The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Dysregulation of BCL-2 Proteins in ALL
Interplay of Other BH3 Proteins
3. Rationale for Drug Combinations with BCL-2 Inhibition
4. Clinical Experience with Venetoclax-Based Combinations
4.1. Venetoclax with Chemotherapy
4.2. Chemotherapy-Free Regimens
First Author, Year | Cohort | Design, Regimen | ORR | OS | Grade III/IV AE |
---|---|---|---|---|---|
Jain 2019 [37] | n = 18 Ph-neg ALL > 18 yo r/r or > 60 yo ND | Phase 1, Ven 400/600 mg with mini-hyper-CVD | r/r: 37.5% ND: 100% | 39% FN, 17% hyperglycemia, 11% hypocalcemia, 1 pneumonia, 1 sepsis | |
Carpentier 2019 [41] | n = 13 r/r T-ALL adults | Retrospective, Ven 100–400 mg with chemotherapy/HMA | 60% | 7.7 mo | Prolonged cytopenia (percentage not reported) |
Venugopal 2021 [38] | n = 23 Ph-neg ALL > 18 yo r/r or > 60 yo ND | Phase 2, Ven 400 mg with mini-hyper-CVD | 65% | 7.1 mo | Cytopenia (percentage not reported), 1 sepsis |
Gibson 2021 [42] | n = 18 ALL age < 22 | Retrospective, Ven 400 mg with chemotherapy | 61% | 89% thrombocytopenia, 53% neutropenia, 22% hyperbilirubinemia, 28% sepsis, 28% FN, 1 pneumonia, 1 coagulopathy, 1 mucosal infection | |
Pullarkat 2021 [44] | n = 47 r/r ALL, all ages | Phase 1, Ven + navitoclax with chemotherapy | 59.6% | 7.8 mo | 46.8% FN, 38.3% neutropenia, 25.5% thrombocytopenia |
Palmisiano 2021 [43] | n = 18 r/r Ph-neg ALL adults | Phase 1, Ven + L-vincristine | 44% | 67% neutropenia, 56% leukopenia, 50% anemia, 1 TLS | |
Short 2021 [53] | n = 9 r/r Ph(+) ALL adults | Phase 1, Ven + ponatinib + dex | 56% | 44% cytopenia | |
Wang 2022 [54] | n = 19 r/r Ph(+) ALL adults | Retrospective, Ven + ponatinib + dex | 89.5% | 400 days | 73% neutropenia, 36% anemia, 52% thrombocytopenia |
Population | Intervention | Study Type | Primary Outcome | Primary Investigator | |
---|---|---|---|---|---|
NCT05433532 | Adults with newly diagnosed Ph+ ALL, AML and CML-AP/BP patients | Venetoclax, azacytidine, and flumatinib induction and consolidation | Phase 2, open-label | Complete molecular remission at end of cycle 2 | Xiaowen Tang, The First Affiliated Hospital of Soochow University |
NCT03826992 | Children and young adults with R/R AML, MPAL, AUL, KMT2A-rearranged ALL, T-cell ALL or ETP-ALL | Venetoclax with CPX-351 | Phase 1, open-label, | Feasibility, toxicity | John Perentesis, Children’s Hospital Medical Center, Cincinnati |
NCT04029688 | Children and young adults with newly diagnosed neuroblastoma, AML or ALL | Idasanutlin in combination with chemotherapy or venetoclax | Phase ½, open-label | Feasibility, toxicity | Hoffmann-La Roche |
NCT04000698 | Children with CD38+, CD184+ and Bcl2+, R/R AML or ALL | Haploidentical HSCT with conditioning chemotherapy including venetoclax | Phase 1/2, open-label | Engraftment at day + 30 after HSCT, ORR, PRR, toxicity, transplant-related mortality | Michael Maschan, Federal Research Institute of Pediatric Hematology, Oncology and Immunology, Moscow |
NCT05292664 | Children and young adults with R/R ALL and other hematological malignancies | Venetoclax combined with chemotherapy | Phase 1, open-label | Tolerated dose, toxicity | Andrew E Place, Dana-Farber Cancer Institute |
NCT05386576 | Adults with newly diagnosed ALL | Venetoclax combined with asparaginase-containing pediatric-inspired chemotherapy | Phase 1, open-label | Dose-limiting toxicity | Jae Park, Memorial Sloan Kettering Cancer Center |
NCT05192889 | Children with R/R ALL | Phase 1: chemotherapy with venetoclax and navitoclax Phase 2: venetoclax with either blinatumomab (for CD19+) or high-dose cytarabine and navitoclax (for CD19-) | Phase 1/2, open-label | MRD negative CR/Cri rate following induction, recommended phase 2 dose | Seth E. Karol, St. Jude Children’s Research Hospital |
NCT05005299 | Adults with hematological malignancies who are planned for ASCT | Venetoclax therapy prior to non-myeloablative conditioning with fludarabine and cyclophosphamide | Phase 1, open-label | Toxicity | David Ritchie, Melbourne Health |
NCT05149378 | Adults and young adults with R/R T-ALL | Venetoclax with azacitidine | Phase 2, open-label | ORR, CR rate | Sheng-Li Xue, The First Affiliated Hospital of Soochow University |
NCT03181126(completed) | Adults and children with R/R ALL | Venetoclax with navitoclax and chemotherapy | Phase 1, open-label | Pharmacokinetics, toxicity | Abbvie |
NCT05268003 | Adults and children with R/R T-ALL | Ponatinib With mini-hyper-CVD and venetoclax | Phase 2, open-label | CR, Cri rate | Jain Nitin, MD Anderson Cancer Center |
NCT05157971 | Adults (18–54) with newly diagnosed B-ALL | Venetoclax with the C10403 regimen for induction and consolidation | Phase 1, open-label | Safety, maximal tolerated dose | Ibrahim T Aldoss, City of Hope Medical Center |
NCT00501826 | Children and adults with newly diagnosed T-ALL | Hyper-CVAD in combination with nelarabine, venetoclax and PEG-asparaginase | Phase 2, open-label | CRR, duration of remission, PFS, OS | Farhad Ravandi-Kashani, MD Anderson Cancer Center |
NCT03319901 | Newly diagnosed ALL >60 yo or R/R ALL >18 yo | Venetoclax with standard chemotherapy | Phase 1, open-label | Tolerated dose | Daniel DeAngelo, Dana-Farber Cancer Institute |
NCT05182385 | Adults with R/R Ph- B-cell precursor ALL | Venetoclax with blinatumomab | Phase 1/2, open-label | Tolerated dose, rate of complete molecular remission after 1 cycle | Nicola Goekbuget, GMALL study-group |
NCT03576547 | Adults with Ph+ or BCR-ABL+ R/R ALL or CML | Venetoclax, ponatinib and dexamethasone | Phase 1/2, open-label | Tolerated dose, ORR | Farhad Ravandi-Kashani, MD Anderson Cancer Center |
NCT04752163 | Adults with R/R AML or ALL | DS-1594b with or without zacytidine, venetoclax, or mini-HCVD | Phase 1/2, open-label | Tolerated dose, toxicity, CR/Cri rate, | Naval G Daver, MD Anderson Cancer Center |
NCT05016947 | Adults with R/R CD22+ B-ALL | Venetoclax with inotuzumab | Phase 1, open-label | Tolerated dose, toxicity | Marlise R Luskin, Dana-Farber Cancer Institute |
NCT03504644 | Adults with R/R ALL | Venetoclax with liposomal vincristine | Phase 1b/2, open -label | Tolerated dose, toxicity, CR/Cri rate | Neil Palmisiano, ECOG-ACRIN Cancer Research Group |
NCT04872790 | Adults with newly diagnosed or relapsed Ph+ ALL | Venetoclax with dasatinib, prednisone and rituximab | Phase 1b, open-label | Tolerated dose, toxicity | Jessica T Leonard, OHSU Knight Cancer Institute |
NCT05376111 | Adults and young adults with newly diagnosed T-ALL | Venetoclax with azacitidine | Phase 2, open-label | ORR | Sheng-Li Xue, The First Affiliated Hospital of Soochow University |
NCT03808610 | Adults with R/R ALL | Venetoclax with low-intensity chemotherapy (cyclophosphamide, cytarabine, methotrexate, PEG-asparaginase, vincristine, rituximab) | Phase 1/2, open-label | Tolerated dose, toxicity | Elias Jabbour, MD Anderson Cancer Center |
NCT05054465 | Adults with high-risk T-ALL post-remission | Venetoclax and navitoclax pre- and post-ASCT maintenance | Phase 1b/2, open-label | EFS | Ofir Wolach, Israeli Medical Association |
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Youle, R.J.; Strasser, A. The BCL-2 Protein Family: Opposing Activities That Mediate Cell Death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59. [Google Scholar] [CrossRef]
- Moia, R.; Diop, F.; Favini, C.; Kodipad, A.A.; Gaidano, G. Potential of BCL2 as a Target for Chronic Lymphocytic Leukemia Treatment. Expert Rev. Hematol. 2018, 11, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.W.; Wei, A.H.; Huang, D.C.S. BCL2 and MCL1 Inhibitors for Hematologic Malignancies. Blood 2021, 138, 1120–1136. [Google Scholar] [CrossRef] [PubMed]
- High, L.M.; Szymanska, B.; Wilczynska-Kalak, U.; Barber, N.; O’Brien, R.; Khaw, S.L.; Vikstrom, I.B.; Roberts, A.W.; Lock, R.B. The Bcl-2 Homology Domain 3 Mimetic ABT-737 Targets the Apoptotic Machinery in Acute Lymphoblastic Leukemia Resulting in Synergistic in Vitro and in Vivo Interactions with Established Drugs. Mol. Pharmacol. 2010, 77, 483–494. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Xiao, L.; Kadia, T.; Daver, N.; Adeoti, M.; Short, N.J.; Sasaki, K.; et al. Venetoclax Combined With FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2021, 39, 2768–2778. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef]
- Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.; Robak, T.; De la Serna, J.; et al. Venetoclax–Rituximab in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [Google Scholar] [CrossRef]
- Suryani, S.; Carol, H.; Chonghaile, T.N.; Frismantas, V.; Sarmah, C.; High, L.; Bornhauser, B.; Cowley, M.J.; Szymanska, B.; Evans, K.; et al. Cell and Molecular Determinants of in Vivo Efficacy of the BH3 Mimetic ABT-263 against Pediatric Acute Lymphoblastic Leukemia Xenografts. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 4520–4531. [Google Scholar] [CrossRef]
- Frismantas, V.; Dobay, M.P.; Rinaldi, A.; Tchinda, J.; Dunn, S.H.; Kunz, J.; Richter-Pechanska, P.; Marovca, B.; Pail, O.; Jenni, S.; et al. Ex Vivo Drug Response Profiling Detects Recurrent Sensitivity Patterns in Drug-Resistant Acute Lymphoblastic Leukemia. Blood 2017, 129, e26–e37. [Google Scholar] [CrossRef] [Green Version]
- Peirs, S.; Matthijssens, F.; Goossens, S.; Van de Walle, I.; Ruggero, K.; de Bock, C.E.; Degryse, S.; Canté-Barrett, K.; Briot, D.; Clappier, E.; et al. ABT-199 Mediated Inhibition of BCL-2 as a Novel Therapeutic Strategy in T-Cell Acute Lymphoblastic Leukemia. Blood 2014, 124, 3738–3747. [Google Scholar] [CrossRef] [PubMed]
- Beldjord, K.; Chevret, S.; Asnafi, V.; Huguet, F.; Boulland, M.-L.; Leguay, T.; Thomas, X.; Cayuela, J.-M.; Grardel, N.; Chalandon, Y.; et al. Oncogenetics and Minimal Residual Disease Are Independent Outcome Predictors in Adult Patients with Acute Lymphoblastic Leukemia. Blood 2014, 123, 3739–3749. [Google Scholar] [CrossRef] [PubMed]
- Benito, J.M.; Godfrey, L.; Kojima, K.; Hogdal, L.; Wunderlich, M.; Geng, H.; Marzo, I.; Harutyunyan, K.G.; Golfman, L.; North, P.; et al. MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Rep. 2015, 13, 2715–2727. [Google Scholar] [CrossRef] [PubMed]
- Alford, S.E.; Kothari, A.; Loeff, F.C.; Eichhorn, J.M.; Sakurikar, N.; Goselink, H.M.; Saylors, R.L.; Jedema, I.; Falkenburg, J.H.F.; Chambers, T.C. BH3 Inhibitor Sensitivity and Bcl-2 Dependence in Primary Acute Lymphoblastic Leukemia Cells. Cancer Res. 2015, 75, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.W.; Behling, K.C.; Gupta, M.; Zhang, A.Y.; Moore, J.S.; Bantly, A.D.; Willman, C.L.; Carroll, A.J.; Adamson, P.C.; Barrett, J.S.; et al. Abundant Anti-Apoptotic BCL-2 Is a Molecular Target in Leukaemias with t(4;11) Translocation. Br. J. Haematol. 2008, 141, 827–839. [Google Scholar] [CrossRef]
- Dawson, M.A.; Prinjha, R.K.; Dittmann, A.; Giotopoulos, G.; Bantscheff, M.; Chan, W.-I.; Robson, S.C.; Chung, C.; Hopf, C.; Savitski, M.M.; et al. Inhibition of BET Recruitment to Chromatin as an Effective Treatment for MLL-Fusion Leukaemia. Nature 2011, 478, 529–533. [Google Scholar] [CrossRef]
- de Boer, J.; Yeung, J.; Ellu, J.; Ramanujachar, R.; Bornhauser, B.; Solarska, O.; Hubank, M.; Williams, O.; Brady, H.J.M. The E2A-HLF Oncogenic Fusion Protein Acts through Lmo2 and Bcl-2 to Immortalize Hematopoietic Progenitors. Leukemia 2011, 25, 321–330. [Google Scholar] [CrossRef]
- Fischer, U.; Forster, M.; Rinaldi, A.; Risch, T.; Sungalee, S.; Warnatz, H.-J.; Bornhauser, B.; Gombert, M.; Kratsch, C.; Stütz, A.M.; et al. Genomics and Drug Profiling of Fatal TCF3-HLF-Positive Acute Lymphoblastic Leukemia Identifies Recurrent Mutation Patterns and Therapeutic Options. Nat. Genet. 2015, 47, 1020–1029. [Google Scholar] [CrossRef]
- Diaz-Flores, E.; Comeaux, E.Q.; Kim, K.L.; Melnik, E.; Beckman, K.; Davis, K.L.; Wu, K.; Akutagawa, J.; Bridges, O.; Marino, R.; et al. Bcl-2 Is a Therapeutic Target for Hypodiploid B-Lineage Acute Lymphoblastic Leukemia. Cancer Res. 2019, 79, 2339–2351. [Google Scholar] [CrossRef]
- Hohtari, H.; Kankainen, M.; Adnan-Awad, S.; Yadav, B.; Potdar, S.; Ianevski, A.; Dufva, O.; Heckman, C.; Sexl, V.; Kytölä, S.; et al. Targeting Apoptosis Pathways With BCL2 and MDM2 Inhibitors in Adult B-Cell Acute Lymphoblastic Leukemia. HemaSphere 2022, 6, e701. [Google Scholar] [CrossRef]
- Koss, B.; Morrison, J.; Perciavalle, R.M.; Singh, H.; Rehg, J.E.; Williams, R.T.; Opferman, J.T. Requirement for Antiapoptotic MCL-1 in the Survival of BCR-ABL B-Lineage Acute Lymphoblastic Leukemia. Blood 2013, 122, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Del Gaizo Moore, V.; Schlis, K.D.; Sallan, S.E.; Armstrong, S.A.; Letai, A. BCL-2 Dependence and ABT-737 Sensitivity in Acute Lymphoblastic Leukemia. Blood 2008, 111, 2300–2309. [Google Scholar] [CrossRef] [PubMed]
- Mérino, D.; Khaw, S.L.; Glaser, S.P.; Anderson, D.J.; Belmont, L.D.; Wong, C.; Yue, P.; Robati, M.; Phipson, B.; Fairlie, W.D.; et al. Bcl-2, Bcl-x(L), and Bcl-w Are Not Equivalent Targets of ABT-737 and Navitoclax (ABT-263) in Lymphoid and Leukemic Cells. Blood 2012, 119, 5807–5816. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, F.; Demir, S.; Hörl, R.L.; Stirnweiß, F.U.; Ryan, J.; Scheffold, A.; Villalobos-Ortiz, M.; Boldrin, E.; Zinngrebe, J.; Enzenmüller, S.; et al. Prediction of Venetoclax Activity in Precursor B-ALL by Functional Assessment of Apoptosis Signaling. Cell Death Dis. 2019, 10, 571. [Google Scholar] [CrossRef]
- Choudhary, G.S.; Al-harbi, S.; Mazumder, S.; Hill, B.T.; Smith, M.R.; Bodo, J.; Hsi, E.D.; Almasan, A. MCL-1 and BCL-XL-Dependent Resistance to the BCL-2 Inhibitor ABT-199 Can Be Overcome by Preventing PI3K/AKT/MTOR Activation in Lymphoid Malignancies. Cell Death Dis. 2015, 6, e1593. [Google Scholar] [CrossRef]
- Khaw, S.L.; Suryani, S.; Evans, K.; Richmond, J.; Robbins, A.; Kurmasheva, R.T.; Billups, C.A.; Erickson, S.W.; Guo, Y.; Houghton, P.J.; et al. Venetoclax Responses of Pediatric ALL Xenografts Reveal Sensitivity of MLL-Rearranged Leukemia. Blood 2016, 128, 1382–1395. [Google Scholar] [CrossRef]
- Chonghaile, T.N.; Roderick, J.E.; Glenfield, C.; Ryan, J.; Sallan, S.E.; Silverman, L.B.; Loh, M.L.; Hunger, S.P.; Wood, B.; DeAngelo, D.J.; et al. Maturation Stage of T-Cell Acute Lymphoblastic Leukemia Determines BCL-2 versus BCL-XL Dependence and Sensitivity to ABT-199. Cancer Discov. 2014, 4, 1074–1087. [Google Scholar] [CrossRef]
- Li, Z.; He, S.; Look, A.T. The MCL1-Specific Inhibitor S63845 Acts Synergistically with Venetoclax/ABT-199 to Induce Apoptosis in T-Cell Acute Lymphoblastic Leukemia Cells. Leukemia 2019, 33, 262–266. [Google Scholar] [CrossRef]
- Lázaro-Navarro, J.; Pimentel-Gutiérrez, H.J.; Gauert, A.; Hagemann, A.I.H.; Eisenschmid, J.; Gökbuget, N.; Vick, B.; Jeremias, I.; Seyfried, F.; Meyer, L.H.; et al. Inhibiting Casein Kinase 2 Sensitizes Acute Lymphoblastic Leukemia Cells to Venetoclax via MCL1 Degradation. Blood Adv. 2021, 5, 5501–5506. [Google Scholar] [CrossRef]
- Moujalled, D.M.; Hanna, D.T.; Hediyeh-Zadeh, S.; Pomilio, G.; Brown, L.; Litalien, V.; Bartolo, R.; Fleming, S.; Chanrion, M.; Banquet, S.; et al. Cotargeting BCL-2 and MCL-1 in High-Risk B-ALL. Blood Adv. 2020, 4, 2762–2767. [Google Scholar] [CrossRef]
- Massimino, M.; Tirrò, E.; Stella, S.; Pennisi, M.S.; Vitale, S.R.; Puma, A.; Romano, C.; DI Gregorio, S.; Romeo, M.A.; DI Raimondo, F.; et al. Targeting BCL-2 as a Therapeutic Strategy for Primary P210BCR-ABL1-Positive B-ALL Cells. Vivo Athens Greece 2020, 34, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.J.; Court Recart, A.; Sadarangani, A.; Chun, H.-J.; Barrett, C.L.; Krajewska, M.; Leu, H.; Low-Marchelli, J.; Ma, W.; Shih, A.Y.; et al. A Pan-BCL2 Inhibitor Renders Bone-Marrow-Resident Human Leukemia Stem Cells Sensitive to Tyrosine Kinase Inhibition. Cell Stem Cell 2013, 12, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Leonard, J.T.; Rowley, J.S.J.; Eide, C.A.; Traer, E.; Hayes-Lattin, B.; Loriaux, M.; Spurgeon, S.E.; Druker, B.J.; Tyner, J.W.; Chang, B.H. Targeting BCL-2 and ABL/LYN in Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2016, 8, 354ra114. [Google Scholar] [CrossRef] [PubMed]
- Peirs, S.; Frismantas, V.; Matthijssens, F.; Van Loocke, W.; Pieters, T.; Vandamme, N.; Lintermans, B.; Dobay, M.P.; Berx, G.; Poppe, B.; et al. Targeting BET Proteins Improves the Therapeutic Efficacy of BCL-2 Inhibition in T-Cell Acute Lymphoblastic Leukemia. Leukemia 2017, 31, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Kang, Y.H.; Szymanska, B.; Wilczynska-Kalak, U.; Sheard, M.A.; Harned, T.M.; Lock, R.B.; Reynolds, C.P. Activity of Vincristine, L-ASP, and Dexamethasone against Acute Lymphoblastic Leukemia Is Enhanced by the BH3-Mimetic ABT-737 in Vitro and in Vivo. Blood 2007, 110, 2057–2066. [Google Scholar] [CrossRef]
- Numan, Y.; Alfayez, M.; Maiti, A.; Alvarado, Y.; Jabbour, E.J.; Ferrajoli, A.; Konoplev, S.N.; Kantarjian, H.M.; Bose, P. First Report of Clinical Response to Venetoclax in Early T-Cell Precursor Acute Lymphoblastic Leukemia. JCO Precis. Oncol. 2018, 2, PO.18.00127. [Google Scholar] [CrossRef]
- Jain, N.; Stevenson, K.E.; Winer, E.S.; Garcia, J.S.; Stone, R.M.; Jabbour, E.; Ravandi, F.; Stewart, J.M.; Legg, D.R.; Kantarjian, H.M.; et al. A Multicenter Phase I Study Combining Venetoclax with Mini-Hyper-CVD in Older Adults with Untreated and Relapsed/Refractory Acute Lymphoblastic Leukemia. Blood 2019, 134, 3867. [Google Scholar] [CrossRef]
- Venugopal, S.; Kantarjian, H.; Short, N.J.; Thompson, P.A.; Pemmaraju, N.; Jain, N.; Wierda, W.G.; Borthakur, G.; Montalban-Bravo, G.; Ravandi, F.; et al. A Phase II Study of Mini-Hyper-CVD Plus Venetoclax in Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia. Blood 2021, 138, 1239. [Google Scholar] [CrossRef]
- Arora, S.; Vachhani, P.; Bachiashvili, K.; Jamy, O. Venetoclax with Chemotherapy in Relapse/Refractory Early T-Cell Precursor Acute Lymphoblastic Leukemia. Leuk. Lymphoma 2021, 62, 2292–2294. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Jin, J.; Yu, W. Relapsed/Refractory Early T-Cell Precursor Acute Lymphoblastic Leukemia Was Salvaged by Venetoclax plus HAG Regimen. Ann. Hematol. 2020, 99, 395–397. [Google Scholar] [CrossRef]
- Richard-Carpentier, G.; Jabbour, E.; Short, N.J.; Rausch, C.R.; Savoy, J.M.; Bose, P.; Yilmaz, M.; Jain, N.; Borthakur, G.; Ohanian, M.; et al. Clinical Experience With Venetoclax Combined With Chemotherapy for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia. Clin. Lymphoma Myeloma Leuk. 2020, 20, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.; Trabal, A.; McCall, D.; Khazal, S.; Toepfer, L.; Bell, D.H.; Roth, M.; Mahadeo, K.M.; Nunez, C.; Short, N.J.; et al. Venetoclax for Children and Adolescents with Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancers 2021, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Palmisiano, N.; Lee, J.-W.; Claxton, D.F.; Paietta, E.; Alkhateeb, H.B.; Park, J.H.; Podoltsev, N.; Atallah, E.L.; Schaar, D.G.; Dinner, S.; et al. Maximal Tolerated Dose Determined for Venetoclax in Combination with Liposomal Vincristine in Patients with Relapsed or Refractory Ph-Negative T-Cell or B-Cell Acute Lymphoblastic Leukemia: Results of Phase 1 Portion of ECOG-ACRIN EA9152. Blood 2021, 138, 3407. [Google Scholar] [CrossRef]
- Pullarkat, V.A.; Lacayo, N.J.; Jabbour, E.; Rubnitz, J.E.; Bajel, A.; Laetsch, T.W.; Leonard, J.; Colace, S.I.; Khaw, S.L.; Fleming, S.A.; et al. Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discov. 2021, 11, 1440–1453. [Google Scholar] [CrossRef]
- Voruz, S.; Blum, S.; de Leval, L.; Schoumans, J.; Solly, F.; Spertini, O. Daratumumab and Venetoclax in Combination with Chemotherapy Provide Sustained Molecular Remission in Relapsed/Refractory CD19, CD20, and CD22 Negative Acute B Lymphoblastic Leukemia with KMT2A-AFF1 Transcript. Biomark. Res. 2021, 9, 92. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, J.-J.; Shen, Y.-J.; Hang, S.-J.; Jin, J.; Zhu, H.-H. The First Report of Complete Remission Following Treatment with Venetoclax plus Prednisone in Elderly Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia. Ann. Hematol. 2022, 101, 1141–1144. [Google Scholar] [CrossRef]
- Rahmat, L.T.; Nguyen, A.; Abdulhaq, H.; Prakash, S.; Logan, A.C.; Mannis, G.N. Venetoclax in Combination with Decitabine for Relapsed T-Cell Acute Lymphoblastic Leukemia after Allogeneic Hematopoietic Cell Transplant. Case Rep. Hematol. 2018, 2018, 6092646. [Google Scholar] [CrossRef]
- Farhadfar, N.; Li, Y.; May, W.S.; Adams, C.B. Venetoclax and Decitabine for Treatment of Relapsed T-Cell Acute Lymphoblastic Leukemia: A Case Report and Review of Literature. Hematol. Oncol. Stem Cell Ther. 2021, 14, 246–251. [Google Scholar] [CrossRef]
- Zappone, E.; Cencini, E.; Defina, M.; Sicuranza, A.; Gozzetti, A.; Ciofini, S.; Raspadori, D.; Mecacci, B.; Bocchia, M. Venetoclax in Association with Decitabine as Effective Bridge to Transplant in a Case of Relapsed Early T-Cell Lymphoblastic Leukemia. Clin. Case Rep. 2020, 8, 2000–2002. [Google Scholar] [CrossRef]
- Kong, J.; Chen, N.; Li, M.; Zhang, J.; Wu, X.; Zong, L.; Wu, D.; Song, B.; Qiu, H. Venetoclax and Decitabine in Refractory TP53-Mutated Early T-Cell Precursor Acute Lymphoblastic Leukemia. Ann. Hematol. 2022, 101, 697–699. [Google Scholar] [CrossRef]
- Wan, C.-L.; Zou, J.-Y.; Qiao, M.; Yin, J.; Shen, X.-D.; Qiu, Q.-C.; Liu, S.-B.; Xue, S.-L. Venetoclax Combined with Azacitidine as an Effective and Safe Salvage Regimen for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia: A Case Series. Leuk. Lymphoma 2021, 62, 3300–3303. [Google Scholar] [CrossRef] [PubMed]
- Foà, R.; Bassan, R.; Vitale, A.; Elia, L.; Piciocchi, A.; Puzzolo, M.-C.; Canichella, M.; Viero, P.; Ferrara, F.; Lunghi, M.; et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N. Engl. J. Med. 2020, 383, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Konopleva, M.; Kadia, T.; Kebriaei, P.; Daver, N.; Huang, X.; Masarova, L.; Cook, R.; Jain, N.; Jabbour, E.; et al. An Effective Chemotherapy-Free Regimen of Ponatinib plus Venetoclax for Relapsed/Refractory Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Am. J. Hematol. 2021, 96, E229–E232. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, C.; Shi, T.; Zhang, Y.; Qian, J.; Wang, Y.; Hu, Y.; Mao, L.; Ye, X.; Liu, F.; et al. Venetoclax-Ponatinib for T315I/Compound-Mutated Ph+ Acute Lymphoblastic Leukemia. Blood Cancer J. 2022, 12, 20. [Google Scholar] [CrossRef]
- Nechiporuk, T.; Kurtz, S.E.; Nikolova, O.; Liu, T.; Jones, C.L.; D’Alessandro, A.; Culp-Hill, R.; d’Almeida, A.; Joshi, S.K.; Rosenberg, M.; et al. The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discov. 2019, 9, 910–925. [Google Scholar] [CrossRef]
- Zhang, Q.; Riley-Gillis, B.; Han, L.; Jia, Y.; Lodi, A.; Zhang, H.; Ganesan, S.; Pan, R.; Konoplev, S.N.; Sweeney, S.R.; et al. Activation of RAS/MAPK Pathway Confers MCL-1 Mediated Acquired Resistance to BCL-2 Inhibitor Venetoclax in Acute Myeloid Leukemia. Signal. Transduct. Target. Ther. 2022, 7, 51. [Google Scholar] [CrossRef]
- Stevens, B.M.; Jones, C.L.; Pollyea, D.A.; Culp-Hill, R.; D’Alessandro, A.; Winters, A.; Krug, A.; Abbott, D.; Goosman, M.; Pei, S.; et al. Fatty Acid Metabolism Underlies Venetoclax Resistance in Acute Myeloid Leukemia Stem Cells. Nat. Cancer 2020, 1, 1176–1187. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aumann, S.; Shaulov, A.; Haran, A.; Gross Even-Zohar, N.; Vainstein, V.; Nachmias, B. The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2022, 23, 10957. https://doi.org/10.3390/ijms231810957
Aumann S, Shaulov A, Haran A, Gross Even-Zohar N, Vainstein V, Nachmias B. The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences. 2022; 23(18):10957. https://doi.org/10.3390/ijms231810957
Chicago/Turabian StyleAumann, Shlomzion, Adir Shaulov, Arnon Haran, Noa Gross Even-Zohar, Vladimir Vainstein, and Boaz Nachmias. 2022. "The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia" International Journal of Molecular Sciences 23, no. 18: 10957. https://doi.org/10.3390/ijms231810957
APA StyleAumann, S., Shaulov, A., Haran, A., Gross Even-Zohar, N., Vainstein, V., & Nachmias, B. (2022). The Emerging Role of Venetoclax-Based Treatments in Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 23(18), 10957. https://doi.org/10.3390/ijms231810957