Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer
Abstract
:1. Introduction
2. Nuclear Receptor Signaling
3. Nuclear Receptors in Esophageal Cancer
3.1. Androgen Receptors (ARs)
3.2. Estrogen Receptors (ERs)
3.3. Farnesoid X Receptors (FXRs)
3.4. Peroxisome Proliferator-Activated Receptors (PPARs)
3.5. Retinoic Acid Receptors (RARs)
3.6. Retinoid X Receptors (RXRs)
3.7. Vitamin D Receptor (VDR)
3.8. Other Nuclear Receptors
4. NRs as Biomarkers in Esophageal Cancer
5. Epigenetic Alterations in NRs in Esophageal Cancer
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-aza-dc-5-aza-20 | deoxycytidine |
4HPR | N-(4-hydroxyphenyl) retinamide |
AC | Adenocarcinoma |
AF | Activation function |
AR | Androgen receptors |
ARE | Androgen Responsive Elements |
ATRA | All-trans retinoic acid |
BA | Bile acid |
BE | Barrett’s esophagus |
BPDE | Benzo-[a]pyrene diol epoxide |
CCM | Columnar cell metaplasia |
CCK2 | Cholecystokinin 2 |
CDDP | Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II) |
COUP TF | Chicken ovalbumin upstream promoter transcription factor |
COX-2 | Cyclooxygenase-2 |
CRBP-1 | Cellular retinol-binding protein-1 |
CTD | C-terminal domain |
Da-Ea | Ethyl acetate extract of D. altaica |
DBD | DNA-binding domain |
DDP | Diamminedichloroplatinum |
DFS | Disease-free survival |
DHT | Dihydrotestosterone |
DNMT1 | DNA (cytosine-5)-methyltransferase1 |
DNMT3A | DNA (cytosine-5)-methyltransferase 3A |
DPN | Diarylpropionitrile |
E2 | 17β-estradiol |
EAC | Esophageal adenocarcinoma |
EC | Esophageal cancer |
EGFR | Epidermal growth factor receptor |
ER | Estrogen receptor |
EREs | Estrogen response elements |
ERK | Extracellular-signal regulated kinase |
ERRs | Estrogen related receptors |
ESCC | Esophageal squamous cell cancer |
ESR | Estrogen receptor |
FAK | Focal adhesion kinase |
FBXO32 | F-Box Protein 32 |
FDA | Food and drug administration |
FGFR | Fibroblast growth factor receptors |
FKBP5 | FK506-binding protein 5 |
FU | Fluorouracil |
FXR | Farnesoid X receptor |
GCA | Gastric cardia adenocarcinoma |
GERD | Gastroesophageal reflux disease |
GRs | Glucocorticoid receptors |
HGF | Hepatocyte growth factor |
HMOX1 | Heme Oxygenase 1 |
HREs | Hormone response elements |
HSP90 | Heat shock protein 90 |
IL-6 | Interleukin-6 |
JNK | c-Jun N-terminal kinases |
KLK3 | Kallikrein Related Peptidase 3 |
LBD | Ligand binding domain |
LCA | Lithocholic acid |
LDH | Lactate dehydrogenase |
LINE-1 | Long Interspersed Element-1 |
LXRs | Liver X receptor |
MAPK | Mitogen-activated protein kinase |
MMP | Matrix metalloproteinase |
MPP | Methyl-piperidinopyrazole |
MRTF | Master Regulator Transcription Factors |
NCoR | Nuclear receptor corepressor |
NF-κB | Nuclear factor kappa B |
NNK | 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone |
NQO | Nitroquinoline 1-oxide |
NRs | Nuclear receptors |
NR1H4 | Nuclear Receptor Subfamily 1 Group H Member 4 |
NR4A1 | Nuclear receptor 4A1 |
NTD | N-terminal domain |
OS | Overall survival |
PAR | Pregnane-activated receptor |
PCNA | Proliferating cell nuclear antigen |
PG | Prostaglandin |
PGC-1 | PPAR coactivator-1 |
PHTPP | 4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol |
PLIN2 | Perilipin 2 |
PPAR | Peroxisome Proliferator Activated Receptor |
PPRE | Peroxisome proliferator response element |
PPT | 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole |
PRs | Progesterone receptors |
PXR | Pregnane X receptor |
RA | Retinoic acid |
RAR | Retinoic acid receptor |
RAREs | Retinoic acid receptor elements |
RRIG1 | Retinoid receptor-induced gene-1 |
RXR | Retinoid X receptor |
SERMs | Selective estrogen receptor modulators |
SCC | Squamous cell carcinoma |
SIRT1 | Sirtulin 1 |
SMRT | Silencing mediator of retinoic acid and thyroid hormone receptor |
STAT3 | Signal Transducer and Activator of Transcription 3 |
SXR | Steroid and xenobiotic receptor |
TFs | Transcription factors |
TGR5 | Takeda G protein-coupled receptor 5 |
TIG1 | Tazarotene-induced gene-1 |
TLRs | Toll-like receptors |
TNM | Tumor nodes metastases |
TR | Thyroid hormone receptor |
TRO | Troglitazone |
TZD | Thiazolidinedione |
VDR | Vitamin D receptor |
VDR | Vitamin D receptor elements |
VEGFA | Vascular endothelial growth factor A |
WNT5A | Wnt Family Member 5A |
References
- Arnal, M.J.D.; Arenas, Á.F.; Arbeloa, Á.L. Esophageal cancer: Risk factors, screening and endoscopic treatment in Western and Eastern countries. World J. Gastroenterol. 2015, 21, 7933–7943. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.-L.; Yu, S.-J. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg. 2018, 41, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J. Emerging multimodality approaches to treat localized esophageal cancer. J. Natl. Compr. Cancer Netw. 2019, 17, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Nakajima, M. Treatments for esophageal cancer: A review. Gen. Thorac. Cardiovasc. Surg. 2013, 61, 330–335. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hirano, H.; Kato, K. Systemic treatment of advanced esophageal squamous cell carcinoma: Chemotherapy, molecular-targeting therapy and immunotherapy. Jpn. J. Clin. Oncol. 2019, 49, 412–420. [Google Scholar] [CrossRef]
- Short, M.W.; Burgers, K.; Fry, V. Esophageal cancer. Am. Fam. Physician 2017, 95, 22–28. [Google Scholar]
- Li, Y.; Li, Y.; Chen, X. NOTCH and esophageal squamous cell carcinoma. Adv. Exp. Med. Biol. 2021, 1287, 59–68. [Google Scholar] [CrossRef]
- Lam, A.K. Introduction: Esophageal squamous cell carcinoma—current status and future advances. In Esophageal Squamous Cell Carcinoma; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2020; Volume 2129, pp. 1–6. [Google Scholar] [CrossRef]
- Siersema, P.D. Esophageal cancer. Gastroenterol. Clin. N. Am. 2008, 37, 943–964. [Google Scholar] [CrossRef]
- Snider, E.J.; Freedberg, D.E.; Abrams, J.A. Potential role of the microbiome in Barrett’s esophagus and esophageal adenocarcinoma. Dig. Dis. Sci. 2016, 61, 2217–2225. [Google Scholar] [CrossRef] [Green Version]
- Layke, J.C.; Lopez, P.P. Esophageal cancer: A review and update. Am. Fam. Physician 2006, 73, 2187–2194. [Google Scholar]
- Wang, D.H.; Souza, R.F. Biology of Barrett’s esophagus and esophageal adenocarcinoma. Gastrointest. Endosc. Clin. 2011, 21, 25–38. [Google Scholar] [CrossRef]
- Ghavamzadeh, A.; Moussavi, A.; Jahani, M.; Rastegarpanah, M.; Iravani, M. Esophageal cancer in Iran. Semin. Oncol 2001, 28, 153–157. [Google Scholar] [CrossRef]
- Hou, X.; Wen, J.; Ren, Z.; Zhang, G. Non-coding RNAs: New biomarkers and therapeutic targets for esophageal cancer. Oncotarget 2017, 8, 43571. [Google Scholar] [CrossRef]
- Vendrely, V.; Launay, V.; Najah, H.; Smith, D.; Collet, D.; Gronnier, C. Prognostic factors in esophageal cancer treated with curative intent. Dig. Liver Dis. 2018, 50, 991–996. [Google Scholar] [CrossRef]
- Borggreve, A.S.; Kingma, B.F.; Domrachev, S.A.; Koshkin, M.A.; Ruurda, J.P.; van Hillegersberg, R.; Takeda, F.R.; Goense, L. Surgical treatment of esophageal cancer in the era of multimodality management. Ann. N. Y. Acad. Sci. 2018, 1434, 192–209. [Google Scholar] [CrossRef]
- Dupuis, O.; Ganem, G.; Béra, G.; Pointreau, Y.; Pradier, O.; Martin, P.; Mirabel, X.; Denis, F. Esophageal cancer. Cancer Radiother. 2010, 14, S74–S83. [Google Scholar] [CrossRef]
- Parama, D.; Boruah, M.; Yachna, K.; Rana, V.; Banik, K.; Harsha, C.; Thakur, K.K.; Dutta, U.; Arya, A.; Mao, X.; et al. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci. 2020, 260, 118182. [Google Scholar] [CrossRef]
- Fan, R.; Pineda-Torra, I.; Venteclef, N. Editorial: Nuclear receptors and coregulators in metabolism and immunity. Front. Endocrinol. 2021, 12, 828635. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Zarrabi, A.; Mostafavi, E.; Aref, A.R.; Sethi, G.; Wang, L.; Tergaonkar, V. Non-coding RNA-based regulation of inflammation. Semin. Immunol. 2022, 101606, in press. [Google Scholar] [CrossRef]
- Sawhney, M.; Rohatgi, N.; Kaur, J.; Shishodia, S.; Sethi, G.; Gupta, S.D.; Deo, S.V.; Shukla, N.K.; Aggarwal, B.B.; Ralhan, R. Expression of NF-kappaB parallels COX-2 expression in oral precancer and cancer: Association with smokeless tobacco. Int. J. Cancer 2007, 120, 2545–2556. [Google Scholar] [CrossRef]
- Ma, Z.; Xiang, X.; Li, S.; Xie, P.; Gong, Q.; Goh, B.C.; Wang, L. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin. Cancer Biol. 2022, 80, 379–390. [Google Scholar] [CrossRef]
- Wu, Q.; You, L.; Nepovimova, E.; Heger, Z.; Wu, W.; Kuca, K.; Adam, V. Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J. Hematol. Oncol. 2022, 15, 77. [Google Scholar] [CrossRef]
- Ren, B.; Kwah, M.X.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.; Wang, L.; Ong, P.S.; et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett. 2021, 515, 63–72. [Google Scholar] [CrossRef]
- Yang, Z.; Gimple, R.C.; Zhou, N.; Zhao, L.; Gustafsson, J.-Å.; Zhou, S. Targeting nuclear receptors for cancer therapy: Premises, promises, and challenges. Trends Cancer 2021, 7, 541–556. [Google Scholar] [CrossRef]
- Mazaira, G.I.; Zgajnar, N.R.; Lotufo, C.M.; Daneri-Becerra, C.; Sivils, J.C.; Soto, O.B.; Cox, M.B.; Galigniana, M.D. Nuclear receptors: A historical perspective. In Nuclear Receptors; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; Volume 1966, pp. 1–5. [Google Scholar] [CrossRef]
- Frigo, D.E.; Bondesson, M.; Williams, C. Nuclear receptors: From molecular mechanisms to therapeutics. Essays Biochem. 2021, 65, 847–856. [Google Scholar] [CrossRef]
- Zuo, H.; Wan, Y. Nuclear receptors in skeletal homeostasis. Curr. Top. Dev. Biol. 2017, 125, 71–107. [Google Scholar] [CrossRef]
- Sherman, M.H.; Downes, M.; Evans, R.M. Nuclear receptors as modulators of the tumor microenvironment. Cancer Prev. Res. 2012, 5, 3–10. [Google Scholar] [CrossRef]
- Cheng, H.S.; Lee, J.X.T.; Wahli, W.; Tan, N.S. Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment. Mol. Cancer 2019, 18, 51. [Google Scholar] [CrossRef]
- Cai, W.; Xiong Chen, Z.; Rane, G.; Satendra Singh, S.; Choo, Z.; Wang, C.; Yuan, Y.; Zea Tan, T.; Arfuso, F.; Yap, C.T.; et al. Wanted DEAD/H or alive: Helicases winding up in cancers. JNCI J. Natl. Cancer Inst. 2017, 109, djw278. [Google Scholar] [CrossRef]
- Moballegh Nasery, M.; Abadi, B.; Poormoghadam, D.; Zarrabi, A.; Keyhanvar, P.; Khanbabaei, H.; Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Sethi, G. Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules 2020, 25, 689. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, K.I.; Baek, S.H. Nuclear receptors and coregulators in inflammation and cancer. Cancer Lett. 2008, 267, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci. 2021, 267, 118814. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.B.; Graham, J.D.; Clarke, C.L. Emerging functional roles of nuclear receptors in breast cancer. J. Mol. Endocrinol. 2017, 58, R169–R190. [Google Scholar] [CrossRef]
- Gangwar, S.K.; Kumar, A.; Yap, K.C.; Jose, S.; Parama, D.; Sethi, G.; Kumar, A.P.; Kunnumakkara, A.B. Targeting nuclear receptors in lung cancer-novel therapeutic prospects. Pharmaceuticals 2022, 15, 624. [Google Scholar] [CrossRef]
- Gangwar, S.K.; Kumar, A.; Jose, S.; Alqahtani, M.S.; Abbas, M.; Sethi, G.; Kunnumakkara, A.B. Nuclear receptors in oral cancer-Emerging players in tumorigenesis. Cancer Lett. 2022, 536, 215666. [Google Scholar] [CrossRef]
- Girisa, S.; Henamayee, S.; Parama, D.; Rana, V.; Dutta, U.; Kunnumakkara, A.B. Targeting Farnesoid X receptor (FXR) for developing novel therapeutics against cancer. Mol. Biomed. 2021, 2, 21. [Google Scholar] [CrossRef]
- Thorne, J.L.; Campbell, M.J. Nuclear receptors and the Warburg effect in cancer. Int. J. Cancer 2015, 137, 1519–1527. [Google Scholar] [CrossRef]
- Garattini, E.; Bolis, M.; Paroni, G.; Fratelli, M.; Terao, M. Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2016, 7, 42661. [Google Scholar] [CrossRef]
- Valledor, A.F.; Ricote, M. Nuclear receptor signaling in macrophages. Biochem. Pharmacol. 2004, 67, 201–212. [Google Scholar] [CrossRef]
- Flanagan, J.J.; Neklesa, T.K. Targeting nuclear receptors with PROTAC degraders. Mol. Cell. Endocrinol. 2019, 493, 110452. [Google Scholar] [CrossRef]
- Ribeiro Filho, H.V.; Bernardi Videira, N.; Bridi, A.V.; Tittanegro, T.H.; Helena Batista, F.A.; de Carvalho Pereira, J.G.; de Oliveira, P.S.L.; Bajgelman, M.C.; Le Maire, A.; Figueira, A.C.M. Screening for PPAR non-agonist ligands followed by characterization of a hit, AM-879, with additional no-adipogenic and cdk5-mediated phosphorylation inhibition properties. Front. Endocrinol. 2018, 9, 11. [Google Scholar] [CrossRef]
- Roemer, S.C.; Donham, D.C.; Sherman, L.; Pon, V.H.; Edwards, D.P.; Churchill, M.E. Structure of the progesterone receptor-deoxyribonucleic acid complex: Novel interactions required for binding to half-site response elements. Mol. Endocrinol. 2006, 20, 3042–3052. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Schrödinger LLC. The PyMOL Molecular Graphics System; Schrödinger LLC.: New York, NY, USA, 2020. [Google Scholar]
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput.-Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef]
- Parris, T.Z. Pan-cancer analyses of human nuclear receptors reveal transcriptome diversity and prognostic value across cancer types. Sci. Rep. 2020, 10, 1873. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Liu, X.; Liu, Y.; Gu, Z.; Cao, H.; Dickerson, K.E.; Chen, M.; Chen, W.; Shao, Z. Noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignanciesnoncoding variants in hematopoietic malignancies. Cancer Discov. 2020, 10, 724–745. [Google Scholar] [CrossRef]
- Mirzaei, S.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Ranjbar, A.; Seyed Saleh, S.H.; Bagherian, M.; Sharifzadeh, S.O.; Hushmandi, K.; et al. Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett. 2021, 509, 63–80. [Google Scholar] [CrossRef]
- Cheng, J.T.; Wang, L.; Wang, H.; Tang, F.R.; Cai, W.Q.; Sethi, G.; Xin, H.W.; Ma, Z. Insights into biological role of LncRNAs in epithelial-mesenchymal transition. Cells 2019, 8, 1178. [Google Scholar] [CrossRef]
- Ong, P.S.; Wang, L.Z.; Dai, X.; Tseng, S.H.; Loo, S.J.; Sethi, G. Judicious toggling of mTOR activity to combat insulin resistance and cancer: Current evidence and perspectives. Front. Pharmacol. 2016, 7, 395. [Google Scholar] [CrossRef] [Green Version]
- Bordoloi, D.; Banik, K.; Shabnam, B.; Padmavathi, G.; Monisha, J.; Arfuso, F.; Dharmarajan, A.; Mao, X.; Lim, L.H.K.; Wang, L.; et al. TIPE Family of Proteins and Its Implications in Different Chronic Diseases. Int. J. Mol. Sci. 2018, 19, 2974. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Z.W.; Duan, W.; Qian, C.Y.; Wang, S.N.; Deng, M.S.; Zi, D.; Wang, J.M.; Mao, C.Y.; Song, G.; et al. Inhibiting the redox function of APE1 suppresses cervical cancer metastasis via disengagement of ZEB1 from E-cadherin in EMT. J. Exp. Clin. Cancer Res. 2021, 40, 220. [Google Scholar] [CrossRef]
- Zhang, F.; Dong, W.; Zeng, W.; Zhang, L.; Zhang, C.; Qiu, Y.; Wang, L.; Yin, X.; Zhang, C.; Liang, W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res. 2016, 18, 38. [Google Scholar] [CrossRef]
- Yin, H.; Que, R.; Liu, C.; Ji, W.; Sun, B.; Lin, X.; Zhang, Q.; Zhao, X.; Peng, Z.; Zhang, X.; et al. Survivin-targeted drug screening platform identifies a matrine derivative WM-127 as a potential therapeutics against hepatocellular carcinoma. Cancer Lett. 2018, 425, 54–64. [Google Scholar] [CrossRef]
- Huggins, C.; Hodges, C.V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J. Urol. 2002, 168, 9–12. [Google Scholar] [CrossRef]
- Leach, D.A.; Powell, S.M.; Bevan, C.L. Women in cancer thematic review: New roles for nuclear receptors in prostate cancer. Endocr.-Relat. Cancer 2016, 23, T85–T108. [Google Scholar] [CrossRef]
- Shishodia, S.; Sethi, G.; Ahn, K.S.; Aggarwal, B.B. Guggulsterone inhibits tumor cell proliferation, induces S-phase arrest, and promotes apoptosis through activation of c-Jun N-terminal kinase, suppression of Akt pathway, and downregulation of antiapoptotic gene products. Biochem. Pharmacol. 2007, 74, 118–130. [Google Scholar] [CrossRef]
- Sun, L.; Cai, J.; Gonzalez, F.J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 335–347. [Google Scholar] [CrossRef]
- Conzen, S.D. Minireview: Nuclear receptors and breast cancer. Mol. Endocrinol. 2008, 22, 2215–2228. [Google Scholar] [CrossRef]
- Jiang, J.; Yuan, J.; Hu, Z.; Xu, M.; Zhang, Y.; Long, M.; Fan, Y.; Montone, K.T.; Tanyi, J.L.; Tavana, O. Systematic pan-cancer characterization of nuclear receptors identifies potential cancer biomarkers and therapeutic targetsnuclear receptors in human cancers. Cancer Res. 2022, 82, 46–59. [Google Scholar] [CrossRef]
- Guan, B.; Li, H.; Yang, Z.; Hoque, A.; Xu, X. Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer 2013, 119, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Manu, K.A.; Shanmugam, M.K.; Li, F.; Chen, L.; Siveen, K.S.; Ahn, K.S.; Kumar, A.P.; Sethi, G. Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products. J. Mol. Med. 2014, 92, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, A.; Sundarraj, K.; Arfuso, F.; Sethi, G.; Perumal, E. Dysregulation of Nrf2 in hepatocellular carcinoma: Role in cancer progression and chemoresistance. Cancers 2018, 10, 481. [Google Scholar] [CrossRef] [PubMed]
- Sethi, G.; Ahn, K.S.; Sandur, S.K.; Lin, X.; Chaturvedi, M.M.; Aggarwal, B.B. Indirubin enhances tumor necrosis factor-induced apoptosis through modulation of nuclear factor-kappa B signaling pathway. J. Biol. Chem. 2006, 281, 23425–23435. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, J.H.; Sethi, G.; Kim, C.; Baek, S.H.; Nam, D.; Chung, W.S.; Kim, S.H.; Shim, B.S.; Ahn, K.S. Bergamottin, a natural furanocoumarin obtained from grapefruit juice induces chemosensitization and apoptosis through the inhibition of STAT3 signaling pathway in tumor cells. Cancer Lett. 2014, 354, 153–163. [Google Scholar] [CrossRef]
- Khatoon, E.; Banik, K.; Harsha, C.; Sailo, B.L.; Thakur, K.K.; Khwairakpam, A.D.; Vikkurthi, R.; Devi, T.B.; Gupta, S.C.; Kunnumakkara, A.B. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin. Cancer Biol. 2022, 80, 306–339. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Ahn, K.S.; Hsu, A.; Woo, C.C.; Yuan, Y.; Tan, K.H.B.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Koh, A.P.F.; et al. Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front. Pharmacol. 2018, 9, 1294. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ho, P.C.; Wong, F.C.; Sethi, G.; Wang, L.Z.; Goh, B.C. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett. 2015, 362, 8–14. [Google Scholar] [CrossRef]
- Ahn, K.S.; Sethi, G.; Chaturvedi, M.M.; Aggarwal, B.B. Simvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, suppresses osteoclastogenesis induced by receptor activator of nuclear factor-kappaB ligand through modulation of NF-kappaB pathway. Int. J. Cancer 2008, 123, 1733–1740. [Google Scholar] [CrossRef]
- Awasthee, N.; Rai, V.; Chava, S.; Nallasamy, P.; Kunnumakkara, A.B.; Bishayee, A.; Chauhan, S.C.; Challagundla, K.B.; Gupta, S.C. Targeting IkappaappaB kinases for cancer therapy. Semin. Cancer Biol. 2019, 56, 12–24. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Bordoloi, D.; Sailo, B.L.; Roy, N.K.; Thakur, K.K.; Banik, K.; Shakibaei, M.; Gupta, S.C.; Aggarwal, B.B. Cancer drug development: The missing links. Exp. Biol. Med. 2019, 244, 663–689. [Google Scholar] [CrossRef] [PubMed]
- Banik, K.; Harsha, C.; Bordoloi, D.; Lalduhsaki Sailo, B.; Sethi, G.; Leong, H.C.; Arfuso, F.; Mishra, S.; Wang, L.; Kumar, A.P.; et al. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett. 2018, 416, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Banik, K.; Ranaware, A.M.; Deshpande, V.; Nalawade, S.P.; Padmavathi, G.; Bordoloi, D.; Sailo, B.L.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol. Res. 2019, 144, 192–209. [Google Scholar] [CrossRef] [PubMed]
- Banik, K.; Ranaware, A.M.; Harsha, C.; Nitesh, T.; Girisa, S.; Deshpande, V.; Fan, L.; Nalawade, S.P.; Sethi, G.; Kunnumakkara, A.B. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacol. Res. 2020, 153, 104635. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.S.; Sethi, G.; Aggarwal, B.B. Simvastatin potentiates TNF-α-induced apoptosis through the down-regulation of NF-kappaB-dependent antiapoptotic gene products: Role of IkappaBα kinase and TGF-β-activated kinase-1. J. Immunol. 2007, 178, 2507–2516. [Google Scholar] [CrossRef]
- Khwairakpam, A.D.; Bordoloi, D.; Thakur, K.K.; Monisha, J.; Arfuso, F.; Sethi, G.; Mishra, S.; Kumar, A.P.; Kunnumakkara, A.B. Possible use of Punica granatum (Pomegranate) in cancer therapy. Pharmacol. Res. 2018, 133, 53–64. [Google Scholar] [CrossRef]
- Choudhury, B.; Kandimalla, R.; Bharali, R.; Monisha, J.; Kunnumakara, A.B.; Kalita, K.; Kotoky, J. Anticancer activity of garcinia morella on T-Cell murine lymphoma via apoptotic induction. Front. Pharmacol. 2016, 7, 3. [Google Scholar] [CrossRef]
- Gopi, S.; Jacob, J.; Varma, K.; Jude, S.; Amalraj, A.; Arundhathy, C.A.; George, R.; Sreeraj, T.R.; Divya, C.; Kunnumakkara, A.B.; et al. Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label parallel-arm study. Phytother. Res. 2017, 31, 1883–1891. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Nair, A.S.; Ahn, K.S.; Pandey, M.K.; Yi, Z.; Liu, M.; Aggarwal, B.B. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor β-activated kinase-1-mediated NF-κB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood 2007, 109, 5112–5121. [Google Scholar] [CrossRef]
- Thomas, D.; Govindhan, S.; Baiju, E.C.; Padmavathi, G.; Kunnumakkara, A.B.; Padikkala, J. Cyperus rotundus L. prevents non-steroidal anti-inflammatory drug-induced gastric mucosal damage by inhibiting oxidative stress. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 485–490. [Google Scholar] [CrossRef]
- Muralimanoharan, S.B.; Kunnumakkara, A.B.; Shylesh, B.; Kulkarni, K.H.; Haiyan, X.; Ming, H.; Aggarwal, B.B.; Rita, G.; Kumar, A.P. Butanol fraction containing berberine or related compound from nexrutine inhibits NFkappaB signaling and induces apoptosis in prostate cancer cells. Prostate 2009, 69, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Kunnumakkara, A.B. Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine; World Scientific: Singapore, 2009. [Google Scholar]
- Kunnumakkara, A.B.; Koca, C.; Dey, S.; Gehlot, P.; Yodkeeree, S.; Danda, D.; Sung, B.; Aggarwal, B.B. Traditional uses of spices: An overview. In Molecular Targets and Therapeutic Uses of Spices; World Scientific Publishing: Singapore, 2009; pp. 1–24. [Google Scholar] [CrossRef]
- Nair, A.S.; Shishodia, S.; Ahn, K.S.; Kunnumakkara, A.B.; Sethi, G.; Aggarwal, B.B. Deguelin, an Akt inhibitor, suppresses IkappaBα kinase activation leading to suppression of NF-κB-regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion. J. Immunol. 2006, 177, 5612–5622. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, C.; Kim, S.H.; Sethi, G.; Ahn, K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015, 360, 280–293. [Google Scholar] [CrossRef]
- Bordoloi, D.; Roy, N.K.; Monisha, J.; Padmavathi, G.; Kunnumakkara, A.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far. Recent Pat. Anti-Cancer Drug Discov. 2016, 11, 67–97. [Google Scholar] [CrossRef]
- Babu, B.H.; Jayram, H.N.; Nair, M.G.; Ajaikumar, K.B.; Padikkala, J. Free radical scavenging, antitumor and anticarcinogenic activity of gossypin. J. Exp. Clin. Cancer Res. 2003, 22, 581–589. [Google Scholar]
- Buhrmann, C.; Shayan, P.; Banik, K.; Kunnumakkara, A.B.; Kubatka, P.; Koklesova, L.; Shakibaei, M. Targeting NF-kappaB signaling by Calebin A, a compound of turmeric, in multicellular tumor microenvironment: Potential role of apoptosis induction in crc cells. Biomedicines 2020, 8, 236. [Google Scholar] [CrossRef]
- Khwairakpam, A.D.; Damayenti, Y.D.; Deka, A.; Monisha, J.; Roy, N.K.; Padmavathi, G.; Kunnumakkara, A.B. Acorus calamus: A bio-reserve of medicinal values. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 107–122. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Sung, B.; Ravindran, J.; Diagaradjane, P.; Deorukhkar, A.; Dey, S.; Koca, C.; Tong, Z.; Gelovani, J.G.; Guha, S.; et al. Zyflamend suppresses growth and sensitizes human pancreatic tumors to gemcitabine in an orthotopic mouse model through modulation of multiple targets. Int. J. Cancer 2012, 131, E292–E303. [Google Scholar] [CrossRef]
- Lee, J.H.; Chinnathambi, A.; Alharbi, S.A.; Shair, O.H.M.; Sethi, G.; Ahn, K.S. Farnesol abrogates epithelial to mesenchymal transition process through regulating Akt/mTOR pathway. Pharmacol. Res. 2019, 150, 104504. [Google Scholar] [CrossRef]
- Rajendran, P.; Ong, T.H.; Chen, L.; Li, F.; Shanmugam, M.K.; Vali, S.; Abbasi, T.; Kapoor, S.; Sharma, A.; Kumar, A.P.; et al. Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin. Cancer Res. 2011, 17, 1425–1439. [Google Scholar] [CrossRef] [Green Version]
- Mastron, J.K.; Siveen, K.S.; Sethi, G.; Bishayee, A. Silymarin and hepatocellular carcinoma: A systematic, comprehensive, and critical review. Anticancer Drugs 2015, 26, 475–486. [Google Scholar] [CrossRef]
- Kizaibek, M.; Wubuli, A.; Gu, Z.; Bahetjan, D.; Tursinbai, L.; Nurhamit, K.; Chen, B.; Wang, J.; Tahan, O.; Cao, P. Effects of an ethyl acetate extract of Daphne altaica stem bark on the cell cycle, apoptosis and expression of PPARγ in Eca109 human esophageal carcinoma cells. Mol. Med. Rep. 2020, 22, 1400–1408. [Google Scholar] [CrossRef]
- Glass, C.K.; Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000, 14, 121–141. [Google Scholar] [CrossRef]
- Wagner, B.L.; Valledor, A.F.; Shao, G.; Daige, C.L.; Bischoff, E.D.; Petrowski, M.; Jepsen, K.; Baek, S.H.; Heyman, R.A.; Rosenfeld, M.G. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol. Cell. Biol. 2003, 23, 5780–5789. [Google Scholar] [CrossRef]
- Hörlein, A.J.; Näär, A.M.; Heinzel, T.; Torchia, J.; Gloss, B.; Kurokawa, R.; Ryan, A.; Kamei, Y.; Söderström, M.; Glass, C.K. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995, 377, 397–404. [Google Scholar] [CrossRef]
- Jonathan, M.-C.; Adrián, S.-H.; Gonzalo, A. Type II nuclear receptors with potential role in Alzheimer disease. Mol. Asp. Med. 2021, 78, 100940. [Google Scholar] [CrossRef]
- Bain, D.L.; Heneghan, A.F.; Connaghan-Jones, K.D.; Miura, M.T. Nuclear receptor structure: Implications for function. Annu. Rev. Physiol. 2007, 69, 201–220. [Google Scholar] [CrossRef]
- Carpenter, K.D.; Korach, K.S. Potential biological functions emerging from the different estrogen receptors. Ann. N. Y. Acad. Sci. 2006, 1092, 361–373. [Google Scholar] [CrossRef]
- Zhao, C.; Dahlman-Wright, K.; Gustafsson, J.-Å. Estrogen receptor β: An overview and update. Nucl. Recept. Signal. 2008, 6, e003. [Google Scholar] [CrossRef]
- Mark, M.; Ghyselinck, N.B.; Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 2009, 7, e002. [Google Scholar] [CrossRef] [Green Version]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Pyper, S.R.; Viswakarma, N.; Yu, S.; Reddy, J.K. PPARα: Energy combustion, hypolipidemia, inflammation and cancer. Nucl. Recept. Signal. 2010, 8, e002. [Google Scholar] [CrossRef] [PubMed]
- Granner, D.K.; Wang, J.-C.; Yamamoto, K.R. Regulatory actions of glucocorticoid hormones: From organisms to mechanisms. Adv. Exp. Med. Biol. 2015, 872, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Janani, C.; Kumari, B.R. PPAR gamma gene—A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef]
- Liu, L.; Ahn, K.S.; Shanmugam, M.K.; Wang, H.; Shen, H.; Arfuso, F.; Chinnathambi, A.; Alharbi, S.A.; Chang, Y.; Sethi, G.; et al. Oleuropein induces apoptosis via abrogating NF-κB activation cascade in estrogen receptor-negative breast cancer cells. J. Cell. Biochem. 2019, 120, 4504–4513. [Google Scholar] [CrossRef]
- McKenna, N.J. Research resources for nuclear receptor signaling pathways. Mol. Pharmacol. 2016, 90, 153–159. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, Y.; Meyer, C.; Geistlinger, T.; Lupien, M.; Wang, Q.; Liu, T.; Zhang, Y.; Brown, M.; Liu, X.S. A comprehensive view of nuclear receptor cancer cistromesa comprehensive view of nuclear receptor cancer cistromes. Cancer Res. 2011, 71, 6940–6947. [Google Scholar] [CrossRef]
- Bharathkumar, H.; Mohan, C.D.; Ananda, H.; Fuchs, J.E.; Li, F.; Rangappa, S.; Surender, M.; Bulusu, K.C.; Girish, K.S.; Sethi, G.; et al. Microwave-assisted synthesis, characterization and cytotoxic studies of novel estrogen receptor α ligands towards human breast cancer cells. Bioorg. Med. Chem. Lett. 2015, 25, 1804–1807. [Google Scholar] [CrossRef]
- Nacusi, L.P.; Debes, J.D. Primers on molecular pathways: Nuclear receptors in pancreatic cancer: The ligand-independent way. Pancreatology 2008, 8, 422–424. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- UniProt, Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Huang, H.; Huang, W.; Chen, Y.; McGarvey, P.B.; Wu, C.H.; Arighi, C.N.; UniProt, C. A crowdsourcing open platform for literature curation in UniProt. PLoS Biol. 2021, 19, e3001464. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, T.; Zhong, X.; Cheng, C. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2. Tumor Biol. 2015, 36, 5859–5864. [Google Scholar] [CrossRef]
- Dong, H.; Xu, J.; Li, W.; Gan, J.; Lin, W.; Ke, J.; Jiang, J.; Du, L.; Chen, Y.; Zhong, X. Reciprocal androgen receptor/interleukin-6 crosstalk drives oesophageal carcinoma progression and contributes to patient prognosis. J. Pathol. 2017, 241, 448–462. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, S.-W.; Niu, Y.; Chen, L.; Liu, S.; Ma, T.; Chen, X.; Xu, L.; Su, Z.; Chen, H. Expression of estrogen receptor α and β in esophageal squamous cell carcinoma. Oncol. Rep. 2013, 30, 2771–2776. [Google Scholar] [CrossRef]
- Al-Khyatt, W.; Tufarelli, C.; Khan, R.; Iftikhar, S.Y. Selective oestrogen receptor antagonists inhibit oesophageal cancer cell proliferation in vitro. BMC Cancer 2018, 18, 121. [Google Scholar] [CrossRef]
- Zuguchi, M.; Miki, Y.; Onodera, Y.; Fujishima, F.; Takeyama, D.; Okamoto, H.; Miyata, G.; Sato, A.; Satomi, S.; Sasano, H. Estrogen receptor α and β in esophageal squamous cell carcinoma. Cancer Sci. 2012, 103, 1348–1355. [Google Scholar] [CrossRef]
- Liu, L.; Chirala, M.; Younes, M. Expression of estrogen receptor-β isoforms in Barrett’s metaplasia, dysplasia and esophageal adenocarcinoma. Anticancer Res. 2004, 24, 2919–2924. [Google Scholar]
- Kalayarasan, R.; Ananthakrishnan, N.; Kate, V.; Basu, D. Estrogen and progesterone receptors in esophageal carcinoma. Dis. Esophagus 2008, 21, 298–303. [Google Scholar] [CrossRef]
- Wang, Q.-M.; Qi, Y.-J.; Jiang, Q.; Ma, Y.-F.; Wang, L.-D. Relevance of serum estradiol and estrogen receptor β expression from a high-incidence area for esophageal squamous cell carcinoma in China. Med. Oncol. 2011, 28, 188–193. [Google Scholar] [CrossRef]
- De Gottardi, A.; Dumonceau, J.M.; Bruttin, F.; Vonlaufen, A.; Morard, I.; Spahr, L.; Rubbia-Brandt, L.; Frossard, J.L.; Dinjens, W.N.; Rabinovitch, P.S.; et al. Expression of the bile acid receptor FXR in Barrett’s esophagus and enhancement of apoptosis by guggulsterone in vitro. Mol. Cancer 2006, 5, 48. [Google Scholar] [CrossRef]
- Nortunen, M.; Vakiparta, N.; Porvari, K.; Saarnio, J.; Karttunen, T.J.; Huhta, H. Pathophysiology of reflux oesophagitis: Role of Toll-like receptors 2 and 4 and Farnesoid X receptor. Virchows Arch. 2021, 479, 285–293. [Google Scholar] [CrossRef]
- Terashita, Y.; Sasaki, H.; Haruki, N.; Nishiwaki, T.; Ishiguro, H.; Shibata, Y.; Kudo, J.; Konishi, S.; Kato, J.; Koyama, H.; et al. Decreased peroxisome proliferator-activated receptor gamma gene expression is correlated with poor prognosis in patients with esophageal cancer. Jpn. J. Clin. Oncol. 2002, 32, 238–243. [Google Scholar] [CrossRef]
- Konturek, P.C.; Nikiforuk, A.; Kania, J.; Raithel, M.; Hahn, E.G.; Muhldorfer, S. Activation of NFκB represents the central event in the neoplastic progression associated with Barrett’s esophagus: A possible link to the inflammation and overexpression of COX-2, PPARγ and growth factors. Dig. Dis. Sci. 2004, 49, 1075–1083. [Google Scholar] [CrossRef]
- Takahashi, H.; Fujita, K.; Fujisawa, T.; Yonemitsu, K.; Tomimoto, A.; Ikeda, I.; Yoneda, M.; Masuda, T.; Schaefer, K.; Saubermann, L.J.; et al. Inhibition of peroxisome proliferator-activated receptor gamma activity in esophageal carcinoma cells results in a drastic decrease of invasive properties. Cancer Sci. 2006, 97, 854–860. [Google Scholar] [CrossRef]
- Al-Taie, O.H.; Graf, T.; Illert, B.; Katzenberger, T.; Mörk, H.; Kraus, M.R.; Barthelmes, H.U.; Scheurlen, M.; Seufert, J. Differential effects of PPARγ activation by the oral antidiabetic agent pioglitazone in Barrett’s carcinoma in vitro and in vivo. J. Gastroenterol. 2009, 44, 919–929. [Google Scholar] [CrossRef]
- Wu, K.; Hu, Y.; Yan, K.; Qi, Y.; Zhang, C.; Zhu, D.; Liu, D.; Zhao, S. microRNA-10b confers cisplatin resistance by activating AKT/mTOR/P70S6K signaling via targeting PPARγ in esophageal cancer. J. Cell. Physiol. 2020, 235, 1247–1258. [Google Scholar] [CrossRef]
- van de Winkel, A.; Menke, V.; Capello, A.; Moons, L.M.; Pot, R.G.; van Dekken, H.; Siersema, P.D.; Kusters, J.G.; van der Laan, L.J.; Kuipers, E.J. Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett’s esophagus and esophageal adenocarcinoma. BMC Gastroenterol. 2011, 11, 108. [Google Scholar] [CrossRef]
- Lord, R.V.; Tsai, P.I.; Danenberg, K.D.; Peters, J.H.; Demeester, T.R.; Tsao-Wei, D.D.; Groshen, S.; Salonga, D.; Park, J.M.; Crookes, P.F.; et al. Retinoic acid receptor-α messenger RNA expression is increased and retinoic acid receptor-γ expression is decreased in Barrett’s intestinal metaplasia, dysplasia, adenocarcinoma sequence. Surgery 2001, 129, 267–276. [Google Scholar] [CrossRef]
- Mao, X.M.; Li, H.; Zhang, X.Y.; Zhou, P.; Fu, Q.R.; Chen, Q.E.; Shen, J.X.; Liu, Y.; Chen, Q.X.; Shen, D.Y. Retinoic acid receptor α knockdown suppresses the tumorigenicity of esophageal carcinoma via Wnt/β-catenin pathway. Dig. Dis. Sci. 2018, 63, 3348–3358. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Jin, Y.L.; Fu, J.; Huang, H.; Chen, S.Z.; Qu, P.; Tian, H.M.; Liu, Z.Y.; Zhang, W. The abnormal expression of retinoic acid receptor-β, p 53 and Ki67 protein in normal, premalignant and malignant esophageal tissues. World J. Gastroenterol. 2002, 8, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, S.L.; Li, Y.; Meng, M.; Qin, C.Y. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone induces retinoic acid receptor β hypermethylation through DNA methyltransferase 1 accumulation in esophageal squamous epithelial cells. Asian Pac. J. Cancer Prev. 2012, 13, 2207–2212. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, L.; Ding, F.; Li, J.; Guo, M.; Li, W.; Wang, Y.; Yu, Z.; Zhan, Q.; Wu, M.; et al. 5-Aza-2′-deoxycytidine induces retinoic acid receptor-β2 demethylation and growth inhibition in esophageal squamous carcinoma cells. Cancer Lett. 2005, 230, 271–283. [Google Scholar] [CrossRef]
- Liu, Z.M.; Ding, F.; Guo, M.Z.; Zhang, L.Y.; Wu, M.; Liu, Z.H. Downregulation of retinoic acid receptor-β2 expression is linked to aberrant methylation in esophageal squamous cell carcinoma cell lines. World J. Gastroenterol. 2004, 10, 771–775. [Google Scholar] [CrossRef]
- Xu, X.C.; Lee, J.J.; Wu, T.T.; Hoque, A.; Ajani, J.A.; Lippman, S.M. Increased retinoic acid receptor-β4 correlates in vivo with reduced retinoic acid receptor-β2 in esophageal squamous cell carcinoma. Cancer Epidemiol. Biomark. Prev. 2005, 14, 826–829. [Google Scholar] [CrossRef]
- Liang, Z.D.; Lippman, S.M.; Wu, T.T.; Lotan, R.; Xu, X.C. RRIG1 mediates effects of retinoic acid receptor β2 on tumor cell growth and gene expression through binding to and inhibition of RhoA. Cancer Res. 2006, 66, 7111–7118. [Google Scholar] [CrossRef]
- Trowbridge, R.; Sharma, P.; Hunter, W.J.; Agrawal, D.K. Vitamin D receptor expression and neoadjuvant therapy in esophageal adenocarcinoma. Exp. Mol. Pathol. 2012, 93, 147–153. [Google Scholar] [CrossRef]
- Zhou, Z.; Xia, Y.; Bandla, S.; Zakharov, V.; Wu, S.; Peters, J.; Godfrey, T.E.; Sun, J. Vitamin D receptor is highly expressed in precancerous lesions and esophageal adenocarcinoma with significant sex difference. Hum. Pathol. 2014, 45, 1744–1751. [Google Scholar] [CrossRef]
- Janmaat, V.T.; Van De Winkel, A.; Peppelenbosch, M.P.; Spaander, M.C.; Uitterlinden, A.G.; Pourfarzad, F.; Tilanus, H.W.; Rygiel, A.M.; Moons, L.M.; Arp, P.P.; et al. Vitamin D receptor polymorphisms are associated with reduced esophageal vitamin D receptor expression and reduced esophageal adenocarcinoma risk. Mol. Med. 2015, 21, 346–354. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, S.; Guo, Y.; Wei, X.; Zhang, Y.; Yang, Y.; Zhang, H.; Ma, M.; Yang, W. Stromal expression of JNK1 and VDR is associated with the prognosis of esophageal squamous cell carcinoma. Clin. Transl. Oncol. 2018, 20, 1185–1195. [Google Scholar] [CrossRef]
- Smith, E.; Palethorpe, H.M.; Ruszkiewicz, A.R.; Edwards, S.; Leach, D.A.; Underwood, T.J.; Need, E.F.; Drew, P.A. Androgen receptor and androgen-responsive gene FKBP5 are independent prognostic indicators for esophageal adenocarcinoma. Dig. Dis. Sci. 2016, 61, 433–443. [Google Scholar] [CrossRef]
- Palethorpe, H.M.; Drew, P.A.; Smith, E. Androgen signaling in esophageal adenocarcinoma cell lines in vitro. Dig. Dis. Sci. 2017, 62, 3402–3414. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Q.; Fu, S.; Zheng, Z. Estrogen receptors in regulating cell proliferation of esophageal squamous cell carcinoma: Involvement of intracellular Ca2+ signaling. Pathol. Oncol. Res. 2017, 23, 329–334. [Google Scholar] [CrossRef]
- Sukocheva, O.; Wee, C.; Ansar, A.; Hussey, D.; Watson, D. Effect of estrogen on growth and apoptosis in esophageal adenocarcinoma cells. Dis. Esophagus 2013, 26, 628–635. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, H.; Yao, D.; Zhang, X.; Chen, W.D.; Wang, Y.D. Activation of FXR suppresses esophageal squamous cell carcinoma through antagonizing ERK1/2 signaling pathway. Cancer Manag. Res. 2021, 13, 5907–5918. [Google Scholar] [CrossRef]
- Rumi, M.A.; Sato, H.; Ishihara, S.; Ortega, C.; Kadowaki, Y.; Kinoshita, Y. Growth inhibition of esophageal squamous carcinoma cells by peroxisome proliferator-activated receptor-γ ligands. J. Lab. Clin. Med. 2002, 140, 17–26. [Google Scholar] [CrossRef]
- Fujii, D.; Yoshida, K.; Tanabe, K.; Hihara, J.; Toge, T. The ligands of peroxisome proliferator-activated receptor (PPAR) gamma inhibit growth of human esophageal carcinoma cells through induction of apoptosis and cell cycle arrest. Anticancer Res. 2004, 24, 1409–1416. [Google Scholar]
- Sawayama, H.; Ishimoto, T.; Watanabe, M.; Yoshida, N.; Sugihara, H.; Kurashige, J.; Hirashima, K.; Iwatsuki, M.; Baba, Y.; Oki, E. Small molecule agonists of PPAR-γ exert therapeutic effects in esophageal cancer. Cancer Res. 2014, 74, 575–585. [Google Scholar] [CrossRef]
- Cui, L.; Xu, F.; Wu, K.; Li, L.; Qiao, T.; Li, Z.; Chen, T.; Sun, C. Anticancer effects and possible mechanisms of lycopene intervention on N-methylbenzylnitrosamine induced esophageal cancer in F344 rats based on PPARγ. Eur. J. Pharmacol. 2020, 881, 173230. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, B.; Yang, Q.; Pan, Y.; Yang, W.; Freedland, S.J.; Ding, L.W.; Freeman, M.R.; Breunig, J.J.; Bhowmick, N.A.; et al. A transcriptional regulatory loop of master regulator transcription factors, PPARG, and fatty acid synthesis promotes esophageal adenocarcinoma. Cancer Res. 2021, 81, 1216–1229. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Shimada, Y.; Itami, A.; Ito, T.; Kawamura, J.; Kawabe, A.; Kaganoi, J.; Maeda, M.; Watanabe, G.; Imamura, M. Growth inhibition through activation of peroxisome proliferator-activated receptor γ in human oesophageal squamous cell carcinoma. Eur. J. Cancer 2003, 39, 2239–2246. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Xu, X.C. Effect of benzo[a]pyrene diol epoxide on expression of retinoic acid receptor-β in immortalized esophageal epithelial cells and esophageal cancer cells. Biochem. Biophys. Res. Commun. 2001, 281, 872–877. [Google Scholar] [CrossRef]
- Li, M.; Song, S.; Lippman, S.M.; Zhang, X.K.; Liu, X.; Lotan, R.; Xu, X.C. Induction of retinoic acid receptor-β suppresses cyclooxygenase-2 expression in esophageal cancer cells. Oncogene 2002, 21, 411–418. [Google Scholar] [CrossRef]
- Liu, G.; Wu, M.; Levi, G.; Ferrari, N. Inhibition of cancer cell growth by all-trans retinoic acid and its analog N-(4-hydroxyphenyl) retinamide: A possible mechanism of action via regulation of retinoid receptors expression. Int. J. Cancer 1998, 78, 248–254. [Google Scholar] [CrossRef]
- Song, S.; Lippman, S.M.; Zou, Y.; Ye, X.; Ajani, J.A.; Xu, X.C. Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-β 2 expression. Oncogene 2005, 24, 8268–8276. [Google Scholar] [CrossRef]
- Song, S.; Guan, B.; Men, T.; Hoque, A.; Lotan, R.; Xu, X.C. Antitumor effect of retinoic acid receptor-β2 associated with suppression of cyclooxygenase-2. Cancer Prev. Res. 2009, 2, 274–280. [Google Scholar] [CrossRef]
- Ye, F.; Xu, X.C. Benzo[a]pyrene diol epoxide suppresses retinoic acid receptor-β2 expression by recruiting DNA (cytosine-5-)-methyltransferase 3A. Mol. Cancer 2010, 9, 93. [Google Scholar] [CrossRef]
- Yang, Z.; Guan, B.; Men, T.; Fujimoto, J.; Xu, X. Comparable molecular alterations in 4-nitroquinoline 1-oxide-induced oral and esophageal cancer in mice and in human esophageal cancer, associated with poor prognosis of patients. In Vivo 2013, 27, 473–484. [Google Scholar]
- Awan, A.K.; Iftikhar, S.; Morris, T.; Clarke, P.; Grabowska, A.; Waraich, N.; Watson, S. Androgen receptors may act in a paracrine manner to regulate oesophageal adenocarcinoma growth. Eur. J. Surg. Oncol. 2007, 33, 561–568. [Google Scholar] [CrossRef]
- Nozoe, T.; Oyama, T.; Takenoyama, M.; Hanagiri, T.; Sugio, K.; Yasumoto, K. Significance of immunohistochemical expression of estrogen receptors α and β in squamous cell carcinoma of the esophagus. Clin. Cancer Res. 2007, 13, 4046–4050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ku, J.; Liu, R.; Wu, H.; Liang, G.; Wei, Y.; Chen, P.; Zhao, X.; Liu, S.; Li, Y. Characterization of serum estradiol level and tissue estrogen receptor immunostaining with clinical response and reproductive factor changes in Chinese female patients with esophageal squamous cell carcinoma. Biomed. Pharmacother. 2017, 93, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Zhang, S.; Liang, J.; Qiu, W. Clinicopathological and predictive significance of SIRT1 and peroxisome proliferator-activated receptor gamma in esophageal squamous cell carcinoma: The correlation with EGFR and Survivin. Pathol. Res. Pract. 2018, 214, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Zhang, W.; El-Naggar, A.K.; Lippman, S.M.; Lin, P.; Lotan, R.; Xu, X.C. Loss of retinoic acid receptor-β expression is an early event during esophageal carcinogenesis. Am. J. Pathol. 1999, 155, 1519–1523. [Google Scholar] [CrossRef]
- Zhang, W.; Rashid, A.; Wu, H.; Xu, X.C. Differential expression of retinoic acid receptors and p53 protein in normal, premalignant, and malignant esophageal tissues. J. Cancer Res. Clin. Oncol. 2001, 127, 237–242. [Google Scholar] [CrossRef]
- Mizuiri, H.; Yoshida, K.; Toge, T.; Oue, N.; Aung, P.P.; Noguchi, T.; Yasui, W. DNA methylation of genes linked to retinoid signaling in squamous cell carcinoma of the esophagus: DNA methylation of CRBP1 and TIG1 is associated with tumor stage. Cancer Sci. 2005, 96, 571–577. [Google Scholar] [CrossRef]
- Fujishima, F.; Suzuki, T.; Nakamura, Y.; Taniyama, Y.; Ono, K.; Sugawara, A.; Miyazaki, S.; Moriya, T.; Sato, A.; Satomi, S.; et al. Retinoid receptors in human esophageal squamous cell carcinoma: Retinoid X receptor as a potent prognostic factor. Pathol. Int. 2011, 61, 401–408. [Google Scholar] [CrossRef]
- Roth, M.J.; Abnet, C.C.; Hu, N.; Wang, Q.H.; Wei, W.Q.; Green, L.; D’Alelio, M.; Qiao, Y.L.; Dawsey, S.M.; Taylor, P.R.; et al. p16, MGMT, RARβ2, CLDN3, CRBP and MT1G gene methylation in esophageal squamous cell carcinoma and its precursor lesions. Oncol. Rep. 2006, 15, 1591–1597. [Google Scholar] [CrossRef]
- Li, R.N.; Yu, F.J.; Wu, C.C.; Chen, Y.K.; Yu, C.C.; Chou, S.H.; Lee, J.Y.; Cheng, Y.J.; Wu, M.T.; Wu, I.C. Methylation status of retinoic acid receptor β2 promoter and global DNA in esophageal squamous cell carcinoma. J. Surg. Oncol. 2014, 109, 623–627. [Google Scholar] [CrossRef]
- Brabender, J.; Lord, R.V.; Metzger, R.; Park, J.; Salonga, D.; Danenberg, K.D.; Holscher, A.H.; Danenberg, P.V.; Schneider, P.M. Role of retinoid X receptor mRNA expression in Barrett’s esophagus. J. Gastrointest. Surg. 2004, 8, 413–422. [Google Scholar] [CrossRef]
- Ren, H.Y.; Guo, Y.H.; Yang, L.M.; Dai, T.J.; Lin, M.Z.; Yu, L.; Zhu, Q.G.; Meng, J.R. Expression and clinical significance of retinoid X receptor α in esophageal carcinoma. Ann. Diagn. Pathol. 2018, 34, 110–115. [Google Scholar] [CrossRef]
- Trowbridge, R.; Mittal, S.K.; Sharma, P.; Hunter, W.J.; Agrawal, D.K. Vitamin D receptor expression in the mucosal tissue at the gastroesophageal junction. Exp. Mol. Pathol. 2012, 93, 246–249. [Google Scholar] [CrossRef]
- Abu-Farsakh, S.; Wu, T.; Lalonde, A.; Sun, J.; Zhou, Z. High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5. BMC Gastroenterol. 2017, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- Singhal, S.; Kapoor, H.; Subramanian, S.; Agrawal, D.K.; Mittal, S.K. Polymorphisms of genes related to function and metabolism of vitamin D in esophageal adenocarcinoma. J. Gastrointest. Cancer 2019, 50, 867–878. [Google Scholar] [CrossRef]
- Narayanan, R.; Coss, C.C.; Dalton, J.T. Development of selective androgen receptor modulators (SARMs). Mol. Cell. Endocrinol. 2018, 465, 134–142. [Google Scholar] [CrossRef]
- Tan, J.-a.; Joseph, D.R.; Quarmby, V.E.; Lubahn, D.B.; Sar, M.; French, F.S.; Wilson, E.M. The rat androgen receptor: Primary structure, autoregulation of its messenger ribonucleic acid, and immunocytochemical localization of the receptor protein. Mol. Endocrinol. 1988, 2, 1276–1285. [Google Scholar] [CrossRef]
- Lubahn, D.B.; Joseph, D.R.; Sar, M.; Tan, J.-a.; Higgs, H.N.; Larson, R.E.; French, F.S.; Wilson, E.M. The human androgen receptor: Complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol. Endocrinol. 1988, 2, 1265–1275. [Google Scholar] [CrossRef]
- Jenster, G.; van der Korput, H.A.; Trapman, J.; Brinkmann, A.O. Identification of two transcription activation units in the n-terminal domain of the human androgen receptor. J. Biol. Chem. 1995, 270, 7341–7346. [Google Scholar] [CrossRef]
- Kato, S.; Endoh, H.; Masuhiro, Y.; Kitamoto, T.; Uchiyama, S.; Sasaki, H.; Masushige, S.; Gotoh, Y.; Nishida, E.; Kawashima, H. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995, 270, 1491–1494. [Google Scholar] [CrossRef]
- Ward, R.D.; Weigel, N.L. Steroid receptor phosphorylation: Assigning function to site-specific phosphorylation. Biofactors 2009, 35, 528–536. [Google Scholar] [CrossRef]
- Ylikomi, T.; Bocquel, M.; Berry, M.; Gronemeyer, H.; Chambon, P. Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J. 1992, 11, 3681–3694. [Google Scholar] [CrossRef]
- Culig, Z.; Klocker, H.; Bartsch, G.; Hobisch, A. Androgen receptors in prostate cancer. Endocr.-Relat. Cancer 2002, 9, 155–170. [Google Scholar] [CrossRef]
- Di Leone, A.; Fragomeni, S.M.; Scardina, L.; Ionta, L.; Mule, A.; Magno, S.; Terribile, D.; Masetti, R.; Franceschini, G. Androgen receptor expression and outcome of neoadjuvant chemotherapy in triple-negative breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1910–1915. [Google Scholar] [CrossRef]
- Liu, W.; Wang, C.; Wang, S.; Zeng, K.; Wei, S.; Sun, N.; Sun, G.; Wang, M.; Zou, R.; Liu, W.; et al. PRPF6 promotes androgen receptor/androgen receptor-variant 7 actions in castration-resistant prostate cancer cells. Int. J. Biol. Sci. 2021, 17, 188–203. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, X.; Zheng, L.; Hu, X.; Sun, L.; Zhu, X. The role of the androgen receptor in ovarian cancer carcinogenesis and its clinical implications. Oncotarget 2017, 8, 29395–29405. [Google Scholar] [CrossRef]
- Anestis, A.; Zoi, I.; Papavassiliou, A.G.; Karamouzis, M.V. Androgen receptor in breast cancer-clinical and preclinical research insights. Molecules 2020, 25, 358. [Google Scholar] [CrossRef]
- Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015, 36, 3–23. [Google Scholar] [CrossRef]
- Pakdel, F. Molecular pathways of estrogen receptor action. Int. J. Mol. Sci. 2018, 19, 2591. [Google Scholar] [CrossRef]
- Arnal, J.-F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B. Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef]
- Ascenzi, P.; Bocedi, A.; Marino, M. Structure–function relationship of estrogen receptor α and β: Impact on human health. Mol. Asp. Med. 2006, 27, 299–402. [Google Scholar] [CrossRef]
- Deroo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Investig. 2006, 116, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Makela, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.r.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J.-Å. Mechanisms of estrogen action. Physiol. Rev. 2001, 81, 1535–1565. [Google Scholar] [CrossRef] [PubMed]
- Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Strom, A.; Treuter, E.; Warner, M. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev. 2007, 87, 905–931. [Google Scholar] [CrossRef] [Green Version]
- Parker, M. Structure and function of estrogen receptors. Vitam. Horm. 1995, 51, 267–287. [Google Scholar] [CrossRef]
- Eyster, K.M. The estrogen receptors: An overview from different perspectives. In Estrogen Receptors; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1366, pp. 1–10. [Google Scholar] [CrossRef]
- Chantalat, E.; Valera, M.-C.; Vaysse, C.; Noirrit, E.; Rusidze, M.; Weyl, A.; Vergriete, K.; Buscail, E.; Lluel, P.; Fontaine, C. Estrogen receptors and endometriosis. Int. J. Mol. Sci. 2020, 21, 2815. [Google Scholar] [CrossRef]
- Jia, M.; Dahlman-Wright, K.; Gustafsson, J.-Å. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 557–568. [Google Scholar] [CrossRef]
- Loo, S.Y.; Syn, N.L.; Koh, A.P.; Teng, J.C.; Deivasigamani, A.; Tan, T.Z.; Thike, A.A.; Vali, S.; Kapoor, S.; Wang, X.; et al. Epigenetic derepression converts PPARγ into a druggable target in triple-negative and endocrine-resistant breast cancers. Cell Death Discov. 2021, 7, 265. [Google Scholar] [CrossRef]
- Kirtonia, A.; Gala, K.; Fernandes, S.G.; Pandya, G.; Pandey, A.K.; Sethi, G.; Khattar, E.; Garg, M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin. Cancer Biol. 2021, 68, 258–278. [Google Scholar] [CrossRef]
- Chen, G.G.; Zeng, Q.; Tse, G.M. Estrogen and its receptors in cancer. Med. Res. Rev. 2008, 28, 954–974. [Google Scholar] [CrossRef]
- Kalita, D.; Bannoth, S.; Purkayastha, J.; Talukdar, A.; Das, G.; Singh, P. A study of hormonal receptors in esophageal carcinoma: Northeast indian tertiary cancer center study. South Asian J. Cancer 2020, 9, 222–226. [Google Scholar] [CrossRef]
- Hou, Y.; Fan, W.; Yang, W.; Samdani, A.Q.; Jackson, A.O.; Qu, S. Farnesoid X receptor: An important factor in blood glucose regulation. Clin. Chim. Acta 2019, 495, 29–34. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Feng, Q.; Chen, W.-D.; Wang, Y.-D. Farnesoid X receptor: A potential therapeutic target in multiple organs. Histol. Histopathol. 2021, 35, 1403–1414. [Google Scholar] [CrossRef]
- Massafra, V.; van Mil, S. FXR: A “homeostat” for hepatic nutrient metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1864, 45–59. [Google Scholar] [CrossRef]
- Han, C.Y. Update on FXR biology: Promising therapeutic target? Int. J. Mol. Sci. 2018, 19, 2069. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, Q.; Wang, G.; Xu, X.; Hao, H. FXR modulators for enterohepatic and metabolic diseases. Expert Opin. Ther. Pat. 2018, 28, 765–782. [Google Scholar] [CrossRef] [PubMed]
- Modica, S.; Gadaleta, R.M.; Moschetta, A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl. Recept. Signal. 2010, 8, e005. [Google Scholar] [CrossRef] [PubMed]
- Forman, B.M.; Goode, E.; Chen, J.; Oro, A.E.; Bradley, D.J.; Perlmann, T.; Noonan, D.J.; Burka, L.T.; McMorris, T.; Lamph, W.W.; et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995, 81, 687–693. [Google Scholar] [CrossRef]
- Michalik, L.; Auwerx, J.; Berger, J.P.; Chatterjee, V.K.; Glass, C.K.; Gonzalez, F.J.; Grimaldi, P.A.; Kadowaki, T.; Lazar, M.A.; O’Rahilly, S.; et al. International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 2006, 58, 726–741. [Google Scholar] [CrossRef]
- Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem. 2019, 166, 502–513. [Google Scholar] [CrossRef]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Keaton, M.; Baranova, A.; Liu, S.; Hu, X.; Li, Q.; Cheng, L.; Zhou, P.; Cao, H.; et al. Variants and expression changes in PPAR-encoding genes display no significant association with schizophrenia. Biosci. Rep. 2020, 40, BSR20201083. [Google Scholar] [CrossRef]
- Gee, V.M.; Wong, F.S.; Ramachandran, L.; Sethi, G.; Kumar, A.P.; Yap, C.W. Identification of novel peroxisome proliferator-activated receptor-gamma (PPARγ) agonists using molecular modeling method. J. Comput.-Aided Mol. Des. 2014, 28, 1143–1151. [Google Scholar] [CrossRef]
- Ramachandran, L.; Manu, K.A.; Shanmugam, M.K.; Li, F.; Siveen, K.S.; Vali, S.; Kapoor, S.; Abbasi, T.; Surana, R.; Smoot, D.T.; et al. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer. J. Biol. Chem. 2012, 287, 38028–38040. [Google Scholar] [CrossRef]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metab. Clin. Exp. 2021, 114, 154338. [Google Scholar] [CrossRef]
- Chawla, A.; Repa, J.J.; Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors and lipid physiology: Opening the X-files. Science 2001, 294, 1866–1870. [Google Scholar] [CrossRef]
- Sikka, S.; Chen, L.; Sethi, G.; Kumar, A.P. Targeting PPARγ signaling cascade for the prevention and treatment of prostate cancer. PPAR Res. 2012, 2012, 968040. [Google Scholar] [CrossRef]
- Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med. 2002, 53, 409–435. [Google Scholar] [CrossRef]
- Yu, K.; Bayona, W.; Kallen, C.B.; Harding, H.P.; Ravera, C.P.; McMahon, G.; Brown, M.; Lazar, M.A. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 1995, 270, 23975–23983. [Google Scholar] [CrossRef]
- Altmann, R.; Hausmann, M.; Spottl, T.; Gruber, M.; Bull, A.W.; Menzel, K.; Vogl, D.; Herfarth, H.; Scholmerich, J.; Falk, W.; et al. 13-Oxo-ODE is an endogenous ligand for PPARγ in human colonic epithelial cells. Biochem. Pharmacol. 2007, 74, 612–622. [Google Scholar] [CrossRef]
- Marion-Letellier, R.; Savoye, G.; Ghosh, S. Fatty acids, eicosanoids and PPAR gamma. Eur. J. Pharmacol. 2016, 785, 44–49. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, Y.; Kar, S.; Kanchi, M.M.; Arora, S.; Kim, J.E.; Koh, P.F.; Yousef, E.; Samy, R.P.; Shanmugam, M.K.; et al. PPARγ ligand-induced annexin A1 expression determines chemotherapy response via deubiquitination of death domain kinase RIP in triple-negative breast cancers. Mol. Cancer Ther. 2017, 16, 2528–2542. [Google Scholar] [CrossRef]
- di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Asp. Med. 2015, 41, 1–115. [Google Scholar] [CrossRef]
- Sun, S.Y.; Lotan, R. Retinoids and their receptors in cancer development and chemoprevention. Crit. Rev. Oncol./Hematol. 2002, 41, 41–55. [Google Scholar] [CrossRef]
- Xu, X.C. Tumor-suppressive activity of retinoic acid receptor-β in cancer. Cancer Lett. 2007, 253, 14–24. [Google Scholar] [CrossRef]
- Alvarez, S.; Bourguet, W.; Gronemeyer, H.; de Lera, A.R. Retinoic acid receptor modulators: A perspective on recent advances and promises. Expert Opin. Ther. Pat. 2011, 21, 55–63. [Google Scholar] [CrossRef]
- Breems-de Ridder, M.C.; Lowenberg, B.; Jansen, J.H. Retinoic acid receptor fusion proteins: Friend or foe. Mol. Cell. Endocrinol. 2000, 165, 1–6. [Google Scholar] [CrossRef]
- Mongan, N.P.; Gudas, L.J. Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation 2007, 75, 853–870. [Google Scholar] [CrossRef]
- Altucci, L.; Leibowitz, M.D.; Ogilvie, K.M.; de Lera, A.R.; Gronemeyer, H. RAR and RXR modulation in cancer and metabolic disease. Nat. Rev. Drug Discov. 2007, 6, 793–810. [Google Scholar] [CrossRef]
- Dominguez, M.; Alvarez, S.; de Lera, A.R. Natural and Structure-based RXR Ligand Scaffolds and Their Functions. Curr. Top. Med. Chem. 2017, 17, 631–662. [Google Scholar] [CrossRef]
- Garcia, P.; Lorenzo, P.; de Lera, A.R. Natural ligands of RXR receptors. Methods Enzymol. 2020, 637, 209–234. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys. 2012, 523, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, L.; Li, C.; Gai, Z.; Li, Y. Vitamin D and vitamin D receptor: New insights in the treatment of hypertension. Curr. Protein Pept. Sci. 2019, 20, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Kato, S. The function of vitamin D receptor in vitamin D action. J. Biochem. 2000, 127, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Mutchie, T.R.; Yu, O.B.; Di Milo, E.S.; Arnold, L.A. Alternative binding sites at the vitamin D receptor and their ligands. Mol. Cell. Endocrinol. 2019, 485, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.W. Vitamin D3 receptors: Structure and function in transcription. Annu. Rev. Nutr. 1991, 11, 189–216. [Google Scholar] [CrossRef]
- Yang, S.; Li, A.; Wang, J.; Liu, J.; Han, Y.; Zhang, W.; Li, Y.C.; Zhang, H. Vitamin D receptor: A novel therapeutic target for kidney diseases. Curr. Med. Chem. 2018, 25, 3256–3271. [Google Scholar] [CrossRef]
- Oladimeji, P.O.; Chen, T. PXR: More than just a master xenobiotic receptor. Mol. Pharmacol. 2018, 93, 119–127. [Google Scholar] [CrossRef]
- Pondugula, S.R.; Mani, S. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response. Cancer Lett. 2013, 328, 1–9. [Google Scholar] [CrossRef]
- Xing, Y.; Yan, J.; Niu, Y. PXR: A center of transcriptional regulation in cancer. Acta Pharm. Sin. B 2020, 10, 197–206. [Google Scholar] [CrossRef]
- Noreault, T.L.; Kostrubsky, V.E.; Wood, S.G.; Nichols, R.C.; Strom, S.C.; Trask, H.W.; Wrighton, S.A.; Evans, R.M.; Jacobs, J.M.; Sinclair, P.R. Arsenite decreases CYP3A4 and RXRα in primary human hepatocytes. Drug Metab. Dispos. 2005, 33, 993–1003. [Google Scholar] [CrossRef]
- Ding, D.; Han, S.; Zhang, H.; He, Y.; Li, Y. Predictive biomarkers of colorectal cancer. Comput. Biol. Chem. 2019, 83, 107106. [Google Scholar] [CrossRef]
- Jin, L.; Li, Y. Structural and functional insights into nuclear receptor signaling. Adv. Drug Deliv. Rev. 2010, 62, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Peng, Y.; Gao, A.; Du, C.; Herman, J.G. Epigenetic heterogeneity in cancer. Biomark. Res. 2019, 7, 23. [Google Scholar] [CrossRef]
- Kaypee, S.; Sudarshan, D.; Shanmugam, M.K.; Mukherjee, D.; Sethi, G.; Kundu, T.K. Aberrant lysine acetylation in tumorigenesis: Implications in the development of therapeutics. Pharmacol. Ther. 2016, 162, 98–119. [Google Scholar] [CrossRef]
- Li, F.; Shanmugam, M.K.; Siveen, K.S.; Wang, F.; Ong, T.H.; Loo, S.Y.; Swamy, M.M.; Mandal, S.; Kumar, A.P.; Goh, B.C.; et al. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers. Oncotarget 2015, 6, 5147–5163. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Sethi, G. Role of epigenetics in inflammation-associated diseases. In Epigenetics: Development and Disease; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2013; Volume 61, pp. 627–657. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Arfuso, F.; Arumugam, S.; Chinnathambi, A.; Jinsong, B.; Warrier, S.; Wang, L.Z.; Kumar, A.P.; Ahn, K.S.; Sethi, G.; et al. Role of novel histone modifications in cancer. Oncotarget 2018, 9, 11414–11426. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Y.Y.; Xin, H.W.; Wang, L.; Arfuso, F.; Dharmarajan, A.; Kumar, A.P.; Wang, H.; Tang, F.R.; Warrier, S.; et al. The expanding roles of long non-coding RNAs in the regulation of cancer stem cells. Int. J. Biochem. Cell Biol. 2019, 108, 17–20. [Google Scholar] [CrossRef]
- Wang, L.; Syn, N.L.; Subhash, V.V.; Any, Y.; Thuya, W.L.; Cheow, E.S.H.; Kong, L.; Yu, F.; Peethala, P.C.; Wong, A.L.; et al. Pan-HDAC inhibition by panobinostat mediates chemosensitization to carboplatin in non-small cell lung cancer via attenuation of EGFR signaling. Cancer Lett. 2018, 417, 152–160. [Google Scholar] [CrossRef]
- Kit, O.I.; Vodolazhskiy, D.I.; Kolesnikov, E.N.; Timoshkina, N.N. [Epigenetic markers of esophageal cancer: DNA methylation]. Biomed. Khim. 2016, 62, 520–526. [Google Scholar] [CrossRef]
- Kaz, A.M.; Grady, W.M. Epigenetic biomarkers in esophageal cancer. Cancer Lett. 2014, 342, 193–199. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, M.; Guo, M. DNA N6-methyladenine increased in human esophageal squamous cell carcinoma. Discov. Med. 2020, 29, 85–90. [Google Scholar] [PubMed]
Nuclear Receptors (NRs) | In Vitro/In Vivo/ Clinical | Model/Cell Lines/Tissues | Expression (Up/Downregulation) | References |
---|---|---|---|---|
AR | Clinical | ESCC tissues | Up | [119] |
Clinical | ESCC tissues | Up | [120] | |
In vitro | EC109, EC9706, HKESC-2, TE12 | Up | [120] | |
ERα | Clinical | ESCC tissues | Down | [121] |
Clinical | EC tissues | Up | [122] | |
In vitro | EC-GI-10 + ERα | Up | [123] | |
ERβ | Clinical | EAC tissues | Up | [124] |
Clinical | EAC tissues | Up | [125] | |
Clinical | ESCC tissues | Up | [121] | |
Clinical | EC tissues | Up | [122] | |
In vitro | EC-GI-10 + ERβ | Up | [123] | |
Clinical | ESCC tissues | Up | [126] | |
FXR | Clinical | BE and EAC tissues | Up | [127] |
Clinical | EAC tissues | Up | [64] | |
Clinical | GERD tissues | Up | [128] | |
PPARγ | Clinical | ESCC tissues | Down | [129] |
Clinical | BE tissues | Up | [130] | |
Clinical | EC tissues | Up | [131] | |
Clinical | BE tissues | Up | [132] | |
Clinical | EC tissues | Down | [133] | |
PXR | Clinical | EAC tissues | Up | [134] |
RARα | Clinical | EC tissues | Up | [135] |
Clinical | EC tissues | Up | [136] | |
RARβ | Clinical | EC tissue | Up | [135] |
Clinical | EC tissues | Down | [137] | |
Clinical | ESCC tissues | Down | [138] | |
RARβ2 | Clinical | ESCC tissues | Down | [139] |
In vitro | KYSE410, KYSE510, COLO680N | Down | [140] | |
Clinical | ESCC tissues | Down | [141] | |
Clinical | ESCC tissues | Up | [142] | |
RARβ4 | Clinical | ESCC tissues | Up | [141] |
RARγ | Clinical | EC tissues | Down | [135] |
VDR | Clinical | EAC tissues | Down | [143] |
Clinical | EAC tissues | Up | [144] | |
Clinical | BE tissues | Up | [145] | |
Clinical | ESCC tissues | Down | [146] |
Nuclear Receptors (NRs) | In Vitro/ In Vivo | Model/Cell Lines | Agonists/Antagonists | Results | References |
---|---|---|---|---|---|
AR | In vitro | OE33-AR | DHT | ↑ FKBP5, HMOX1, FBXO32, WNT5A, VEGFA, KLK3 | [147] |
In vitro | KYSE450 | siRNA duplexes | ↓ AR, Cell invasion, MMP2, p-Akt | [119] | |
In vitro | EC9706 | shRNA | ↓ AR, Cell viability, Cell growth, Colony formation, Anchorage-independent growth, S and G2/M phase, IL-6, TNF ↑ G1/G0 arrest | [120] | |
TE-1 | pPYCAGIP-AR-GFP | ↑ AR, Anchorage-independent growth, Cell growth, Colony formation, S and G2/M phase, IL-6 ↓ G1/G0 arrest | |||
EC9706 and HKESC-2 | siRNA | ↓ AR | |||
In vivo | EC9706-shAR cells injected mice TE-1 cells injected mice | ↓ Tumor size and weight ↑ Tumor size and weight | [120] | ||
In vitro | OE33-AR, JH-AR, OE19-AR | DHT | ↓ Cell proliferation, NDRG1 ↑ FKBP5, HMOX1, Cell Cycle Arrest, Cell Senescence | [148] | |
OE33-AR | Enzalutamide | ↑ Cell count ↓ FKBP5 | |||
ER | In vitro | EC109 | 17β-estradiol | ↓ Cell proliferation | [149] |
↑ Ca2+ signaling | |||||
In vitro | OE-19 and OE-33 | 17β-estradiol/SERM | ↓ Cell growth ↑Apoptosis | [150] | |
Tamoxifen | ↓ Cell growth | ||||
Raloxifene | ↓ Cell number, Ki67 ↑ E-cadherin, Apoptosis | ||||
ERα | In vitro | EC-GI-10+ERα | Propyl-pyrazole-triol | ↓ Cell proliferation | [123] |
In vitro | OE-19, OE-33 | MPP | ↓ Cell proliferation | [122] | |
OE-33 | MPP + E2 | ↑ Apoptosis, Caspase 3/7, LDH activity | |||
ERβ | In vitro | EC-GI-10+ERβ | Estradiol, DPN | ↑ Cell proliferation | [123] |
ICI1 82,780 | ↓ Cell proliferation | ||||
In vitro | OE-19, OE-33 | PHTPP | ↓ Cell proliferation | [122] | |
OE-33 | PHTPP + E2 | ↑ Apoptosis, Caspase 3/7 | |||
FXR | In vitro | TE-3, TE-12, SKGT-5 | Guggulsterone | ↓ FXR, Cell viability, COX-2, MMP-9 | [64] |
↑ Apoptosis | |||||
Chenodeoxycholic acid | ↑ FXR, COX-2 ↓ RAR-β2 | ||||
SKGT-4 cells | sh-RNA | ↓ FXR, Cell growth | |||
In vivo | SKGT-4 cells injected mice | FXR shRNA/ Guggulsterone | ↓ Tumor formation, Tumor growth | [64] | |
In vitro | KYSE150, EC109, TE-1 | GW4064 | ↓ Cell proliferation, Migration, pERK1/2 ↑ G0/G1 arrest | [151] | |
KYSE150 | GW4064 | ↑ p53, Caspase 3, Cleaved-PARP, SHP, BSEP ↓ c-fos, CyclinD1, IL-6, MMP7, TNF-α-induced proinflammatory genes levels | |||
EC109 | GW4064 | ↑ p21, p53, Bak1, Bim, Bax, Caspase 3, Cleaved-PARP ↓ IP-10, TNF-α levels | |||
In vivo | BALB-C nude mice (EC109 xenografts) | GW4064 | ↓ Tumor volume, Tumor weight, pERK1/2 | [151] | |
PPARγ | In vitro | T. Tn | Troglitazone | ↑ p27Kip1, p21Cip1/Waf1, p18Ink4c, G1 arrest ↓ DNA synthesis | [152] |
EC-GI-10 | Troglitazone | ↑ IL-1α | |||
T. Tn | Pioglitazone, 15d-PGJ2 | ↑ Cell cycle arrest in G1 phase | |||
In vitro | TE-1, TE-7, TE-8, TE-12, TE-13 | Troglitazone | ↓ Cell growth, Cyclin E, p16, MDM2, Cyt C, Caspase 8, Bcl-XL | [153] | |
↑ p27, G1 arrest, Bid, Bax, PARP, Caspase 3 | |||||
In vitro | OE33cells | Ciglitazone | ↓ Cell proliferation | [130] | |
↑ Caspase 3 | |||||
In vitro | KYSE70 | T0070907 and GW9662 | ↓ Cell adherence, pERK, pFAK ↑Morphological changes, Apoptosis | [131] | |
In vitro | OE33 | Pioglitazone | ↑ PPARγ, Apoptosis, Caspase 3 activity | [132] | |
↓ Cell growth | |||||
In vivo | OE33 cells injected nude mice | Pioglitazone | ↑ Tumor development ↓ Apoptosis, Insulin level | [132] | |
In vitro | TE series | Efatutazone, sh-RNA | ↓ Cell proliferation, S and G2/M phases, p-p21, pAkt | [154] | |
↑ PDK4, p21Cip1, p-EGFR/MAPK | |||||
In vivo | TE-4 cells injected mice | Efatutazone | ↓ Tumor growth, pAkt, p21, Ki67 | [154] | |
↑ PLIN2, p21Cip1, pEGFR, pERK1/2 | |||||
In vitro | EC109 and TE10 | Cisplatin (DDP) | ↑ Apoptosis, Bax | [133] | |
↓ Cell viability, Colony formation, Bcl-2 | |||||
In vivo | Female BALB/C nude mice | DDP | ↓ Tumor volume, Tumor weight | [133] | |
In vivo | NMBzA induced F344 rats | Lycopene | ↑ PPARγ, Cleaved caspase 3 ↓ NF-κB, COX-2 | [155] | |
In vitro | Eca-109 | Da-Ea | ↑ PPARγ, Morphological alterations, Apoptosis, S phase cell cycle arrest | [97] | |
↓ Cell proliferation | |||||
In vitro | OE33, ESO26 | T0070907 | ↓ PPARγ, Cell proliferation, Colony growth ↑ Apoptosis | [156] | |
In vivo | Nude mice (ESO26 cells) xenografts | T0070907 | ↓ Tumor growth, FASN, ACC, ACLY, SCD | [156] | |
PPARγ/RXRα | In vitro | KYSE series | Troglitazone + | ↓ Cell growth | [157] |
9-cis retinoic acid | ↑ G1 arrest, Apoptosis, Cleaved PARP | ||||
In vivo | KYSE 270 cells injected Balb/c-nu/nu mice | Troglitazone + 9-cis retinoic acid | ↓ Tumor growth | [157] | |
PXR | In vitro | OE19, HET1A | Lithocholic acid | ↑ Nuclear translocation of PXR protein levels | [134] |
RARα | In vitro | TE-10 and Eca-109 | siRNA | ↓ RARα, Cell proliferation, Invasion, Migration, PCNA, Ki67, MMP7, MMP9, P-Glycoprotein, Wnt/β-catenin pathway activation, p-GSK3βSer9, Cell viability ↑ p-GSK3βTyr216, p-β-cateninSer33/37, Susceptibility to 5-FU or CDDP | [136] |
RARβ | In vitro | HET-1A, TE-3, TE-12 | BPDE | ↓ RARβ, G1 phase | [158] |
↑ COX-2, S phase | |||||
HET-1A, TE-3, TE-12 | ATRA | ↑ RARβ, G1 phase | |||
↓ S phase | |||||
In vitro | TE-3 cell line | 13-cis RA | ↑ RARβ, Apoptosis | [159] | |
AGN193109 | ↓ Cell growth, COX-2, Prostaglandin E2 | ||||
↑ COX-2 | |||||
In vitro | KYSE30 and TE-1 | 5-Aza-2-dC | ↑ RARβ | [138] | |
Het-1A | NNK | ↑ Cell proliferation, DNMT1 | |||
↓ RARβ, Apoptosis | |||||
RARβ2 | In vitro | EC109 | 4HPR | ↓ Cell growth | [160] |
↑ RARβ2, G0/G1 phase cell cycle arrest, Apoptosis | |||||
RA | ↑ RARβ2 | ||||
In vitro | KYSE4103 | 5-aza-dc | ↑ RARβ2 | [140] | |
In vitro | KYSE150, KYSE410 | 5-aza-dc | ↑ RARβ2 ↓Cell growth | [139] | |
In vitro | TE-1, TE-8 TE-3-V1 | BPDE BPDE | ↓ RARβ2 ↑ EGFR, pERK1/2, COX-2, c-Jun, AP-1 ↑ COX-2 | [161] | |
In vivo | nu/nu nude mice (RARβ2 antisense-transfected TE3-A5cells) | ↑ Tumor growth, EGFR, pERK1/2, COX-2 | [161] | ||
In vitro | TE-1, TE-3, TE-8, TE-12 | 13-cis RA | ↑ RARβ2 | [162] | |
↓ COX-2 | |||||
In vivo | nu/nu nude mice (RARβ2 transfected TE-8 and sub cell lines) | ↑ COX-2 ↓ Tumor development | [162] | ||
In vitro | TE-3, TE-12, SKGT4 | BPDE | ↓ RARβ2 | [163] | |
↑ c-Jun, pERK1/2, COX-2 | |||||
In vitro | TE-3, TE-8, HCE-4, SKGT-4 | 4-NQO | ↓ RARβ2 | [164] | |
↑ p-ERK1/2, c-FOS, COX-2 | |||||
In vivo | 4-NQO induced C57LB6/129Sv mice | ↓ RARβ2 ↑ Tumor formation, p-ERK1/2, COX-2 | [164] | ||
RARγ1 | In vitro | EC109 | 4HPR, RA | ↑ RARγ1 | [160] |
Nuclear Receptors (NRs) | Model/Cell Lines | Results | References |
---|---|---|---|
AR | EAC tissues | ↓ AR | [165] |
EAC tissues | ↑ AR, FKBP5 | [147] | |
ESCC tissues | ↑ AR, Tumor progression | [119] | |
ESCC tissues | ↑ AR, Tumor growth, Tumor invasion Overexpressed AR leads to poor prognosis | [120] | |
ERα | ESCC tissues | ERα positive leads to lymph node metastasis, venous invasion and poor survival | [166] |
ESCC tissues | Absence of ERα leads to poor prognosis | [121] | |
ESCC tissues | ERα negative favors better prognosis | [167] | |
ERβ | EAC tissues | ↑ ER-B isoforms | [124] |
ESCC tissues | ERβ negative leads to poor survival | [166] | |
EAC and ESCC tissues | ↑ ERβ, Dedifferentiation, Tumor stage | [125] | |
Thoracic ESCC tissues | ↑ ERβ, Tumor differentiation, Ki67/MIB1 LI, Poor survival | [123] | |
ESCC tissues | ↑ ERβ, Poor prognosis | [121] | |
ESCC tissues | ERβ positive favors better survival | [167] | |
FXR | EAC tissues | ↑ FXR, Tumor grade, Tumor size, Lymph node metastasis ↓ RARβ2 | [64] |
GERD tissues | ↑ FXR, TLR2 ↓ TLR4 | [128] | |
PPARγ | ESCC tissues | ↑ SIRT1, PPARγ, EGFR, Survivin | [168] |
EC tissues | ↓ PPARγ | [133] | |
RARα | EC tissues | ↑ RARα, Metastasis | [136] |
RARβ | EC tissues | ↓ RARβ | [169] |
EC tissues | ↓ RARβ ↑ p53, Ki67 | [170] | |
ESCC tissues | ↓ RARβ, CRBP1, TIG1 ↑ Tumor stage | [171] | |
ESCC tissues | ↓ RARβ ↑ Metastasis | [172] | |
ESCC tissues | ↓ RARβ ↑ DNMT1 | [138] | |
RARβ1 | ESCC tissues | ↓ RARβ1 ↑ Cyclin D1, EGFR | [141] |
RARβ2 | ESCC tissues | ↑ Methylation of RARβ2, p16, MGMT, CLDN3, CRBP, MT1G | [173] |
EC tissue | ↑ RARβ2 ↓ COX-2 | [162] | |
EC tissues | ↑ p-ERK1/2, COX-2, Tumor de-differentiation | [164] | |
ESCC tissues | ↓ RARβ2, LINE-1 ↑ Metastasis | [174] | |
ESCC tissues | ↓ RARβ2, COUP-TFI, COUP-TFII | [141] | |
RARβ4 | ESCC tissues | ↓ COUP-TFI, COUP-TFII ↑ RARβ4 | [141] |
RXRα | EAC tissues | ↓ RXRα | [175] |
EC tissues | ↑ RXRα, TNM stage, Metastasis | [176] | |
RXRβ | EAC tissues | ↓ RXRβ | [175] |
ESCC tissues | ↓ RXRβ ↑ Metastasis | [172] | |
RXRγ | EAC tissues | ↑ RXRγ | [175] |
VDR | BE tissues | ↑ VDR | [177] |
EAC tissues | ↓ VDR, Tumor de-differentiation | [143] | |
EAC and ESCC tissues | ↑ VDR, TGR5, Claudin-2 | [178] | |
EAC tissues | ↓ VDR, CYP27B1 ↑ CYP24A1 | [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayaprakash, S.; Hegde, M.; Girisa, S.; Alqahtani, M.S.; Abbas, M.; Lee, E.H.C.; Yap, K.C.-H.; Sethi, G.; Kumar, A.P.; Kunnumakkara, A.B. Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer. Int. J. Mol. Sci. 2022, 23, 10952. https://doi.org/10.3390/ijms231810952
Jayaprakash S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Lee EHC, Yap KC-H, Sethi G, Kumar AP, Kunnumakkara AB. Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer. International Journal of Molecular Sciences. 2022; 23(18):10952. https://doi.org/10.3390/ijms231810952
Chicago/Turabian StyleJayaprakash, Sujitha, Mangala Hegde, Sosmitha Girisa, Mohammed S. Alqahtani, Mohamed Abbas, E. Hui Clarissa Lee, Kenneth Chun-Hong Yap, Gautam Sethi, Alan Prem Kumar, and Ajaikumar B. Kunnumakkara. 2022. "Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer" International Journal of Molecular Sciences 23, no. 18: 10952. https://doi.org/10.3390/ijms231810952
APA StyleJayaprakash, S., Hegde, M., Girisa, S., Alqahtani, M. S., Abbas, M., Lee, E. H. C., Yap, K. C. -H., Sethi, G., Kumar, A. P., & Kunnumakkara, A. B. (2022). Demystifying the Functional Role of Nuclear Receptors in Esophageal Cancer. International Journal of Molecular Sciences, 23(18), 10952. https://doi.org/10.3390/ijms231810952