Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Inhibition Effect of Tryptophan Metabolites on Cancer Cell Proliferation
2.2. Combined Treatment Effects of Tryptophan Metabolites on PCa Cells
2.3. Tryptamine Inhibited PC-3 Cell Migration
2.4. Tryptamine Induced Apoptosis in PC-3 Cells via Caspase-3-Dependent Pathway
2.5. Tryptamine Affected Tumor Growth of Mouse PC-3 Xenografts
2.6. Tryptamine Induced Metabolic Alterations in PC-3 Cells
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Culture
4.3. Cell Proliferation Assay
4.4. Transwell Assay
4.5. Flow Cytometry
4.6. Western Blot Assay
4.7. Confocal Imaging of Cells
4.8. Xenograft Assays
4.9. UPLC–HRMS-Based Metabolomics Study
4.9.1. Sample Preparation for Cell Metabolomics
4.9.2. Sample Preparation for Mouse Serum Metabolomics
4.9.3. UPLC–HRMS Instrument Settings
4.9.4. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol. 2018, 36, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Geiger, R.; Rieckmann, J.C.; Wolf, T.; Basso, C.; Feng, Y.; Fuhrer, T.; Kogadeeva, M.; Picotti, P.; Meissner, F.; Mann, M.; et al. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016, 167, 829–842.e813. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bermudez, J.; Baudrier, L.; La, K.; Zhu, X.G.; Fidelin, J.; Sviderskiy, V.O.; Papagiannakopoulos, T.; Molina, H.; Snuderl, M.; Lewis, C.A.; et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol. 2018, 20, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cao, L.; Tian, Y.; Zhang, P.; Ding, C.; Lu, W.; Jia, C.; Shao, C.; Liu, W.; Wang, D. Butyrate suppresses the proliferation of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol. Cell. Proteom. 2018, 17, 1531–1545. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; Berkhout, D.J.; Ben Larbi, I.; de Meij, T.G.; de Boer, N.K. Fecal volatile organic compounds for early detection of colorectal cancer: Where are we now? J. Cancer Res. Clin. Oncol. 2019, 145, 223–234. [Google Scholar] [CrossRef]
- Kelly, R.S.; Vander Heiden, M.G.; Giovannucci, E.; Mucci, L.A. Metabolomic Biomarkers of Prostate Cancer: Prediction, Diagnosis, Progression, Prognosis, and Recurrence. Cancer Epidemiol. Biomarkers Prev. 2016, 25, 887–906. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Z.; Lazar, L.; Fang, Z.; Tang, C.; Zhao, J. Metabolomics workflow for lung cancer: Discovery of biomarkers. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 495, 436–445. [Google Scholar] [CrossRef]
- Scheffer, D.; Kulcsar, G.; Czompoly, T. Identification of Further Components of an Anticancer Defense System Composed of Small Molecules Present in the Serum. Cancer Biother. Radiopharm. 2019, 34, 160–170. [Google Scholar] [CrossRef]
- Xiao, M.; Yang, H.; Xu, W.; Ma, S.; Lin, H.; Zhu, H.; Liu, L.; Liu, Y.; Yang, C.; Xu, Y.; et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012, 26, 1326–1338. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Yang, X.; Lu, P.; Yan, X.; Xiao, F.; Zhou, H.; Wen, C.; Shi, M.; Lu, J.; et al. Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol. Ther. 2016, 17, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Spears, M.E.; Carlisle, A.E.; Kim, D. Endogenous toxic metabolites and implications in cancer therapy. Oncogene 2020, 39, 5709–5720. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef]
- Botticelli, A.; Mezi, S.; Pomati, G.; Cerbelli, B.; Cerbelli, E.; Roberto, M.; Giusti, R.; Cortellini, A.; Lionetto, L.; Scagnoli, S.; et al. Tryptophan Catabolism as Immune Mechanism of Primary Resistance to Anti-PD-1. Front. Immunol. 2020, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Jones, C.M.; Long, T.Q.; Monge, M.E.; Zhou, M.; Walker, L.D.; Mezencev, R.; Gray, A.; McDonald, J.F.; Fernandez, F.M. Feasibility of detecting prostate cancer by ultraperformance liquid chromatography–mass spectrometry serum metabolomics. J. Proteome Res. 2014, 13, 3444–3454. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, T.; Kumar, S.; Markar, S.R.; Antonowicz, S.; Hanna, G.B. Tyrosine, phenylalanine, and tryptophan in gastroesophageal malignancy: A systematic review. Cancer Epidemiol. Biomarkers Prev. 2015, 24, 32–38. [Google Scholar] [CrossRef]
- Bekki, S.; Hashimoto, S.; Yamasaki, K.; Komori, A.; Abiru, S.; Nagaoka, S.; Saeki, A.; Suehiro, T.; Kugiyama, Y.; Beppu, A.; et al. Serum kynurenine levels are a novel biomarker to predict the prognosis of patients with hepatocellular carcinoma. PLoS ONE 2020, 15, e0241002. [Google Scholar] [CrossRef]
- Huang, J.Y.; Butler, L.M.; Midttun, O.; Ulvik, A.; Wang, R.; Jin, A.; Gao, Y.T.; Ueland, P.M.; Koh, W.P.; Yuan, J.M. A prospective evaluation of serum kynurenine metabolites and risk of pancreatic cancer. PLoS ONE 2018, 13, e0196465. [Google Scholar] [CrossRef]
- Mandarano, M.; Orecchini, E.; Bellezza, G.; Vannucci, J.; Ludovini, V.; Baglivo, S.; Tofanetti, F.R.; Chiari, R.; Loreti, E.; Puma, F.; et al. Kynurenine/Tryptophan Ratio as a Potential Blood-Based Biomarker in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2021, 22, 4403. [Google Scholar] [CrossRef]
- Gan, G.; Shi, Z.; Shangguan, C.; Zhang, J.; Yuan, Y.; Chen, L.; Liu, W.; Li, B.; Meng, S.; Xiong, W.; et al. The kynurenine derivative 3-HAA sensitizes hepatocellular carcinoma to sorafenib by upregulating phosphatases. Theranostics 2021, 11, 6006–6018. [Google Scholar] [CrossRef]
- Karayama, M.; Masuda, J.; Mori, K.; Yasui, H.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; Fujisawa, T.; Enomoto, N.; Nakamura, Y. Comprehensive assessment of multiple tryptophan metabolites as potential biomarkers for immune checkpoint inhibitors in patients with non-small cell lung cancer. Clin. Transl. Oncol. 2021, 23, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Perez-Castro, L.; Garcia, R.; Venkateswaran, N.; Barnes, S.; Conacci-Sorrell, M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kannen, V.; Bader, M.; Sakita, J.Y.; Uyemura, S.A.; Squire, J.A. The Dual Role of Serotonin in Colorectal Cancer. Trends Endocrinol. Metab. TEM 2020, 31, 611–625. [Google Scholar] [CrossRef]
- Rutigliano, G.; Accorroni, A.; Zucchi, R. The Case for TAAR1 as a Modulator of Central Nervous System Function. Front. Pharmacol. 2018, 8, 987. [Google Scholar] [CrossRef]
- Boulton, A.A. Phenylethylaminergic modulation of catecholaminergic neurotransmission. Prog. Neuropsychopharmacol. Biol. Psychiatry 1991, 15, 139–156. [Google Scholar] [CrossRef]
- Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 8966–8971. [Google Scholar] [CrossRef]
- Dodd, S.; Carvalho, A.F.; Puri, B.K.; Maes, M.; Bortolasci, C.C.; Morris, G.; Berk, M. Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci. Biobehav. Rev. 2021, 120, 537–541. [Google Scholar] [CrossRef]
- Tourino, M.C.; de Oliveira, E.M.; Belle, L.P.; Knebel, F.H.; Albuquerque, R.C.; Dorr, F.A.; Okada, S.S.; Migliorini, S.; Soares, I.S.; Campa, A. Tryptamine and dimethyltryptamine inhibit indoleamine 2,3 dioxygenase and increase the tumor-reactive effect of peripheral blood mononuclear cells. Cell Biochem. Funct. 2013, 31, 361–364. [Google Scholar] [CrossRef]
- Wu, K.K. Cytoguardin: A Tryptophan Metabolite against Cancer Growth and Metastasis. Int. J. Mol. Sci. 2021, 22, 4490. [Google Scholar] [CrossRef]
- Zang, X.; Monge, M.E.; Gaul, D.A.; Fernández, F.M. Flow Injection–Traveling-Wave Ion Mobility–Mass Spectrometry for Prostate-Cancer Metabolomics. Anal. Chem. 2018, 90, 13767–13774. [Google Scholar] [CrossRef]
- Miladiyah, I.; Yuanita, E.; Nuryadi, S.; Jumina, J.; Haryana, S.M.; Mustofa, M. Synergistic Effect of 1,3,6-Trihydroxy-4,5,7-Trichloroxanthone in Combination with Doxorubicin on B-Cell Lymphoma Cells and Its Mechanism of Action Through Molecular Docking. Curr. Ther. Res. 2020, 92, 100576. [Google Scholar] [CrossRef]
- Reyes-Ocampo, J.; Ramirez-Ortega, D.; Cervantes, G.I.; Pineda, B.; Balderas, P.M.; Gonzalez-Esquivel, D.; Sanchez-Chapul, L.; Lugo-Huitron, R.; Silva-Adaya, D.; Rios, C.; et al. Mitochondrial dysfunction related to cell damage induced by 3-hydroxykynurenine and 3-hydroxyanthranilic acid: Non-dependent-effect of early reactive oxygen species production. Neurotoxicology 2015, 50, 81–91. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, Y.; Song, P.; Zhu, H.; Okon, I.; Ding, Y.-N.; Chen, H.-Z.; Liu, D.-P.; Zou, M.-H. Tryptophan-Derived 3-Hydroxyanthranilic Acid Contributes to Angiotensin II–Induced Abdominal Aortic Aneurysm Formation in Mice In Vivo. Circulation 2017, 136, 2271–2283. [Google Scholar] [CrossRef]
- Woo, S.M.; Seo, S.U.; Min, K.j.; Kwon, T.K. Melatonin induces apoptotic cell death through Bim stabilization by Sp1-mediated OTUD1 upregulation. J. Pineal Res. 2022, 72, e1781. [Google Scholar] [CrossRef]
- Tran, Q.H.; Hoang, D.H.; Song, M.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. Melatonin and doxorubicin synergistically enhance apoptosis via autophagy-dependent reduction of AMPKα1 transcription in human breast cancer cells. Exp. Mol. Med. 2021, 53, 1413–1422. [Google Scholar] [CrossRef]
- Bildziukevich, U.; Kvasnicova, M.; Saman, D.; Rarova, L.; Wimmer, Z. Novel Oleanolic Acid-Tryptamine and -Fluorotryptamine Amides: From Adaptogens to Agents Targeting In Vitro Cell Apoptosis. Plants 2021, 10, 2082. [Google Scholar] [CrossRef]
- Del Rio, B.; Redruello, B.; Fernandez, M.; Martin, M.C.; Ladero, V.; Alvarez, M.A. The biogenic amine tryptamine, unlike β-phenylethylamine, shows in vitro cytotoxicity at concentrations that have been found in foods. Food Chem. 2020, 331, 127303. [Google Scholar] [CrossRef]
- Vikström Bergander, L.; Cai, W.; Klocke, B.; Seifert, M.; Pongratz, I. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases. Mol. Endocrinol. 2012, 26, 1542–1551. [Google Scholar] [CrossRef]
- Sladeczek, F.; Pin, J.P.; Recasens, M.; Bockaert, J.; Weiss, S. Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 1985, 317, 717–719. [Google Scholar] [CrossRef]
- Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol. 2018, 175, 3190–3199. [Google Scholar] [CrossRef]
- Beretta, G.; Moretti, R.M.; Nasti, R.; Cincinelli, R.; Dallavalle, S.; Montagnani Marelli, M. Apoptosis-mediated anticancer activity in prostate cancer cells of a chestnut honey (Castanea sativa L.) quinoline-pyrrolidine gamma-lactam alkaloid. Amino Acids 2021, 53, 869–880. [Google Scholar] [CrossRef]
- Patel, R.; Ford, C.A.; Rodgers, L.; Rushworth, L.K.; Fleming, J.; Mui, E.; Zhang, T.; Watson, D.; Lynch, V.; Mackay, G.; et al. Cyclocreatine Suppresses Creatine Metabolism and Impairs Prostate Cancer Progression. Cancer Res. 2022, 82, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The Metabolic Phenotype of Prostate Cancer. Front. Oncol. 2017, 7, 131. [Google Scholar] [CrossRef]
- Hsueh, E.C.; Knebel, S.M.; Lo, W.H.; Leung, Y.C.; Cheng, P.N.; Hsueh, C.T. Deprivation of arginine by recombinant human arginase in prostate cancer cells. J. Hematol. Oncol. 2012, 5, 17. [Google Scholar] [CrossRef]
- Kim, R.H.; Coates, J.M.; Bowles, T.L.; McNerney, G.P.; Sutcliffe, J.; Jung, J.U.; Gandour-Edwards, R.; Chuang, F.Y.; Bold, R.J.; Kung, H.J. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009, 69, 700–708. [Google Scholar] [CrossRef]
- Chiu, P.K.; Fung, Y.H.; Teoh, J.Y.; Chan, C.H.; Lo, K.L.; Li, K.M.; Tse, R.T.; Leung, C.H.; Wong, Y.P.; Roobol, M.J.; et al. Urine spermine and multivariable Spermine Risk Score predict high-grade prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 542–548. [Google Scholar] [CrossRef]
- Peng, Q.; Wong, C.Y.; Cheuk, I.W.; Teoh, J.Y.; Chiu, P.K.; Ng, C.F. The Emerging Clinical Role of Spermine in Prostate Cancer. Int. J. Mol. Sci. 2021, 22, 4382. [Google Scholar] [CrossRef]
- Burke, L.; Guterman, I.; Palacios Gallego, R.; Britton, R.G.; Burschowsky, D.; Tufarelli, C.; Rufini, A. The Janus-like role of proline metabolism in cancer. Cell Death Discov. 2020, 6, 104. [Google Scholar] [CrossRef]
- Sullivan, L.B.; Luengo, A.; Danai, L.V.; Bush, L.N.; Diehl, F.F.; Hosios, A.M.; Lau, A.N.; Elmiligy, S.; Malstrom, S.; Lewis, C.A.; et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat. Cell Biol. 2018, 20, 782–788. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, Z.; Li, J.; Sun, Y.; Zhang, X.; Qu, Z.; Luo, Y.; Zhang, L. Effects of glutamate and aspartate on prostate cancer and breast cancer: A Mendelian randomization study. BMC Genom. 2022, 23, 213. [Google Scholar] [CrossRef]
- Balakrishna, P.; George, S.; Hatoum, H.; Mukherjee, S. Serotonin Pathway in Cancer. Int. J. Mol. Sci. 2021, 22, 1268. [Google Scholar] [CrossRef]
- Pirozhok, L.; Meye, A.; Hakenberg, O.; Füssel, S.; Wirth, M. Do serotonin and melatonin have a role in the growth regulation of prostate cancer cell lines? Eur. Urol. Suppl. 2007, 6, 47. [Google Scholar] [CrossRef]
- Sarrouilhe, D.; Clarhaut, J.; Defamie, N.; Mesnil, M. Serotonin and cancer: What is the link? Curr. Mol. Med. 2015, 15, 62–77. [Google Scholar] [CrossRef]
- Christensen, D.K.; Armaiz-Pena, G.N.; Ramirez, E.; Matsuo, K.; Zimmerman, B.; Zand, B.; Shinn, E.; Goodheart, M.J.; Bender, D.; Thaker, P.H.; et al. SSRI use and clinical outcomes in epithelial ovarian cancer. Oncotarget 2016, 7, 33179–33191. [Google Scholar] [CrossRef]
- Zucker, M.B.; Borrelli, J. Relationship of some blood clotting factors to serotonin release from washed platelets. J. Appl. Physiol. 1955, 7, 432–442. [Google Scholar] [CrossRef]
- Piazza, I.; Kochanowski, K.; Cappelletti, V.; Fuhrer, T.; Noor, E.; Sauer, U.; Picotti, P. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell 2018, 172, 358–372.e323. [Google Scholar] [CrossRef]
- Wölfel, R.; Graefe, K.-H. Evidence for various tryptamines and related compounds acting as substrates of the platelet 5-hydroxytryptamine transporter. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992, 345, 129–136. [Google Scholar] [CrossRef]
- Ye, D.; Xu, H.; Tang, Q.; Xia, H.; Zhang, C.; Bi, F. The role of 5-HT metabolism in cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188618. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Roomi, M.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human prostate cancer PC-3 xenografts in nude mice: Evaluation of tumor growth and immunohistochemistry. In Vivo 2005, 19, 179–183. [Google Scholar]
- Roomi, M.W.; Ivanov, V.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Anti-tumor effect of ascorbic acid, lysine, proline, arginine, and epigallocatechin gallate on prostate cancer cell lines PC-3, LNCaP, and DU145. Res. Commun. Mol. Pathol. Pharmacol. 2004, 115–116, 251–264. [Google Scholar]
- Zhao, L.; Wientjes, M.G.; Au, J.L. Evaluation of combination chemotherapy: Integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin. Cancer Res. 2004, 10, 7994–8004. [Google Scholar] [CrossRef] [Green Version]
Compound | IC50 Value (Mean ± SD mM) | |||||
---|---|---|---|---|---|---|
RWPE-1 | PC-3 | LNCaP | A549 | HepG2 | PANC-1 | |
Tryptophan | 0.76 ± 0.03 | 1.89 ± 0.13 | 6.51 ± 0.29 | 1.50 ± 0.15 | 1.54 ± 0.04 | 4.54 ± 0.19 |
Tryptamine | 0.71 ± 0.06 | 0.24 ± 0.01 | 0.037 ± 0.001 | 0.46 ± 0.01 | 0.35 ± 0.02 | 0.38 ± 0.01 |
3-HAA | 0.38 ± 0.01 | 0.90 ± 0.04 | 0.65 ± 0.06 | 0.27 ± 0.01 | 0.42 ± 0.02 | 0.41 ± 0.01 |
Melatonin | 1.47 ± 0.10 | 1.28 ± 0.06 | 1.25 ± 0.12 | 2.31 ± 0.06 | 1.48 ± 0.10 | 2.02 ± 0.09 |
Kynurenine | 2.79 ± 0.05 | 2.02 ± 0.05 | 1.78 ± 0.18 | 2.46 ± 0.05 | 1.93 ± 0.03 | 2.63 ± 0.04 |
5-HT | 1.66 ± 0.01 | 1.07 ± 0.03 | 1.12 ± 0.04 | 1.89 ± 0.09 | 1.05 ± 0.17 | 1.34 ± 0.13 |
3-HK | 0.36 ± 0.01 | 0.55 ± 0.01 | 0.29 ± 0.01 | 0.29 ± 0.01 | 0.25 ± 0.01 | 0.25 ± 0.01 |
CA | 0.40 ± 0.01 | 0.17 ± 0.01 | 0.24 ± 0.01 | 0.21 ± 0.01 | 0.10 ± 0.01 | 0.25 ± 0.04 |
5-HTP | 0.85 ± 0.05 | 0.99 ± 0.04 | 1.80 ± 0.17 | - | - | - |
KYNA | 4.39 ± 0.10 | 8.76 ± 1.18 | 9.74 ± 1.30 | - | - | - |
QA | 3.20 ± 0.16 | 6.00 ± 1.32 | 6.83 ± 0.42 | - | - | - |
Picolinic acid | 1.48 ± 0.06 | 4.95 ± 0.19 | 5.75 ± 034 | - | - | - |
Indole | 0.90 ± 0.06 | 0.70 ± 0.02 | 0.98 ± 0.02 | - | - | - |
Tyramine | 2.99 ± 0.08 | 1.53 ± 0.04 | 1.71 ± 0.12 | 3.18 ± 0.24 | 1.53 ± 0.05 | 0.77 ± 0.04 |
β-phenylethylamine | 2.51 ± 0.19 | 0.44 ± 0.01 | 0.69 ± 0.06 | 0.72 ± 0.06 | 1.01 ± 0.03 | 1.47 ± 0.07 |
Etoposide | 0.016 ± 0.001 | 0.064 ± 0.001 | 0.032 ± 0.001 | 0.041 ± 0.002 | 0.030 ± 0.001 | 0.042 ± 0.001 |
Compound Combination | CI Value | |||||
---|---|---|---|---|---|---|
RWPE-1 | PC-3 | LNCaP | A549 | HepG2 | PANC-1 | |
Tryptamine + 5-HT | 1.38 | 0.91 | 1.06 | 0.90 | 0.86 | 0.98 |
Tryptamine + 3-HAA | 1.98 | 1.04 | 0.92 | 1.20 | 0.47 | 0.74 |
Etoposide + Tryptamine | 1.25 | 0.78 | 0.78 | 0.98 | 1.29 | 0.84 |
Etoposide + 5-HT | 1.30 | 0.70 | 0.55 | 0.89 | 1.37 | 0.94 |
Etoposide + 3-HAA | 3.03 | 0.80 | 1.05 | 0.93 | 0.82 | 0.51 |
Compound Name | Retention Time (min) | m/z | Elemental Formula | Δm (mDa) | Ion Type | MS/MS a | p | Fold Change b |
---|---|---|---|---|---|---|---|---|
arginine | 0.51 | 175.1189 | C6H14N4O2 | 0.7 | [M+H]+ | 158.0922/130.0972 | 0.035 | −1.9 |
proline | 0.64 | 116.0700 | C5H9NO2 | 1.1 | [M+H]+ | 98.0593/70.0644 | 0.033 | −2.0 |
creatine | 0.64 | 132.0763 | C4H9N3O2 | 0.4 | [M+H]+ | 90.0543 | 2.5 × 10−4 | −2.0 |
spermidine | 0.49 | 146.1649 | C7H19N3 | 0.8 | [M+H]+ | 129.1382/112.1115/72.0801 | 5.7 × 10−4 | −2.1 |
spermine | 0.49 | 203.2230 | C10H26N4 | 0.6 | [M+H]+ | 129.1382 | 4.2 × 10−5 | −2.1 |
5-HT | 2.68 | 177.1018 | C10H12N2O | 0.3 | [M+H]+ | 160.0753 | 1.4 × 10−3 | 1.4 × 103 |
pantothenic acid | 3.61 | 218.1032 | C9H17NO5 | 0.4 | [M-H]− | 88.0402 | 0.045 | −1.6 |
aspartic acid | 0.62 | 132.0302 | C4H7NO4 | 0.1 | [M-H]− | 115.0031/88.0402 | 2.2 × 10−3 | −3.2 |
α-ketoisovaleric acid | 0.14 | 115.0395 | C5H8O3 | 0 | [M-H]− | 71.0503 | 0.040 | 0 |
ketoleucine | 2.37 | 129.0549 | C6H10O3 | 0.1 | [M-H]− | 111.0446/83.0500 | 3.1 × 10−3 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ding, B.; Ali, M.R.K.; Zhao, L.; Zang, X.; Lv, Z. Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study. Int. J. Mol. Sci. 2022, 23, 11087. https://doi.org/10.3390/ijms231911087
Li Z, Ding B, Ali MRK, Zhao L, Zang X, Lv Z. Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study. International Journal of Molecular Sciences. 2022; 23(19):11087. https://doi.org/10.3390/ijms231911087
Chicago/Turabian StyleLi, Zhuangzhuang, Baoyan Ding, Mustafa R. K. Ali, Lizhen Zhao, Xiaoling Zang, and Zhihua Lv. 2022. "Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study" International Journal of Molecular Sciences 23, no. 19: 11087. https://doi.org/10.3390/ijms231911087
APA StyleLi, Z., Ding, B., Ali, M. R. K., Zhao, L., Zang, X., & Lv, Z. (2022). Dual Effect of Tryptamine on Prostate Cancer Cell Growth Regulation: A Pilot Study. International Journal of Molecular Sciences, 23(19), 11087. https://doi.org/10.3390/ijms231911087