-anginal | 32 | Mesoridazine | Antipsychotic |
5 | Cetirizine | Antihistaminic | 33 | Mosapride | Peristaltic stimulant |
6 | Chlorpromazine | Antipsychotic | 34 | Nicotine | Anthelmintic |
7 | Ciprofloxacin | Anti-bacterial | 35 | Nifedipinde | Anti-anginal |
8 | Cisapride | Peristaltic stimulant | 36 | Nitrendipine | Anti-hypertensive |
9 | Clarithromycin | Anti-bacterial | 37 | Ondansetron | Antiemetic |
10 | Clozapine | Antipsychotic | 38 | Paroxetine | Anti-depressant |
11 | Cocaine | Topical anesthetic | 39 | Pentamidine | Anti-protozoal |
12 | Desipramine | Anti-depressant | 40 | Perhexiline | Diuretic |
13 | Diltiazem | Anti-anginal | 41 | Pimozide | Antipsychotic |
14 | Diphenhydramine | Antihistaminic | 42 | Procainamide | Cardiac depressant |
15 | Disopyramide | Cardiac depressant | 43 | Promethazine | Antihistaminic |
16 | Domperidone | Antiemetic | 44 | Prucalopride | Peristaltic stimulant |
17 | Doxepin | Anti-depressant | 45 | Pyrilamine | Antihistaminic |
18 | Droperidol | Antipsychotic | 46 | Quinidine | Cardiac depressant |
19 | Erythromycin | Anti-bacterial | 47 | Renzapride | Peristaltic stimulant |
20 | Fexofenadine | Antihistaminic | 48 | Sertraline | Anti-depressant |
21 | Flecainide | Cardiac depressant | 49 | Sotalol | Anti-anginal |
22 | Fluoxetine | Anti-depressant | 50 | Tamoxifen | Anti-estrogen |
23 | Glibenclamide | Anti-diabetic | 51 | Terodiline | Anti-anginal |
24 | Granisetron | Antiemetic | 52 | Terfenadine | Antihistaminic |
25 | Halofantrine | Anti-malarial | 53 | Thioridazine | Antipsychotic |
26 | Haloperidol | Antipsychotic | 54 | Verapamil | Anti-anginal |
27 | Hydroxyzine | Antihistaminic | |||
28 | Imipramine | Anti-depressant |
DRUG | Mulliken | NBO | MKS | MW | In Vitro IC50 (M) | |
---|---|---|---|---|---|---|
1 | Amiodarone | −0.79268 | −0.54778 | ND | 644.36 | 0.1178 [49]; 1.0 [40] (ZF) |
2 | Amitriptyline | −0.80091 | −0.23399 | 0.07330 | 278.42 | 10.0 [30] |
3 | Astemizole | −0.79546 | −0.55224 | −0.13528 | 459.59 | 0.001 [31]; 0.0009 [26]; 0.480 [28] |
4 | Bepridil | −0.78434 | −0.55278 | 0.07330 | 367.56 | 0.55 [31]; 0.6 [40] (ZF) |
5 | Cetirizine | −0.78551 | −0.54645 | −0.21160 | 355.46 | >30 [28] |
6 | Chlorpromazine | −0.79922 | −0.55743 | 0.06496 | 319.88 | 1.47 [30] |
7 | Ciprofloxacin | −0.80141 | −0.70264 | −0.37912 | 331.35 | 966 [31] |
8 | Cisapride | −0.79574 | −0.54571 | −0.04759 | 466.96 | 0.0067 [30]; 0065 [29]; 0.0024 [27]; 0.018 [52], 0.0094 [38] |
9 | Clarithromycin | −0.79433 | −0.16888 | −0.03182 | 748.98 | 720 [31] |
10 | Clozapine | −0.79097 | −0.55892 | 0.14914 | 293.39 | 0.32 [30] |
11 | Cocaine | −0.74627 | −0.55506 | −0.14587 | 304.37 | 7.2 [30] |
12 | Desipramine | −0.81479 | −0.70178 | −0.08777 | 267.40 | 1.39 [30] |
13 | Diltiazem | −0.80148 | −0.55903 | 0.01192 | 415.54 | 17 [31]; 17.3 [30] |
14 | Diphenhydramine | −0.80027 | −0.56729 | 0.08497 | 256.37 | 2.7 [45] |
15 | Disopyramide | −0.79334 | −0.54725 | −0.33518 | 312.44 | 25.7 [42] |
16 | Domperidone | −0.82296 | −0.56875 | 0.10563 | 426.93 | 0.16 [31] |
17 | Doxepin | −0.80126 | −0.12408 | −0.05770 | 280.39 | 6.5 ± 1.4 [37] |
18 | Droperidol | −0.80410 | −0.54607 | 0.10986 | 394.47 | 0.032 [31] |
19 | Erythromycin | −0.81967 | −0.17136 | 0.00521 | 734.95 | >>10 [31] |
20 | Fexofenadine | −0.82284 | −0.57374 | −0.17395 | 501.67 | 214 [51] |
21 | Flecainide | −0.81180 | −0.70384 | −0.37655 | 415.36 | 1.49 [48] |
22 | Fluoxetine | −0.81306 | −0.70083 | −0.25308 | 310.34 | 3.1 [31] |
23 | Glibenclamide | −0.87870 | −0.75840 | −0.79220 | 495.02 | 74 [29] |
24 | Granisetron | −0.79173 | −0.54915 | −0.28540 | 313.43 | 3.73 [30] |
25 | Halofantrine | −0.80869 | −0.54401 | 0.72309 | 501.44 | 0.2 [31]; 0.196 [27] |
26 | Haloperidol | −0.80358 | −0.54984 | −0.04346 | 376.88 | 0.0268 [27]; 0.0281 [29]; 0.063 [36] |
27 | Hydroxyzine | −0.79906 | −0.55469 | −0.02649 | 375.92 | 0.18 ± 0.02 [42] |
28 | Imipramine | −0.79841 | −0.55672 | 0.03611 | 281.42 | 3.4 [30] |
29 | Isradipine | −0.94620 | −0.55204 | −0.14381 | 386.43 | >10 [31] |
30 | Ketanserin | −0.79680 | −0.55016 | −0.22219 | 396.44 | 0.38 ± 0.04 [52] |
31 | Loratadine | −0.87400 | −0.62765 | −0.37319 | 383.90 | 0.17 [31]; 0.173 [30]; 4.0 [35] |
32 | Mesoridazine | −0.78787 | −0.54659 | −0.06959 | 403.59 | 0.32 [30] |
33 | Mosapride | −0.78990 | −0.55123 | 0.12172 | 422.91 | 4.8 [38] |
34 | Nicotine | −0.78335 | −0.55905 | −0.01477 | 163.24 | 244.8 [30] |
35 | Nifedipine | −1.18249 | −0.62345 | 0.01959 | 347.35 | >>50 [31] |
36 | Nitrendipine | −0.97682 | −0.70166 | −0.12265 | 361.38 | >>10 [31] |
37 | Ondansetron | −0.87858 | −0.60831 | 0.59556 | 280.35 | 0.81 [31]; 0.81 [30] |
38 | Paroxetine | −0.82135 | −0.70448 | −0.39771 | 330.38 | 0.45 [46] |
39 | Pentamidine | −0.90198 | −0.85219 | −0.93083 | 341.44 | 5–8 [34] |
40 | Perhexiline | −0.81614 | −0.69626 | −0.46765 | 278.50 | 7.8 [30] |
41 | Pimozide | −0.82589 | −0.57080 | −0.00933 | 462.57 | 0.018 [31]; 0.0546 [30]; 0.018 [29]; 0.015 [40] |
42 | Procainamide | −0.79334 | −0.55222 | −0.38558 | 236.34 | 139 [33]; 310 [40] |
43 | Promethazine | −0.79435 | −0.55243 | −0.05435 | 285.44 | 0.73 [41] |
44 | Prucalopride | −0.78997 | −0.54834 | −0.06131 | 368.89 | 0.57 [27]; 4.1 [42] |
45 | Pyrilamine | −0.80175 | −0.56007 | −0.18997 | 286.40 | 6.0 [35] |
46 | Quinidine | −0.80419 | −0.55906 | −0.08513 | 325.43 | 0.32 [28] |
47 | Renzapride | −0.78612 | −0.55461 | 0.03873 | 324.83 | 0.018 [27] |
48 | Sertraline | −0.80158 | −0.69988 | −0.34017 | 307.24 | 0.210 [35]; 0.70 [46] |
49 | Sotalol | −0.80926 | −0.69660 | −0.52732 | 273.38 | 343 [52] |
50 | Tamoxifen | −0.79866 | −0.56765 | 0.17060 | 372.53 | 1.2 [47] |
51 | Terodiline | −0.79403 | −0.67800 | −0.71526 | 282.45 | 0.375 +/− 0.004 [36] |
52 | Terfenadine | −0.79399 | −0.54866 | −0.00184 | 472.69 | 0.213 [30]; 0.300 [28]; ≤ 0.052 [35]; 0.165 and 0.031 [51] |
53 | Thioridazine | −0.81089 | −0.57002 | 0.20288 | 371.59 | 0.0332 [30]; 0.0357 [29]; 0.390 [35]; 0.033 [40] (ZF) |
54 | Verapamil | −0.80749 | −0.55449 | −0.05016 | 455.62 | 0.8 [30]; 0.143 [29]; 0.214 [51]; 0.14 [39] |
ZF = Zebrafish model |
Drug | Classification | Drug | Classification | ||
---|---|---|---|---|---|
55 | Azimilide | Class ΙΙΙ antiarrhythmic | 79 | MDL 74,156 | 5-HT3 antagonist |
56 | Bilastine | 2nd Gen antihistamine | 80 | Nicardipine | Anti-Anginal |
57 | Clozapine-N-oxide | Metabolite | 81 | Norastemizole | Antihistamine |
58 | Desmethyl-clozapine | Metabolite | 82 | Prenylamine | Calcium channel blocker |
59 | O-desmethyl-astemizole | Metabolite | 83 | Propafenone | Antiarrhythmic |
60 | Ebastine | 2nd Gen H1 antagonist | 84 | Rupatadine | 2nd Gen antihistamine |
61 | Carebastine | Active metabolite | 85 | Risperidone | Antipsychotic |
62 | Olanzapine | Antipsychotic | 86 | OHRisperidone | Metabolite |
63 | Desmethyl-olanzapine | Antipsychotic Metabolite | 87 | Sertindole | Antipsychotic |
64 | 2-OH-methyl-olanzapine | Antipsychotic Metabolite | 88 | Sildenafil | Erectile dysfunction |
65 | 2-Carboxy-Me-olanzapine | Antipsychotic Metabolite | Sparfloxacin | Antibiotic | |
66 | CJ-033466 | 5-HT4 partial agonist | 90 | Sumatriptan | Anti-migraine |
67 | Dofetilide | Treat atrial flutter | 91 | Ziprasidone | Antipsychotic |
68 | Dolasetron | 5-HT3 antagonist | |||
69 | DSP-6952 | 5-HT4 Receptor Agonist | |||
70 | Chlorphenamine | Antihistamine | |||
71 | E-4031 | Class III Antiarrhythmic | |||
72 | Endoxifen | Metabolite | |||
73 | Gatifloxacin | Antibiotic | |||
74 | Lidoflazine | Calcium channel blocker | |||
75 | Levofloxacin | Antibiotic | |||
76 | Mibefradil | for hypertension | |||
77 | Mexiletine | Antiarrhythmic agent | |||
78 | MK-499 | Class III Antiarrhythmic |
Comp. # | Drug | Mulliken | NBO | MW | cLogP | Estimate | IC50 |
---|---|---|---|---|---|---|---|
55-A | azimilide N1 | −0.77112 | −0.5513 | 457.95 | 2.35 | 0.1–1.0 | 0.58; 0.6 [1] |
55-B | azimilide N2 | −0.76740 | −0.5577 | --- | --- | --- | --- |
56 | Bilastine | −0.82271 | −0.5939 | 463.61 | 1.95 | >4.0 | 6.5–17.1 [51] |
57 | Clozapine-N-oxide | −0.53326 | −0.2343 | 342.82 | 3.71 | >7.0 | 133.3 [30] |
58 | Desmethyl-clozapine | −0.78796 | −0.7106 | 312.80 | 3.46 | 2.0–4.0 | 4.49 [30] |
59 | O-DesMe-astemizole | −0.77213 | −0.5507 | 444.54 | 5.50 | <0.1 | 0.01 [54] |
60 | Ebastine | −0.76819 | −0.5477 | 469.66 | 6.94 | <0.1 | 0.014; 0.30 [49] |
61 | Carebastine | −0.74827 | −0.6089 | 499.64 | 2.83 | >4.0 | No data |
62 | Olanzapine | −0.76581 | −0.5574 | 312.43 | 3.01 | 0.1–1.0 | 0.231 [30] |
63 | Desmethyl-olanzapine | −0.78776 | −0.7104 | 298.41 | 2.75 | >4.0 | 14.2 [30] |
64 | 2-OH-Me-olanzapine | −0.76572 | −0.5574 | 328.43 | 1.47 | 0.1–1.0 | 0.23, 11.6 [39] |
65 | 2-carboxy-olanzapine | −0.76382 | −0.5566 | 342.42 | 0.27 | >4.0 | No data |
66 | CJ−033466 | −0.77129 | −0.5458 | 377.91 | 3.26 | 1.0–2.0 | 2.6 [38] |
67 | Dofetilide | −0.78606 | −0.5572 | 441.56 | 1.99 | <0.1 | 0.007 [52] |
68 | Dolasetron | −0.77293 | −0.5571 | 324.37 | 1.18 | 4.0–6.0 | 5.95 [29] |
69 | DSP-6952 | −0.76758 | −0.5489 | 454.95 | −0.26 | 0.1–1.0 | 0.271 [50] |
70 | Chlorphenamine | −0.77488 | −0.5540 | 274.12 | 3.15 | 1.0–2.0 | 13 [35] |
71 | E-4031 | −0.77456 | −0.5493 | 401.52 | 1.90 | <0.1 | 0.077 [29] |
72 | Endoxifen | −0.82062 | −0.7235 | 373.49 | 5.56 | 2.0–4.0 | 1.6 [47] |
73 | Gatifloxacin | −0.83650 | −0.7429 | 375.39 | −0.27 | >6.0 | 50 [55] |
74-A | Lidoflazine N1 | −0.76575 | −0.5478 | 491.62 | 4.79 | <0.1 | ≤0.037 [35] |
74-B | Lidoflazine N2 | −0.79747 | −0.5730 | --- | --- | --- | --- |
75 | Levofloxacin | −0.82808 | −0.6079 | 361.37 | −0.51 | >4.0 | 915 [55] |
76 | Mibefradil | −0.77723 | −0.5471 | 495.63 | 6.36 | 1.0–2.0 | 1.43 [29] |
77 | Mexiletine | −0.84670 | −0.7498 | 179.26 | 2.57 | >6.0 | >> 10 [31] |
78 | MK-499 | −0.77257 | −0.5430 | 467.58 | 1.63 | <0.1 | 0.032 [31]; 0.090–0.107 |
79 | MDL 74,156 | ND | ND | 326.39 | 0.74 | 4.0–6.0 | 12 [31] |
80 | Nicardipine | −0.97746 | −0.55123 | 480.54 | 5.23 | >10 | No data |
81 | Norastemizole | −0.78844 | −0.7079 | 324.18 | 3.63 | <0.1 | 0.028 [54] |
82 | Prenylamine | −0.79110 | −0.6951 | 329.48 | 5.80 | 1.0–2.0 | 0.59 [35] |
83 | Propafenone | −0.82310 | −0.7145 | 341.44 | 3.64 | 1.0–2.0 | 2.0 [35] |
84 | Rupatadine | −0.75723 | −0.5493 | 415.96 | 5.06 | >4.0 | 8.1 [51] |
85 | Risperidone | −0.77038 | −0.5479 | 410.48 | 2.71 | <1.0 | 0.14 [31], 0.148 [30] |
86 | 9-hydroxy risperidone | −0.77050 | −0.5480 | 426.48 | 1.07 | <1.0 | 1.3 [29] |
87 | Sertindole | −0.82424 | −0.5942 | 440.94 | 5.27 | <0.1 | 0.024 [31] |
88 | Sildenafil | −0.76843 | −0.5594 | 474.58 | 1.98 | 4.0–6.0 | 3.3 [30] |
89 | Sparfloxacin | −0.80527 | −0.7131 | 392.4 | −0.60 | >4.0 | 18 [31] |
90 | Sumatriptan | −0.81664 | −0.57292 | 396.42 | 0.74 | Est | No data |
91 | Ziprasidone | −0.76987 | −0.5508 | 412.94 | 4.21 | 0.1–1.0 | 0.15 [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wempe, M.F. New Insights into Ion Channels: Predicting hERG-Drug Interactions. Int. J. Mol. Sci. 2022, 23, 10732. https://doi.org/10.3390/ijms231810732
Wempe MF. New Insights into Ion Channels: Predicting hERG-Drug Interactions. International Journal of Molecular Sciences. 2022; 23(18):10732. https://doi.org/10.3390/ijms231810732
Chicago/Turabian StyleWempe, Michael Fitzpatrick. 2022. "New Insights into Ion Channels: Predicting hERG-Drug Interactions" International Journal of Molecular Sciences 23, no. 18: 10732. https://doi.org/10.3390/ijms231810732
APA StyleWempe, M. F. (2022). New Insights into Ion Channels: Predicting hERG-Drug Interactions. International Journal of Molecular Sciences, 23(18), 10732. https://doi.org/10.3390/ijms231810732