The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis
Abstract
:1. Introduction
1.1. Rhizobial Nod Factors and Surface Polysaccharides Are Key Signal Molecules in Most Symbiotic Interactions with Legumes
1.2. Some Rhizobia Can Deliver Effector Proteins into Their Hosts through Bacterial Secretion Systems to Counteract Plant Immune Responses
2. The Symbiotic Type 3 Secretion System
3. Rhizobial Type 3 Secretion System Effectors
4. The Role of the Rhizobial Type 3 Secretion System in Symbiosis
4.1. Soybean and Wild Soybeans
4.2. Vigna spp.
4.3. Lotus spp.
4.4. Aeschynomene spp.
5. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, S.; Liu, W.; Nandety, R.S.; Crook, A.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.; Dickstein, R.; Udvardi, M.K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 2020, 32, 15–41. [Google Scholar] [CrossRef]
- Yang, J.; Lan, L.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume-rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 244–267. [Google Scholar] [CrossRef]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From saprophytes to endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef]
- Perret, X.; Staehelin, C.; Broughton, W.J. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 2000, 64, 180–201. [Google Scholar] [CrossRef]
- Downie, J.A. The roles of extracellular proteins, polysaccharides, and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 2010, 34, 150–170. [Google Scholar] [CrossRef]
- Oldroyd, G.E. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 2013, 11, 252–263. [Google Scholar] [CrossRef]
- Janczarek, M.; Rachwał, K.; Marzec, A.; Grzadziel, J.; Palusińska-Szysz, M. Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions. Appl. Soil Ecol. 2015, 85, 94–113. [Google Scholar] [CrossRef]
- López-Baena, F.J.; Ruiz-Sainz, J.E.; Rodríguez-Carvajal, M.A.; Vinardell, J.M. Bacterial molecular signals in the Sinorhizobium fredii-soybean symbiosis. Int. J. Mol. Sci. 2016, 17, 755. [Google Scholar] [CrossRef]
- Wang, D.; Dong, W.; Murray, J.; Wang, E. Innovation and appropriation in mycorrhizal and rhizobial symbioses. Plant Cell 2022, 34, 1573–1599. [Google Scholar] [CrossRef]
- Cao, Y.; Halane, M.K.; Gassmann, W.; Stacey, G. The role of plant innate immunity in the legume-rhizobium symbiosis. Annu. Rev. Plant Biol. 2017, 68, 535–561. [Google Scholar] [CrossRef]
- Benezech, C.; Doudement, M.; Gourion, B. Legumes tolerance to rhizobia is not always observed and not always deserved. Cell Microbiol. 2020, 22, e13124. [Google Scholar] [CrossRef]
- Peck, M.C.; Fisher, R.F.; Bliss, R.; Long, S.R. Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin. J. Bacteriol. 2013, 195, 3714–3723. [Google Scholar] [CrossRef]
- Zipfel, C.; Oldroyd, G.E. Plant signalling in symbiosis and immunity. Nature 2017, 543, 328–336. [Google Scholar] [CrossRef]
- Ibáñez, F.; Wall, L.; Fabra, A. Starting points in plant-bacteria nitrogen-fixing symbioses: Intercellular invasion of the roots. J. Exp. Bot. 2017, 68, 1905–1918. [Google Scholar] [CrossRef]
- Quilbé, J.; Montiel, J.; Arrighi, J.F.; Stougaard, J. Molecular mechanisms of intercellular rhizobial infection: Novel findings of an ancient process. Front. Plant Sci. 2022, 13, 922982. [Google Scholar] [CrossRef]
- Kelly, S.; Sullivan, J.T.; Kawaharada, Y.; Radutoiu, S.; Ronson, C.W.; Stougaard, J. Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environ. Microbiol. 2018, 10, 97–110. [Google Scholar] [CrossRef]
- Krönauer, C.; Radutoiu, S. Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. Curr. Opin. Plant Biol. 2021, 62, 102026. [Google Scholar] [CrossRef]
- Malolepszy, A.; Kelly, S.; Sørensen, K.K.; James, E.K.; Kalisch, C.; Bozsoki, Z.; Panting, M.; Andersen, S.U.; Sato, S.; Tao, K.; et al. A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. Elife 2018, 7, e38874. [Google Scholar] [CrossRef]
- Montiel, J.; Reid, D.; Grønbæk, T.H.; Benfeldt, C.M.; James, E.K.; Ott, T.; Ditengou, F.A.; Nadzieja, M.; Kelly, S.; Stougaard, J. Distinct signaling routes mediate intercellular and intracellular rhizobial infection in Lotus japonicus. Plant Physiol. 2021, 185, 1131–1147. [Google Scholar] [CrossRef]
- Capoen, W.; Oldroyd, G.; Goormachtig, S.; Holsters, M. Sesbania rostrata: A case study of natural variation in legume nodulation. New Phytol. 2010, 186, 340–345. [Google Scholar] [CrossRef]
- Acosta-Jurado, S.; Rodríguez-Navarro, D.N.; Kawaharada, Y.; Perea, J.F.; Gil-Serrano, A.; Jin, H.; An, Q.; Rodríguez-Carvajal, M.A.; Andersen, S.U.; Sandal, N.; et al. Sinorhizobium fredii HH103 invades Lotus burttii by crack entry in a Nod factor-and surface polysaccharide-dependent manner. Mol. Plant Microbe Interact. 2016, 29, 925–937. [Google Scholar] [CrossRef]
- Madsen, L.N.; Tirichine, L.; Jurkiewicz, A.; Sullivan, J.T.; Heckmann, A.B.; Bek, A.S.; Ronson, C.W.; James, E.K.; Stougaard, J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat. Commun. 2010, 1, 10. [Google Scholar] [CrossRef]
- Giraud, E.; Moulin, L.; Vallenet, D.; Barbe, V.; Cytryn, E.; Avarre, J.C.; Jaubert, M.; Simon, D.; Cartieaux, F.; Prin, Y.; et al. Legumes symbioses: Absence of nod genes in photosynthetic bradyrhizobia. Science 2007, 316, 1307–1312. [Google Scholar] [CrossRef]
- Guha, S.; Molla, F.; Sarkar, M.; Ibañez, F.; Fabra, A.; DasGupta, M. Nod factor-independent ‘crack-entry’ symbiosis in dalbergoid legume Arachis hypogaea. Environ. Microbiol. 2022, 24, 2732–2746. [Google Scholar] [CrossRef]
- del Cerro, P.; Rolla-Santos, A.A.P.; Gomes, D.F.; Marks, B.; Pérez-Montaño, F.; Rodríguez-Carvajal, M.A.; Gil-Serrano, A.; Megías, M.; Ollero, F.J.; Hungría, M. Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT899 and their role in early steps of molecular signaling and host nodulation. BMC Genom. 2015, 16, 251. [Google Scholar] [CrossRef]
- del Cerro, P.; Rolla-Santos, A.A.P.; Gomes, D.F.; Marks, B.B.; Espuny, M.R.; Rodríguez-Carvajal, M.A.; Soria-Díaz, M.E.; Nakatani, A.S.; Hungria, M.; Ollero, F.J.; et al. Opening the “black box” of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899. BMC Genom. 2015, 16, 864. [Google Scholar] [CrossRef]
- Pérez-Montaño, F.; del Cerro, P.; Jiménez-Guerrero, I.; López-Baena, F.J.; Cubo, T.; Hungria, M.; Megías, M.; Ollero, F.J. RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. BMC Genom. 2016, 17, 198. [Google Scholar] [CrossRef]
- del Cerro, P.; Pérez-Montaño, F.; Gil-Serrano, A.; López-Baena, F.J.; Megías, M.; Hungria, M.; Ollero, F.J. The Rhizobium tropici CIAT 899 NodD2 protein regulates the production of Nod factors under salt stress in a flavonoid-independent manner. Sci. Rep. 2017, 7, 46712. [Google Scholar] [CrossRef]
- del Cerro, P.; Megías, M.; López-Baena, F.J.; Gil-Serrano, M.; Pérez-Montaño, F.; Ollero, F.J. Osmotic stress activates nif and fix genes and induces the Rhizobium tropici CIAT 899 Nod factor production via NodD2 by up-regulation of the nodA2 operon and the nodA3 gene. PLoS ONE 2019, 14, e0213298. [Google Scholar] [CrossRef]
- Machado, D.; Pueppke, S.G.; Vinardell, J.M.; Ruiz-Sainz, J.E.; Krishnan, H.B. Expression of nodD1 and nodD2 in Sinorhizobium fredii, a nitrogen-fixing symbiont of soybean and other legumes. Mol. Plant Microbe Interact. 1998, 11, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Jurado, S.; Rodríguez-Navarro, D.N.; Kawaharada, Y.; Rodríguez-Carvajal, M.A.; Gil-Serrano, A.; Soria-Díaz, M.E.; Pérez-Montaño, F.; Fernández-Perea, J.; Niu, Y.; Alias-Villegas, C.; et al. Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ. Microbiol. 2019, 21, 1718–1739. [Google Scholar] [CrossRef] [PubMed]
- Cren, M.; Kondorosi, A.; Kondorosi, E. NolR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol. Microbiol. 1998, 15, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Kiss, E.; Mergaert, P.; Olàh, B.; Kereszt, A.; Staehelin, C.; Davies, A.E.; Downie, J.A.; Kondorosi, A.; Kondorosi, E. Conservation of nolR in the Sinorhizobium and Rhizobium genera of the Rhizobiaceae family. Mol. Plant Microbe Interact. 1998, 11, 1186–1195. [Google Scholar] [CrossRef]
- Vinardell, J.M.; Ollero, F.J.; Hidalgo, A.; López-Baena, F.J.; Medina, C.; Ivanok, K.; Parada, M.; Madinabeitia, N.; Espuny, M.R.; Bellogín, R.A.; et al. NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103. Mol. Plant Microbe Interact. 2004, 17, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Naciri-Graven, Y.; Broughton, W.J.; Perret, X. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol. Microbiol. 2004, 51, 335–347. [Google Scholar] [CrossRef]
- Barnett, M.J.; Long, S.R. The Sinorhizobium meliloti SyrM regulon: Effects on global gene expression are mediated by syrA and nodD3. J. Bacteriol. 2015, 197, 1792–1806. [Google Scholar] [CrossRef]
- Acosta-Jurado, S.; Alias-Villegas, C.; Navarro-Gómez, P.; Almozara, A.; Rodríguez-Carvajal, M.A.; Medina, C.; Vinardell, J.M. Sinorhizobium fredii HH103 syrM inactivation affects the expression of a large number of genes, impairs nodulation with soybean and extends the host-range to Lotus japonicus. Environ. Microbiol. 2020, 22, 1104–1124. [Google Scholar] [CrossRef]
- Fuentes-Romero, F.; Navarro-Gómez, P.; Ayala-García, P.; Moyano-Bravo, I.; López-Baena, F.J.; Pérez-Montaño, F.; Ollero, F.J.; Acosta-Jurado, S.; Vinardell, J.M. The nodD1 gene of Sinorhizobium fredii HH103 restores nodulation capacity on bean in a Rhizobium tropici CIAT 899 nodD1/nodD2 mutant, but the secondary symbiotic regulators nolR, nodD2 or syrM prevent HH103 to nodulate with this legume. Microorganisms 2022, 10, 139. [Google Scholar] [CrossRef]
- Acosta-Jurado, S.; Fuentes-Romero, F.; Ruiz-Sainz, J.E.; Janczarek, M.; Vinardell, J.M. Rhizobial exopolysaccharides: Genetic regulation of their synthesis and relevance in symbiosis with legumes. Int. J. Mol. Sci. 2021, 22, 6233. [Google Scholar] [CrossRef]
- Janczarek, M.; Skorupska, A. Modulation of rosR expression and exopolysaccharide production in Rhizobium leguminosarum bv. trifolii by phosphate and clover root exudates. Int. J. Mol. Sci. 2011, 12, 4132–4155. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Jurado, S.; Navarro-Gómez, P.; del Socorro Murdoch, P.; Crespo-Rivas, J.-C.; Jie, S.; Cuesta-Berrio, L.; Ruiz-Sainz, J.-E.; Rodríguez-Carvajal, M.-A.; Vinardell., J.-M. Exopolysaccharide production by Sinorhizobium fredii HH103 is repressed by genistein in a NodD1-dependent manner. PLoS ONE 2016, 11, 0160499. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Navarro, D.N.; Rodríguez-Carvajal, M.A.; Acosta-Jurado, S.; Soto, M.J.; Margaret, I.; Crespo-Rivas, J.C.; Sanjuán, J.; Temprano, F.; Gil-Serrano, A.; Ruiz-Sainz, J.E.; et al. Structure and biological roles of Sinorhizobium fredii HH103 exopolysaccharide. PLoS ONE 2014, 9, e115391. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.J.; Muszynski, A.; Kawaharada, Y.; Hubber, A.M.; Sullivan, J.T.; Sandal, N.; Carlson, R.W.; Stougaard, J.; Ronson, C.W. Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Mol. Plant Microbe Interact. 2013, 26, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Kawaharada, Y.; Kelly, S.; Nielsen, M.W.; Hjuler, C.T.; Gysel, K.; Muszynski, A.; Carlson, R.W.; Thygesen, M.B.; Sandal, N.; Asmussen, M.H.; et al. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 2015, 523, 308–312. [Google Scholar] [CrossRef]
- Kawaharada, Y.; James, E.K.; Kelly, S.; Sandal, N.; Stougaard, J. The ethylene responsive factor required for nodulation 1 (ERN1) transcription factor is required for infection-thread formation in Lotus japonicus. Mol. Plant Microbe Interact. 2017, 30, 194–204. [Google Scholar] [CrossRef]
- Wong, J.E.M.M.; Gysel, K.; Birkefeldt, T.G.; Vinther, M.; Muszyński, A.; Azadi, P.; Laursen, N.S.; Sulliva, J.T.; Ronson, C.W.; Stougaard, J.; et al. Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nat. Commun. 2020, 11, 3797. [Google Scholar] [CrossRef]
- Staehelin, C.; Krishnan, H.B. Nodulation outer proteins: Double-edged swords of symbiotic rhizobia. Biochem. J. 2015, 470, 263–274. [Google Scholar] [CrossRef]
- De Sousa, B.F.S.; Castellane, T.C.L.; Tighilt, L.; Lemos, E.G.M.; Rey, L. Rhizobial exopolysaccharides and type VI secretion systems: A promising way to improve nitrogen acquisition by legumes. Front. Agron. 2021, 3, 661468. [Google Scholar] [CrossRef]
- Teulet, A.; Camuel, A.; Perret, X.; Giraud, E. The versatile roles of type III secretion systems in rhizobia-legume symbioses. Annu. Rev. Microbiol. 2022, 76, 45–65. [Google Scholar] [CrossRef]
- Zboralski, A.; Biessy, A.; Filion, M. Bridging the gap: Type III secretion systems in plant-beneficial bacteria. Microorganisms 2022, 10, 187. [Google Scholar] [CrossRef]
- Wang, T.; Balla, B.; Kovács, S.; Kereszt, A. Varietas delectat: Exploring natural variations in nitrogen-fixing symbiosis research. Front. Plant Sci. 2022, 13, 856187. [Google Scholar] [CrossRef] [PubMed]
- Hubber, A.; Vergunst, A.C.; Sullivan, J.T.; Hooykaas, P.J.J. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol. 2004, 54, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, M.; Epstein, B.; Badgley, B.D.; Unno, T.; Xu, L.; Reese, J.; Gyaneshwar, P.; Denny, R.; Mudge, J.; Bharti, A.K.; et al. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 2013, 14, R17. [Google Scholar] [CrossRef] [PubMed]
- Bladergroen, M.R.; Badelt, K.; Spaink, H.P. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol. Plant Microbe Intact. 2003, 16, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Salinero-Lanzarote, A.; Pacheco-Moreno, A.; Domingo-Serrano, L.; Durán, D.; Ormeño-Orrillo, E.; Martinez-Romero, E.; Albareda, M.; Palacios, J.M.; Rey, L. The type VI secretion system of Rhizobium etli mim1 has a positive effect in symbiosis. FEMS Microbiol. Ecol. 2019, 95, 54. [Google Scholar] [CrossRef]
- Tighilt, L.; Boulila, F.; De Sousa, B.F.S.; Giraud, E.; Ruiz-Argüeso, T.; Palacios, J.M.; Imperial, J.; Rey, L. The Bradyrhizobium sp. LmicA16 type VI secretion system is required for efficient nodulation of Lupinus spp. Microb. Ecol. 2021, 1–12. [Google Scholar] [CrossRef]
- Gourion, B.; Berrabah, F.; Ratet, P.; Stacey, G. Rhizobium-legume symbioses: The crucial role of plant immunity. Trends Plant Sci. 2015, 20, 186–194. [Google Scholar] [CrossRef]
- Bozsóki, Z.; Cheng, J.; Feng, F.; Gysel, K.; Vinther, M.; Andersen, K.R.; Oldroyd, G.; Blaise, M.; Radutoiu, S.; Stougaard, J. Receptor-mediated chitin perception in legume roots is functionally separable from nod factor perception. Proc. Natl. Acad. Sci. USA 2017, 114, E8118–E8127. [Google Scholar] [CrossRef]
- Liang, Y.; Cao, Y.; Tanaka, K.; Thibivilliers, S.; Wan, J.; Choi, J.; Kang, C.; Qiu, J.; Stacey, G. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 2013, 341, 1384–1387. [Google Scholar] [CrossRef]
- Jiménez-Guerrero, I.; Pérez-Montaño, F.; Monreal, J.A.; Preston, G.M.; Fones, H.; Vioque, B.; Ollero, F.J.; López-Baena, F.J. The Sinorhizobium (Ensifer) fredii HH103 Type 3 secretion system suppresses early defense responses to effectively nodulate soybean. Mol. Plant Microbe Interact. 2015, 28, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Galán, J.E.; Waksman, G. Protein-injection machines in bacteria. Cell 2018, 172, 1306–1318. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Marshall, N.C.; Rowland, J.L.; McCoy, J.M.; Worrall, L.J.; Santos, A.S.; Strynadka, N.C.J.; Finlay, B.B. Assembly, structure, function and regulation of type III secretion systems. Nat. Rev. Microbiol. 2017, 15, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.H.; Middleton, M.A.; Guttman, D.S.; Desveaux, D. Phytopathogen type III effectors as probes of biological systems. Microb. Biotechnol. 2013, 6, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Tampakaki, A.P. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front. Plant Sci. 2014, 5, 114. [Google Scholar] [CrossRef]
- Marie, C.; Broughton, W.J.; Deakin, W.J. Rhizobium type III secretion systems: Legume charmers or alarmers? Curr. Opin. Plant Biol. 2001, 4, 336–342. [Google Scholar] [CrossRef]
- Deakin, W.J.; Broughton, W.J. Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nat. Rev. Microbiol. 2009, 7, 312–320. [Google Scholar] [CrossRef]
- Krause, A.; Doerfel, A.; Göttfert, M. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 2002, 15, 1228–1235. [Google Scholar] [CrossRef]
- Wassem, R.; Kobayashi, H.; Kambara, K.; Le Quéré, A.; Walker, G.C.; Broughton, W.J.; Deakin, W.J. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol. Microbiol. 2008, 68, 736–748. [Google Scholar] [CrossRef]
- Alías-Villegas, C.; Fuentes-Romero, F.; Cuéllar, V.; Navarro-Gómez, P.; Soto, M.J.; Vinardell, J.M.; Acosta-Jurado, S. Surface motility regulation of Sinorhizobium fredii HH103 by plant flavonoids and the NodD1, TtsI, NolR, and MucR1 symbiotic bacterial regulators. Int. J. Mol. Sci. 2022, 23, 7698. [Google Scholar] [CrossRef]
- Busset, N.; Gully, D.; Teulet, A.; Fardoux, J.; Camuel, A.; Cornu, D.; Severac, D.; Giraud, E.; Mergaert, P. The type III effectome of the symbiotic Bradyrhizobium vignae strain ORS3257. Biomolecules 2021, 11, 1592. [Google Scholar] [CrossRef]
- Miwa, H.; Okazaki, S. How effectors promote beneficial interactions. Curr. Opin. Plant Biol. 2017, 38, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Teulet, A.; Busset, N.; Fardoux, J.; Gully, D.; Chaintreuil, C.; Cartieaux, F.; Jauneau, A.; Comorge, V.; Okazaki, S.; Kaneko, T.; et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. Proc. Natl. Acad. Sci. USA 2019, 116, 21758–21768. [Google Scholar] [CrossRef] [PubMed]
- Caldelari Baumberger, I.; Fraefel, N.; Göttfert, M.; Hennecke, H. New NodW- or NifA-regulated Bradyrhizobium japonicum genes. Mol. Plant Microbe Interact. 2003, 16, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Dorival, J.; Philys, S.; Giuntini, E.; Brailly, R.; de Ruyck, J.; Czjzek, M.; Biondi, E.; Bompard, C. Structural and enzymatic characterisation of the type III effector NopAA (= GunA) from Sinorhizobium fredii USDA257 reveals a xyloglucan hydrolase activity. Sci. Rep. 2020, 10, 9932. [Google Scholar] [CrossRef]
- Jiménez-Guerrero, I.; Pérez-Montaño, F.; Zdyb, A.; Beutler, M.; Werner, G.; Göttfert, M.; Ollero, F.J.; Vinardell, J.M.; López-Baena, F.J. GunA of Sinorhizobium (Ensifer) fredii HH103 is a T3SS-secreted cellulase that differentially affects symbiosis with cowpea and soybean. Plant Soil 2019, 435, 15–26. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Ma, S.; Zheng, H.; Feng, H.; Wang, Y.; Wang, J.; Liu, C.; Xin, D.; Chen, Q.; et al. GmARP is related to the type III effector NopAA to promote nodulation in soybean (Glycine max). Front. Genet. 2022, 13, 889795. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Miwa, H.; Kaneko, T.; Sato, S.; Okazaki, S. Identification of Bradyrhizobium elkanii genes involved in incompatibility with Vigna radiata. Genes 2017, 8, 374. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Ratu, S.T.N.; Yasuda, M.; Göttfert, M.; Okazaki, S. InnB, a novel type III effector of Bradyrhizobium elkanii USDA61, controls symbiosis with Vigna species. Front. Microbiol. 2018, 9, 3155. [Google Scholar] [CrossRef]
- Jiménez-Guerrero, I.; Pérez-Montaño, F.; Medina, C.; Ollero, F.J.; López-Baena, F.J. NopC is a Rhizobium-specific Type 3 Secretion System effector secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS ONE 2015, 10, e0142866. [Google Scholar] [CrossRef]
- Kim, J.G.; Taylor, K.W.; Mudgett, M.B. Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria. Mol. Plant Pathol. 2011, 12, 715–730. [Google Scholar] [CrossRef]
- Ratu, S.T.N.; Hirata, A.; Kalaw, C.O.; Yasuda, M.; Tabuchi, M.; Okazaki, S. Multiple domains in the rhizobial type III effector Bel2-5 determine symbiotic efficiency with soybean. Front. Plant Sci. 2021, 12, 689064. [Google Scholar] [CrossRef] [PubMed]
- Ratu, S.T.N.; Teulet, A.; Miwa, H.; Masuda, S.; Nguyen, H.P.; Yasuda, M.; Sato, S.; Kaneko, T.; Hayashi, M.; Giraud, E.; et al. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling. Sci. Rep. 2021, 11, 2034. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.W.; Bai, J.; Cai, J.; Huang, Q.Y.; Wang, Y.; Liang, Y.; Zhong, Z.; Wagner, C.; Xie, Z.P.; Staehelin, C. NopD of Bradyrhizobium sp. XS1150 possesses SUMO protease activity. Front. Microbiol. 2020, 11, 386. [Google Scholar] [CrossRef]
- Tsurumaru, H.; Hashimoto, S.; Okizaki, K.; Kanesaki, Y.; Yoshikawa, H.; Yamakawa, T. A putative type III secretion system effector encoded by the MA20_12780 gene in Bradyrhizobium japonicum Is-34 causes incompatibility with Rj4 genotype soybeans. Appl. Environ. Microbiol. 2015, 81, 5812–5819. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, C.; Mercante, V.; Babuin, M.F.; Lepek, V.C. Dual effect of Mesorhizobium loti T3SS functionality on the symbiotic process. FEMS Microbiol. Lett. 2012, 330, 148–156. [Google Scholar] [CrossRef]
- Wenzel, M.; Friedrich, L.; Gottfert, M.; Zehner, S. The type III-secreted protein NopE1 affects symbiosis and exhibits a calcium-dependent autocleavage activity. Mol. Plant Microbe Interact. 2010, 23, 124–129. [Google Scholar] [CrossRef]
- Schirrmeister, J.; Friedrich, L.; Wenzel, M.; Hoppe, M.; Wolf, C.; Göttfert, M.; Zehner, S. Characterization of the self-cleaving effector protein NopE1 of Bradyrhizobium japonicum. J. Bacteriol. 2011, 193, 3733–3739. [Google Scholar] [CrossRef]
- Piromyou, P.; Nguyen, H.P.; Songwattana, P.; Boonchuen, P.; Teamtisong, K.; Tittabutr, P.; Boonkerd, N.; Alisha Tantasawat, P.; Göttfert, M.; Okazaki, S.; et al. The Bradyrhizobium diazoefficiens type III effector NopE modulates the regulation of plant hormones towards nodulation in Vigna radiata. Sci. Rep. 2021, 11, 16604. [Google Scholar] [CrossRef]
- Kusakabe, S.; Higasitani, N.; Kaneko, T.; Yasuda, M.; Miwa, H.; Okazaki, S.; Saeki, K.; Higashitani, A.; Sato, S. Lotus accessions possess multiple checkpoints triggered by different type III secretion system effectors of the wide-host-range symbiont Bradyrhizobium elkanii USDA61. Microbes Environ. 2020, 35, ME19141. [Google Scholar] [CrossRef]
- Jiménez-Guerrero, I.; Pérez-Montaño, F.; Medina, C.; Ollero, F.J.; López-Baena, F.J. The Sinorhizobium (Ensifer) fredii HH103 nodulation outer protein NopI is a determinant for efficient nodulation of soybean and cowpea plants. Appl. Environ. Microbiol. 2017, 83, e02770-16. [Google Scholar] [CrossRef] [Green Version]
- Kambara, K. Regulation and Effects of the Type-Three Secretion System of Rhizobium Species NGR234. Ph.D. Thesis, Geneva University, Geneva, Switzerland, 2008. [Google Scholar]
- Bartsev, A.V.; Deakin, W.J.; Boukli, N.M.; McAlvin, C.B.; Stacey, G.; Malnoë, P.; Broughton, W.J.; Staehelin, C. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant. Physiol. 2004, 134, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.Y.; Xiang, Q.W.; Wagner, C.; Zhang, D.; Xie, Z.P.; Staehelin, C. The type 3 effector NopL of Sinorhizobium sp. strain NGR234 is a mitogen-activated protein kinase substrate. J. Exp. Bot. 2016, 67, 2483–2494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, X.J.; Lu, H.B.; Xie, Z.P.; Staehelin, C. Functional analysis of the type 3 effector nodulation outer protein L (NopL) from Rhizobium sp. NGR234: Symbiotic effects, phosphorylation, and interference with mitogen-activated protein kinase signaling. J. Biol. Chem. 2011, 286, 32178–32187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Chen, L.; Fu, Y.; Li, C.; Qi, Z.; Zou, J.; Zhu, R.; Li, S.; Wei, W.; et al. Mining for genes encoding proteins associated with NopL of Sinorhizobium fredii HH103 using quantitative trait loci in soybean (Glycine max Merr.) recombinant inbred lines. Plant Soil 2018, 431, 245–255. [Google Scholar] [CrossRef]
- Xin, D.W.; Liao, S.; Xie, Z.P.; Hann, D.R.; Steinle, L.; Boller, T.; Staehelin, C. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog. 2012, 8, e1002707. [Google Scholar] [CrossRef]
- Xu, C.C.; Zhang, D.; Dagmar, R.H.; Xie, Z.P.; Staehelin, C. Biochemical properties and in planta effects of NopM, a rhizobial E3 ubiquitin ligase. J. Biol. Chem. 2018, 39, 15304–15315. [Google Scholar] [CrossRef]
- Ausmees, N.; Kobayashi, H.; Deakin, W.J.; Marie, C.; Krishnan, H.B.; Broughton, W.J.; Perret, X. Characterisation of NopP, a type III secreted effector of Rhizobium sp. NGR234. J. Bacteriol. 2004, 186, 4774–4780. [Google Scholar] [CrossRef]
- Schechter, L.M.; Guenther, J.; Olcay, E.A.; Jang, S.; Krishnan, H.B. Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Appl. Environ. Microbiol. 2010, 76, 3758–3761. [Google Scholar] [CrossRef]
- Skorpil, P.; Saad, M.M.; Boukli, N.M.; Kobayashi, H.; Ares-Orpel, F.; Broughton, W.J.; Deakin, W.J. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol. Microbiol. 2005, 57, 1304–1317. [Google Scholar] [CrossRef]
- Liu, D.; Luo, Y.; Zheng, X.; Wei, G. TRAPPC13 is a novel target of Mesorhizobium amorphae type III secretion system effector NopP. Mol. Plant Microbe Interact. 2021, 34, 511–523. [Google Scholar] [CrossRef]
- Dai, W.J.; Zeng, Y.; Xie, Z.P.; Staehelin, C. Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J. Bacteriol. 2008, 90, 5101–5110. [Google Scholar] [CrossRef] [PubMed]
- Dowen, R.H.; Engel, J.L.; Shao, F.; Ecker, J.R.; Dixon, J.E. A family of bacterial cysteine protease type III effectors utilizes acylation-dependent and -independent strategies to localize to plasma membranes. J. Biol. Chem. 2009, 284, 15867–15879. [Google Scholar] [CrossRef] [PubMed]
- Fotiadis, C.T.; Dimou, M.; Georgakopoulos, D.G.; Katinakis, P.; Tampakaki, A.P. Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum. FEMS Microbiol. Lett. 2012, 327, 66–77. [Google Scholar] [CrossRef]
- Kambara, K.; Ardissone, S.; Kobayashi, H.; Saad, M.M.; Schumpp, O.; Broughton, W.J.; Deakin, W.J. Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol. Microbiol. 2009, 71, 92–106. [Google Scholar] [CrossRef]
- Khan, A.; Wadood, S.F.; Chen, M.; Wang, Y.; Xie, Z.P.; Staehelin, C. Effector-triggered inhibition of nodulation: A rhizobial effector protease targets soybean kinase GmPBS1-1. Plant Physiol. 2022, 11, kiac205. [Google Scholar] [CrossRef]
- Kimbrel, J.A.; Thomas, W.J.; Jiang, Y.; Creason, A.L.; Thireault, C.A.; Sachs, J.L.; Chang, J.H. Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum. PLoS Pathog. 2013, 9, e1003204. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, D.; Jiao, S.; Liu, S.; Wang, X.; Shen, X.; Wei, G. Identification of Robinia pseudoacacia target proteins responsive to Mesorhizobium amphore CCNWGS0123 effector protein NopT. J. Exp. Bot. 2020, 71, 7347–7363. [Google Scholar] [CrossRef]
- Shao, F.; Merritt, P.M.; Bao, Z.; Innes, R.W.; Dixon, J.E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 2002, 109, 575–588. [Google Scholar] [CrossRef]
- Zhu, M.; Shao, F.; Innes, R.W.; Dixon, J.E.; Xu, Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: A papain-like fold with a distinct substrate-binding site. Proc. Natl. Acad. Sci. USA 2004, 101, 302–307. [Google Scholar] [CrossRef]
- Sánchez, C.; Iannino, F.; Deakin, W.J.; Ugalde, R.A.; Lepek, V.C. Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. Mol. Plant Microbe Interact. 2009, 22, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Bastedo, D.P.; Lo, T.; Laflamme, B.; Desveaux, D.; Guttman, D.S. Diversity and evolution of type III secreted effectors: A case study of three families. Curr. Top. Microbiol. Immunol. 2020, 427, 201–230. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, H.B.; Pueppke, S.G. Flavonoid inducers of nodulation genes stimulate Rhizobium fredii USDA257 to export proteins into the environment. Mol. Plant Microbe Interact. 1993, 6, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, L.W.; Krishnan, H.B.; Balatti, P.A.; Pueppke, S.G. Molecular cloning and characterization of a sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol. Microbiol. 1993, 9, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.J.; Nogales, J.; Pérez-Mendoza, D.; Gallegos, M.T.; Olivares, J.; Sanjuán, J. Pathogenic and mutualistic plant-bacteria interactions: Ever increasing similarities. Open Life Sci. 2011, 6, 911–917. [Google Scholar] [CrossRef]
- Piromyou, P.; Songwattana, P.; Greetatom, T.; Okubo, T.; Kakizaki, K.C.; Prakamhang, J.; Tittabutr, P.; Boonkerd, N.; Teaumroong, N.; Minamisawa, K. The type III secretion system (T3SS) is a determinant for rice-endophyte colonization by non-photosynthetic Bradyrhizobium. Microbes Environ. 2015, 30, 291–300. [Google Scholar] [CrossRef]
- Songwattana, P.; Noisangiam, R.; Teamtisong, K.; Prakamhang, J.; Teulet, A.; Tittabutr, P.; Piromyou, P.; Boonkerd, N.; Giraud, E.; Teaumroong, N. Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Front. Microbiol. 2017, 8, 1810. [Google Scholar] [CrossRef]
- Okazaki, S.; Noisangiam, R.; Okubo, T.; Kaneko, T.; Oshima, K.; Hattori, M.; Teamtisong, K.; Songwattana, P.; Tittabutr, P.; Boonkerd, N.; et al. Genome analysis of a novel Bradyrhizobium sp. DOA9 carrying a symbiotic plasmid. PLoS ONE 2015, 10, e0117392. [Google Scholar] [CrossRef]
- Huo, H.; Wang, X.; Liu, Y.; Chen, J.; Wei, G. Nod factor- and type III secretion system-dependent manner for Robinia pseudoacacia to establish symbiosis with Mesorhizobium amorphae CCNWGS0123. Tree Physiol. 2021, 14, 817–825. [Google Scholar] [CrossRef]
- Alaswad, A.; Oehrle, M.W.; Krishnan, H.B. Classical soybean (Glycine max (L.) Merr) symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, reveal contrasting symbiotic phenotype on pigeon pea (Cajanus cajan (L.) Millsp.). Int. J. Mol. Sci. 2019, 20, 1091. [Google Scholar] [CrossRef]
- de Lyra, M.C.C.P.; López-Baena, F.J.; Madinabeitia, N.; Vinardell, J.M.; Espuny, M.R.; Cubo, M.T.; Bellogín, R.A.; Ruíz-Sainz, J.E.; Ollero, F.J. Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int. Microbiol. 2006, 9, 125–133. [Google Scholar]
- López-Baena, F.J.; Vinardell, J.M.; Pérez-Montaño, F.; Crespo-Rivas, J.C.; Bellogín, R.A.; Espuny, M.R.; Ollero, F.J. Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 2008, 154, 1825–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Baena, F.J.; Monreal, J.A.; Pérez-Montaño, F.; Guasch-Vidal, B.; Bellogín, R.A.; Vinardell, J.M.; Ollero, F.J. The absence of Nops secretion in S. fredii HH103 increases GmPR1 expression in Williams soybean. Mol. Plant Microbe Interact. 2009, 22, 1445–1454. [Google Scholar] [CrossRef]
- Marie, C.; Deakin, W.J.; Viprey, V.; Kopciñska, J.; Golinowski, W.; Krishnan, H.B.; Perret, X.; Broughton, W.J. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol. Plant Microbe Interact. 2003, 16, 743–751. [Google Scholar] [CrossRef]
- Sugawara, M.; Umehara, Y.; Kaga, A.; Hayashi, M.; Ishimoto, M.; Sato, S.; Mitsui, H.; Minamisawa, K. Symbiotic incompatibility between soybean and Bradyrhizobium arises from one amino acid determinant in soybean Rj2 protein. PLoS ONE 2019, 14, e0222469. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Ma, C.; Zhou, Z.; Yang, D.; Zheng, J.; Wang, Q.; Li, H.; Zhou, H.; Sun, Z.; et al. QTL mapping and data mining to identify genes associated with the Sinorhizobium fredii HH103 T3SS effector NopD in soybean. Front. Plant Sci. 2020, 11, 453. [Google Scholar] [CrossRef] [PubMed]
- Faruque, O.; Miwa, H.; Yasuda, M.; Fujii, Y.; Kaneko, T.; Sato, S.; Okazaki, S. Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl. Environ. Microbiol. 2015, 81, 6710–6717. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Miwa, H.; Masuda, S.; Takebayashi, Y.; Sakakibara, H.; Okazaki, S. Effector-triggered immunity determines host genotype-specific incompatibility in legume-rhizobium symbiosis. Plant Cell Physiol. 2016, 57, 1791–1800. [Google Scholar] [CrossRef]
- Rehman, H.M.; Cheung, W.L.; Wong, K.S.; Xie, M.; Luk, C.Y.; Wong, F.L.; Li, M.W.; Tsai, S.N.; To, W.T.; Chan, L.Y.; et al. High-throughput mass spectrometric analysis of the whole proteome and secretome from Sinorhizobium fredii strains CCBAU25509 and CCBAU45436. Front. Microbiol. 2019, 10, 2569. [Google Scholar] [CrossRef]
- Okazaki, S.; Zehner, S.; Hempel, J.; Lang, K.; Göttfert, M. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol. Lett. 2009, 295, 88–95. [Google Scholar] [CrossRef]
- Shobudani, M.; Htwe, A.Z.; Yamakawa, T.; Ishibashi, M.; Tsurumaru, H. Mutants disrupted in the type III secretion system of Bradyrhizobium elkanii BLY3-8 overcame nodulation restriction by Rj3-genotype soybean. Microbes Environ. 2020, 35, ME19151. [Google Scholar] [CrossRef]
- de Campos, S.B.; Deakin, W.J.; Broughton, W.J.; Passaglia, L.M.P. Roles of flavonoids and the transcriptional regulator TtsI in the activation of the type III secretion system of Bradyrhizobium elkanii SEMIA587. Microbiology 2011, 157, 627–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, S.; Kaneko, T.; Sato, S.; Saeki, K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl. Acad. Sci. USA 2013, 110, 17131–17136. [Google Scholar] [CrossRef] [PubMed]
- Tsukui, T.; Eda, S.; Kaneko, T.; Sato, S.; Okazaki, S.; Kakizaki-Chiba, K.; Itakura, M.; Mitsui, H.; Yamashita, A.; Terasawa, K.; et al. The Type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl. Environ. Microbiol. 2013, 79, 1048–1051. [Google Scholar] [CrossRef]
- Songwattana, P.; Chaintreuil, C.; Wongdee, J.; Teulet, A.; Mbaye, M.; Piromyou, P.; Gully, D.; Fardoux, J.; Zoumman, A.M.A.; Camuel, A.; et al. Identification of type III effectors modulating the symbiotic properties of Bradyrhizobium vignae strain ORS3257 with various Vigna species. Sci. Rep. 2021, 11, 4874. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, L.X.; Zhang, Y.Z.; Jiao, J.; Cui, W.J.; Zhang, B.; Wang, X.L.; Li, M.L.; Chen, Y.; Xiong, Z.Q.; et al. Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences. ISME J. 2018, 12, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Krishnan, H.B. A nopA deletion mutant of Sinorhizobium fredii USDA257, a soybean symbiont, is impaired in nodulation. Curr. Microbiol. 2014, 68, 239–246. [Google Scholar] [CrossRef]
- Lorio, J.C.; Kim, W.S.; Krishnan, A.H.; Krishnan, H.B. Disruption of the glycine cleavage system enables Sinorhizobium fredii USDA257 to form nitrogen-fixing nodules on agronomically improved North American soybean cultivars. Appl. Environ. Microbiol. 2010, 76, 4185–4193. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Z.; Wen, Y.; Guolong, Y.; Zou, J.; Huang, S.; Wang, J.; Zhu, J.; Wang, J.; Chen, L.; et al. RNA sequencing-associated study identifies GmDRR1 as positively regulating the establishment of symbiosis in soybean. Mol. Plant Microbe Interact. 2020, 33, 798–807. [Google Scholar] [CrossRef]
- Krishnan, H.B.; Pueppke, S.G. nolC, a Rhizobium fredii gene involved in cultivar-specific nodulation of soybean, shares homology with a heat-shock gene. Mol. Microbiol. 1991, 5, 737–745. [Google Scholar] [CrossRef]
- Kovacs, L.G.; Balatti, P.A.; Krishnan, H.B.; Pueppke, S.G. Transcriptional organization and expression of noIXWBTUV, a locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol. Microbiol. 1995, 17, 923–933. [Google Scholar] [CrossRef]
- Krishnan, H.B. NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J. Bacteriol. 2002, 184, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Tang, F.; Gao, M.; Krishnan, H.B.; Zhu, H. R gene-controlled host specificity in the legume rhizobia symbiosis. Proc. Natl. Acad. Sci. USA 2010, 107, 18735–18740. [Google Scholar] [CrossRef] [PubMed]
- Temprano-Vera, F.; Rodríguez-Navarro, D.N.; Acosta-Jurado, S.; Perret, X.; Fossou, R.K.; Navarro-Gómez, P.; Zhen, T.; Yu, D.; An, Q.; Buendía-Clavería, A.M.; et al. Sinorhizobium fredii strains HH103 and NGR234 form nitrogen fixing nodules with diverse wild soybeans (Glycine soja) from central China but are ineffective on northern China accessions. Front. Microbiol. 2018, 9, 2843. [Google Scholar] [CrossRef]
- Deakin, W.J.; Marie, C.; Saad, M.M.; Krishnan, H.B.; Broughton, W.J. NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234. Mol. Plant Microbe Interact. 2005, 18, 499–507. [Google Scholar] [CrossRef]
- Saad, M.M.; Crèvecoeur, M.; Masson-Boivin, C.; Perret, X. The type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala. Appl. Environ. Microbiol. 2012, 78, 7476–7479. [Google Scholar] [CrossRef]
- Hashimoto, S.; Goto, K.; Pyromyou, P.; Songwattana, P.; Greetatorn, T.; Tittabutr, P.; Boonkerd, N.; Teaumroong, N.; Uchiumi, T. Type III secretion system of Bradyrhizobium sp. SUTN9-2 obstructs symbiosis with Lotus spp. Microbes Environ. 2020, 35, ME20041. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Guerrero, I.; Acosta-Jurado, S.; Medina, C.; Ollero, F.J.; Alias-Villegas, C.; Vinardell, J.M.; Pérez-Montaño, F.; López-Baena, F.J. The Sinorhizobium fredii HH103 Type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu. J. Exp. Bot. 2020, 71, 6043–6056. [Google Scholar] [CrossRef]
- Okazaki, S.; Okabe, S.; Higashi, M.; Shimoda, Y.; Sato, S.; Tabata, S.; Hashiguchi, M.; Akashi, R.; Göttfert, M.; Saeki, K. Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Mol. Plant Microbe Interact. 2010, 23, 223–234. [Google Scholar] [CrossRef]
- Marie, C.; Deakin, W.J.; Ojanen-Reuhs, T.; Diallo, E.; Reuhs, B.; Broughton, W.J.; Perret, X. TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol. Plant Microbe Interact. 2004, 17, 958–966. [Google Scholar] [CrossRef]
- Saad, M.M.; Kobayashi, H.; Marie, C.; Brown, I.R.; Mansfield, J.W.; Broughton, W.J.; Deakin, W.J. NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J. Bacteriol. 2005, 187, 1173–1181. [Google Scholar] [CrossRef]
- Viprey, V.; Del Greco, A.; Golinowski, W.; Broughton, W.J.; Perret, X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 1998, 28, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Fauvart, M.; Verstraeten, N.; Dombrecht, B.; Venmans, R.; Beullens, S.; Heusdens, C.; Michiels, J. Rhizobium etli HrpW is a pectin-degrading enzyme and differs from phytopathogenic homologues in enzymically crucial tryptophan and glycine residues. Microbiology 2009, 155, 3045–3054. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huo, H.; Luo, Y.; Liu, D.; Zhao, L.; Zong, L.; Chou, M. Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. Tree Physiol. 2019, 39, 1533–1550. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Ratu, S.T.N.; Yasuda, M.; Teaumroong, N.; Okazaki, S. Identification of Bradyrhizobium elkanii USDA61 type III effectors determining symbiosis with Vigna mungo. Genes 2020, 11, 474. [Google Scholar] [CrossRef] [PubMed]
- Piromyou, P.; Songwattana, P.; Teamtisong, K.; Tittabutr, P.; Boonkerd, N.; Tantasawat, P.A.; Giraud, G.; Göttfert, M.; Teaumroong, N. Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and bradyrhizobia. Microbiol. Open 2019, 8, e781. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jiang, Y.; Wang, Z.; Gou, Z.; Lyu, J.; Li, W.; Yu, Y.; Shu, L.; Zhao, Y.; Ma, Y.; et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 2015, 33, 408–414. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Lyu, S.; Wang, Q.; Yang, S.; Zhu, H. The soybean Rfg1 gene restricts nodulation by Sinorhizobium fredii USDA193. Front. Plant Sci. 2017, 8, 1548. [Google Scholar] [CrossRef]
- Htwe, A.Z.; Kanesaki, Y.; Yoshikawa, H.; Tsurumaru, H.; Yamakawa, T. Draft genome sequences of Bradyrhizobium elkanii strains BLY3-8 and BLY6-1, which are incompatible with Rj3 genotype soybean cultivars. Genome Announc. 2016, 4, e01169-16. [Google Scholar] [CrossRef]
- Hayashi, M.; Saeki, Y.; Haga, M.; Harada, K.; Kouchi, H.; Umehara, Y. Rj (rj) genes involved in nitrogen-fixing root nodule formation in soybean. Breed Sci. 2012, 61, 544–553. [Google Scholar] [CrossRef]
- Hayashi, M.; Shiro, S.; Kanamori, H.; Mori-Hosokawa, S.; Sasaki-Yamagata, H.; Sayama, T.; Nishioka, M.; Takahashi, M.; Ishimoto, M.; Katayose, Y.; et al. A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean. Plant Cell Physiol. 2014, 55, 1679–1689. [Google Scholar] [CrossRef]
- Tang, F.; Yang, S.; Liu, J.; Zhu, H. Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol. 2016, 170, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, M.; Takahashi, S.; Umehara, Y.; Iwano, H.; Tsurumaru, H.; Osake, H.; Suzuki, Y.; Kondo, H.; Yamakawa, T.; Sato, S.; et al. Variation in in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity. Nat. Commun. 2018, 9, 3139. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, M.; Sun, Y.; Zhao, P.; Liu, C.; Qing, K.; Hu, X.; Zhong, Z.; Cheng, J.; Wang, H.; et al. Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection. Nat. Plants 2021, 7, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.; López-Baena, F.J.; Ollero, F.J.; Vinardell, J.M.; Espuny, R.; Bellogín, R.A.; Ruiz-Sainz, J.E.; Thomasm, J.R.; Sumpton, D.; Ault, J.; et al. NopM and NopD are rhizobial nodulation outer proteins: Identification using LC-MALDI and LC-ESI with a monolithic capillary column. J. Proteome Res. 2007, 6, 1029–1037. [Google Scholar] [CrossRef]
- Miura, K.; Jin, J.B.; Hasegawa, P.M. Sumoylation, a post-translational regulatory process in plants. Curr. Opin. Plant Biol. 2007, 10, 495–502. [Google Scholar] [CrossRef]
- Hotson, A.; Chosed, R.; Shu, H.; Orth, K.; Mudgett, M.B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 2003, 50, 377–389. [Google Scholar] [CrossRef]
- Kofsky, J.; Zhang, H.; Song, B.H. The untapped genetic reservoir: The past, current, and future applications of the wild soybean (Glycine soja). Front. Plant Sci. 2018, 9, 949. [Google Scholar] [CrossRef]
- Takahashi, Y.; Somta, P.; Muto, C.; Iseki, K.; Naito, K.; Pandiyan, M.; Natesan, S.; Tomooka, N. Novel genetic resources in the genus Vigna unveiled from gene bank accessions. PLoS ONE 2016, 11, e0147568. [Google Scholar] [CrossRef]
- Harouna, D.V.; Venkataramana, P.B.; Ndakidemi, P.A.; Matemu, A.O. Under-exploited wild Vigna species potentials in human and animal nutrition: A review. Glob. Food Sec. 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Kaewwongwal, A.; Kongjaimun, A.; Somta, P.; Chankaew, S.; Yimram, T.; Srinives, P. Genetic diversity of the black gram [Vigna mungo (L.) Hepper] gene pool as revealed by SSR markers. Breed Sci. 2015, 65, 127–137. [Google Scholar] [CrossRef]
- Jiménez-Guerrero, I.; Moreno-De Castro, N.; Pérez-Montaño, F. One door closes, another opens: When nodulation impairment with natural hosts extends rhizobial host-range. Environ. Microbiol. 2021, 23, 1837–1841. [Google Scholar] [CrossRef] [PubMed]
T3E | Gene Present in | Domains | Protein Homology | Subcellular Localization | Function/Target | Ref. |
---|---|---|---|---|---|---|
ErnA | Bradyrhizobium sp. ORS3257 | - | Rhizobium-specific | Nucleus (Bradyrhizobium sp. ORS3257) | - | [72] |
GunA/GunA2 | Sinorhizobium spp. Bradyrhizobium spp. R. leguminosarum M. amorphae | Glycoside hydrolase family 12 (GH12) | Rhizobium-specific | - | Cellulase (xyloglucan hydrolase) (S. fredii HH103 and USDA257 B. diazoefficiens USDA110) | [73,74,75,76] |
InnB | Bradyrhizobium spp. M. loti MAFF303099 | - | Rhizobium-specific | - | - | [77,78] |
NopC T | Sinorhizobium spp. Bradyrhizobium sp. BRP14 | - | Rhizobium-specific | - | - | [79] |
NopD family | ||||||
NopD/Bel2-5/Blr1693/Bll8244/Blr1705 | Sinorhizobium spp. Bradyrhizobium spp. | C48 cysteine protease * /EAR motif/IRS/NLS | XopD (X. campestris)/PsvA (P. syringae) | Nucleus (Bradyrhizobium sp. XS115 and B. elkanii USDA61) | SUMOylation/deSUMOylation/AtSUMO1-2, GmSUMO and PvSUMO (Bradyrhizobium sp. XS1150) | [66,80,81,82,83] |
MA20_12780 | Bradyrhizobium spp. | C48 cysteine protease | XopD | - | - | [84] |
Mlr6316 | Mesorhizobium spp. | C48 cysteine protease | XopD | - | - | [85] |
BRAD325_v2_7792 | Bradyrhizobium spp. | C48 cysteine protease | XopD | - | - | [70] |
NopE1/NopE2 | Bradyrhizobium spp. | DUF1521 | - | - | Reduces phytohormone-mediated ETI-type response (B. diazoefficiens USDA110) | [86,87,88] |
NopF | Bradyrhizobium spp. | Acyl-CoA N-acyltransferase superfamily | HopBG1 (P. syringae) | - | - | [89] |
NopI | Sinorhizobium spp. Bradyrhizobium spp. Microvirga spp. | - | Rhizobium- specific | - | - | [90] |
NopJ ( = Y4lO) | S. fredii NGR234 Bradyrhizobium spp. M. amorphae | C55 cysteine protease Ser/Thr acetyltransferase | YopJ/AvrRxv family | - | - | [66,91] |
NopL T | Sinorhizobium spp. Bradyrhizobium spp. | Ser-pro motifs | Rhizobium-specific | Nucleus (S. fredii NGR234) | MAPK substrate (S. fredii NGR234) SIPK (SA-induced protein kinase) (S. fredii NGR234) | [92,93,94,95] |
NopM/NopM1 T /NopM2/NopM3 | Sinorhizobium spp. Bradyrhizobium spp. Microvirga spp. | NEL E3-ubiquitin ligase Leucine rich repeat (LRR) | IpaH-like family | Nucleus (S. fredii NGR234) | NEL E3 ubiquitin ligase (S. fredii NGR234)/ NtSIPK (S. fredii NGR234) | [96,97] |
NopP T | Sinorhizobium spp. Bradyrhizobium spp. | - | Rhizobium-specific | Plasma membrane (M. amorphae CCNWGS0123) | MAPK substrate (S. fredii NGR234) TRAPPC13 (M. amorphae CCNWGS0123) | [98,99,100,101] |
NopT T /NopT1/NopT2 | Sinorhizobium spp. Bradyrhizobium spp. Mesorhizobium spp. | C58 cysteine protease N-term predicted to be myristoylated and palmitoylated in plant cells | AvrPphB (P. syringae) YopT (Yersinia sp.) | Plasma membrane (S. fredii NGR234) | ATP-citrate synthase α chain protein 2/HR-induced response protein from R. pseudoacacia (M. amorphae CCNWGS0123) Soybean kinase GmPBS1-1 (S. fredii NGR234) | [102,103,104,105,106,107,108,109,110] |
Shikimato kinase-like family | ||||||
Mrl6331 | Mesorhizobium spp. Bradyrhizobium spp. Sinorhizobium spp. | Shikimato kinase-like | - | - | - | [85,111] |
Mlr6361 | Mesorhizobium spp. Sinorhizobium spp. | Shikimato kinase-like | - | - | [111] | |
Mrl6358 | Mesorhizobium spp. Bradyrhizobium spp. S. psoraleae | - | - | - | - | [111] |
Plant | Positive Effect (Including Host-Range Extension) | Neutral Effect | Negative Effect (Including Nodulation-Blocking Phenotype/T3E Involved) | Ref. | ||
---|---|---|---|---|---|---|
Legume plants | ||||||
Genera | species | cultivar | ||||
Aeschynomene | americana | T3SS (Bradyrhizobium sp. SUTN9-2 and DOA9) | [116,117] | |||
afraspera | T3SS (Bradyrhizobium ORS285) | T3SS (Bradyrhizobium sp. DOA) | [117,118] | |||
evenia | T3SS (Bradyrhizobium ORS285) | [118] | ||||
indica | T3SS and ErnA (B. vignae ORS3257 and B. elkanii USDA61) NopT and NopAB (Fix*)/NopM1 and NopP1 (B. vignae ORS3257) | NopL, NopP2, BRAD3257_v2_7792 (B. vignae ORS3257) T3SS (Bradyrhizobium ORS285) | NopAO (B. vignae ORS3257) | [70,72,118] | ||
sensitiva | T3SS (Bradyrhizobium ORS285) | [118] | ||||
nilotica | T3SS (Bradyrhizobium ORS285) | [118] | ||||
uniflora | T3SS (Bradyrhizobium ORS285) | [118] | ||||
Amorpha | fruticosa | T3SS (M. amorphae CCNWGSO123) | [119] | |||
Arachis | hipogaea | Thai Nan | T3SS (Bradyrhizobium sp. DOA9) | [117] | ||
Cajanus | cajan | T3SS (B. diazoefficiens USDA110) | T3SS (S. fredii HH103) GunA and GunA2 (B. diazoefficiens USDA110) | T3SS (S. fredii USDA191) | [65,73,120] | |
Crotalaria | juncea | NopJ, NopL, NopM and NopP (S. fredii NGR234) T3SS (S. fredii HH103) | T3SS (Bradyrhizobium sp. DOA9) T3SS (Fix*)/NopT (S. fredii NGR234) | [65,100,102,105,117] | ||
pallida | NopT (S. fredii NGR234) | [106] | ||||
Desmodium | tortuosum | T3SS (Bradyrhizobium sp. DOA9) | [117] | |||
Erythrina | variegata | NopP (S. fredii HH103) | T3SS (Fix*) (S. fredii HH103 and USDA257) | [65,121,122,123] | ||
Flemingia | congesta | T3SS, NopL, NopP † and NopX (S. fredii NGR234) | NopL and NopP † (S. fredii NGR234) | [65,98,100,124] | ||
Glycine | max | Akishirome | T3SS (B. japonicum USDA122) | MA20_12780 (B. japonicum Is-34) | [84,125] | |
Aobako (Rj2) | T3SS (B. japonicum USDA122) | [125] | ||||
Amphor | NopE1 and NopE2 (B. diazoefficiens USDA110) | [86] | ||||
Baimaodou | NopD (S. fredii HH103) | NopL (S. fredii HH103) | [95,126] | |||
Baipidou | GunA (S. fredii HH103) | [76] | ||||
Baoqingheidou | GunA (S. fredii HH103) | [76] | ||||
BARC-2 (Rj4) | InnB (B. elkanii USDA61) | T3SS and Bel 2-5 (B. elkanii USDA61) | [77,81,82,127,128] | |||
BARC-3 (rj4) | T3SS (B. elkanii USDA61) | [128] | ||||
Bayuezha | NopL (S. fredii HH103) | [95] | ||||
C08 (Rfg1) | T3SS and NopP (S. fredii CCBAU25509) | [129] | ||||
Charleston | GunA and NopD (S. fredii HH103) | NopL (S. fredii HH103) | [76,95,126] | |||
Chidou1 | NopD (S. fredii HH103) | [126] | ||||
Chizuka Ibaraki 1 (Rj2) | T3SS (B. japonicum USDA122) | [125] | ||||
Clark (rj1) | T3SS (B. elkanii USDA61) | [130] | ||||
COL/Ehime/1983/ Utsunomiya 37 | T3SS (B. japonicum USDA122) | [125] | ||||
Danzhidou | GunA (S. fredii HH103) | [76] | ||||
Date Cha Mame (Rj2) | T3SS (B. japonicum USDA122) | [125] | ||||
D51 (Rj3) | T3SS (Fix*) (B. elkanii BLY3-8) | [131] | ||||
Dongnong594 | NopD (S. fredii HH103) | NopL and GunA (S. fredii HH103) | [76,95,126] | |||
EMBRAPA-48 | T3SS (B. elkanii SEMIA587) | [132] | ||||
En1282 (Nfr1) | T3SS and Bel 2-5 (B. elkanii USDA61) | [82] | ||||
Enrei | T3SS (B. elkanii USDA61) | [133] | ||||
Fengdihuang | GunA (S. fredii HH103) | [76] | ||||
Hill (Rj4) | T3SS (B. elkanii USDA61) | [130] | ||||
Fukuyutaka (Rj4) | MA20_12780 (B. japonicum Is-34) | [84] | ||||
Hardee (Rj2) | T3SS (B. vignae ORS3257) | NopP2 (B. vignae ORS3257) | T3SS (B. japonicum USDA122) | [134,135] | ||
Heidou | NopL (S. fredii HH103) | [95] | ||||
Heihe 13 | GunA (S. fredii HH103) | [76] | ||||
Heinong 33 | T3SS (S. fredii HH103) | [122] | ||||
Heinong 35 | NopD (S. fredii HH103) | [126] | ||||
Himeshirazu | T3SS (B. japonicum USDA122) | [125] | ||||
Huangpishanzibai | NopL (S. fredii HH103) | [95] | ||||
JD17 | T3SS and NopP (S. fredii CCBAU25509 and CCBAU83666) | [136] | ||||
Jihei 4 | GunA (S. fredii HH103) | [76] | ||||
Kenjian28 | NopD (S. fredii HH103) | [126] | ||||
Kochi | T3SS (S. fredii HH103) | [122] | ||||
Kumaji 1 (Rj2) | T3SS (B. japonicum USDA122) | [125] | ||||
Kurakake 1 (Rj2) | T3SS (B. japonicum USDA122) | [125] | ||||
Lee (rj2) | T3SS and NopP2 (B. vignae ORS3257) | [135] | ||||
Maetsue Zairai 90B (Rj2) | T3SS (B. japonicum USDA122) | [125] | ||||
Mancangjin | GunA (S. fredii HH103) | [76] | ||||
Peking | T3SS (S. fredii HH103) NopA (S. fredii USDA257) T3SS (B. elkanii SEMIA587) | T3SS (S. fredii NGR234 and USDA257) | NopB (S. fredii USDA257) | [65,121,122,132,137,138] | ||
Qingdou | NopD (S. fredii HH103) | NopL (S. fredii HH103) | [95,126] | |||
Qingpi | GunA (S. fredii HH103) | [76] | ||||
Shakkin Nashi | T3SS (B. japonicum USDA122) | [125] | ||||
SN14 | T3SS and GunA (S. fredii HH103) | [139] | ||||
Suinong14 | NopD (S. fredii HH103) | NopL (S. fredii HH103) | [95,126] | |||
Suinong 15 | GunA (S. fredii HH103) | [76] | ||||
Tokachi Nagaha | T3SS (B. japonicum USDA122) | [125] | ||||
Tribune | T3SS (S. fredii HH103) | [122] | ||||
Wanhuangdadou | NopL (S. fredii HH103) | [95] | ||||
Williams 82 and McCall (Rfg1/rj2) | T3SS, GunA, NopC and NopI (S. fredii HH103) | T3SS (B. elkanii SEMIA587) | T3SS, NopA and NopB (S. fredii USDA257) NopL and NopP (S. fredii HH103) | [60,65,79,121,122,123,132,137,138,140,141,142,143] | ||
Zheng9525 | NopD (S. fredii HH103) | [126] | ||||
ZYD00006 | NopD and NopL (S. fredii HH103) | [95,126] | ||||
soja | Rj2 (JP90448, JP9052, JP231394, JP231659) | T3SS (B. japonicum USDA122) | [125] | |||
rj2 (JP110740, JP231372, JP231659) | T3SS (Bradyrhizobium sp. DOA9) | [125] | ||||
rj2 (JP233152) | T3SS (B. japonicum USDA122) | [117] | ||||
CH2 | T3SS (S. fredii NGR234) | T3SS (S. fredii HH103) | [144] | |||
CH3 | T3SS (S. fredii NGR234) T3SS (S. fredii HH103) | [144] | ||||
CH4 | T3SS (S. fredii HH103 and NGR234) | [144] | ||||
Glycyrrhiza | uralensis | T3SS (S. fredii HH103) | [122] | |||
Indigofera | tintorea | T3SS (Bradyrhizobium sp. DOA9) | [117] | |||
Lablab | purpureus | T3SS, NopM, NopP and NopX (S. fredii NGR234) | NopL and NopT (S. fredii NGR234) | NopJ (S. fredii NGR234) | [96,105,124] | |
Leucaena | leucocephala | T3SS, NopA and NopL (S. fredii NGR234) Mlr6361 (M. loti MAFF303099) | Atypical T3SS (C. taiwanensis LMG19424) T3SS and Mlr6316 (M. loti MAFF303099) | [52,65,111,145,146] | ||
Lotus | burttii | T3SS, GunA, NopC, NopD, NopI, NopL, NopM, NopP and NopT (S. fredii HH103) | T3SS and NopM/NopF (Fix*) (B. elkanii USDA61) T3SS (Bradyrhizobium sp. SUTN9-2) | [89,147,148] | ||
corniculatus | frondosus | T3SS (M. loti MAFF303099) | Mlr6316, Mlr6331, Mlr6358 and Mlr6361 (M. loti MAFF303099) | [111,149] | ||
filicaulis | T3SS (M. loti MAFF303099) | [149] | ||||
halophilpus | Mlr6316, Mlr6331 and Mlr6358 (M. loti MAFF303099) | T3SS and Mlr6361 (M. loti MAFF303099) | [111,149] | |||
japonicus | Gifu | NopM (B. elkanii USDA61) NopD, NopI, NopM and NopT (S. fredii HH103) NopL (S. fredii NGR234) | T3SS (Fix*) (B. elkanii USDA61 and 14k062) NopF (Fix*) (B. elkanii USDA61) T3SS (Bradyrhizobium sp. SUTN9-2) T3SS and NopC/GunA, NopL and NopP (Fix*) (S. fredii HH103) | [89,92,147,148] | ||
MG-20 | T3SS (M. loti MAFF303099) | T3SS and NopM (Fix*) (B. elkanii USDA61) | [85,89,97] | |||
Miyakojima | NopF (B. elkanii USDA61) | T3SS (Bradyrhizobium sp. SUTN9-2) T3SS and NopM (B. elkanii USDA61) | [147] | |||
peregrinus | carmeli | T3SS (M. loti MAFF303099) | [149] | |||
subbiflorus | T3SS (M. loti MAFF303099) | [149] | ||||
tenuis | INTA Pampa | T3SS (M. loti MAFF303099) | [85] | |||
Esmeralda | Mrl6316 (M. loti MAFF303099) | T3SS (M. loti MAFF303099) | [85] | |||
Macroptiluim | artropurpureum | T3SS (B. elkanii USDA61) | NopE1 and NopE2 (B. diazoefficiens USDA110) T3SS (B. elkanii SEMIA587) | T3SS (Bradyrhizobium sp. SUTN9-2 and DOA9) NopB (S. fredii USDA257) | [86,116,117,130,132,138] | |
Mimosa | pudica | Atypical T3SS (C. taiwanensis LMG19424) | [146] | |||
Pachyrhizus | tuberosus | NopP † and NopX (S. fredii NGR234) | NopJ, NopL, NopP † and NopT † (S. fredii NGR234) | T3SS (Fix*), NopA, NopB, NopM and NopT † (S. fredii NGR234) | [98,100,105,124,142,145,150,151,152] | |
Phaseolus | vulgaris | NopT (S. fredii NGR234) | T3SS (S. fredii NGR234) | NopL (S. fredii NGR234) | [93,102,153] | |
Robinia | hispida | T3SS (M. amorphae CCNWGSO123) | NopP (M. amorphae CCNWGSO123) | [101,119,154] | ||
pseudoacacia | T3SS (M. amorphae CCNWGSO123) | [119] | ||||
Sophora | japonica | T3SS (M. amorphae CCNWGSO123) | [119] | |||
xanthantha | T3SS (M. amorphae CCNWGSO123) | [119] | ||||
Stylosantes | hamata | T3SS (Bradyrhizobium sp. DOA9) | [117] | |||
Tephrosia | vogelii | T3SS, NopA, NopB, NopP, NopT and NopX (S. fredii NGR234) | NopL, NopM and NopJ (S. fredii NGR234) | NopD (Bradyrhizobium sp. XS1150) | [65,83,100,102,105,124,145,150,151,152] | |
Vigna | aconitifolia | T3SS and InnB (B. elkanii USDA61) | [155] | |||
angularis | T3SS (B. elkanii USDA61) | InnB (B. elkanii USDA61) | [155] | |||
mungo | cv. PI173934 | T3SS, InnB, NopL and NopP2 (B. elkanii USDA61) | Bel2-5 and NopP1 (B. elkanii USDA61) | [78,155] | ||
MASH | T3SS and NopL/Bel2-5 and NopP2 (B. elkanii USDA61) | InnB and NopP1 (B. elkanii USDA61) | [155] | |||
IBPGR2775-3 | T3SS and NopL/Bel2-5 and NopP2 (B. elkanii USDA61) | NopP1 (B. elkanii USDA61) | InnB (B. elkanii USDA61) | [155] | ||
MAFF2002M3 | T3SS and InnB (B. elkanii USDA61) | [155] | ||||
OSUM745 | T3SS (B. elkanii USDA61) | InnB (B. elkanii USDA61) | [155] | |||
VM3003 | InnB (B. elkanii USDA61) | T3SS (B. elkanii USDA61) | [155] | |||
U-THONG2 | InnB (B. elkanii USDA61) | T3SS (B. elkanii USDA61) | [155] | |||
CQ5785 | T3SS and InnB (B. elkanii USDA61) | [155] | ||||
- | T3SS and NopP2 (B. vignae ORS3257) | Brad7238, ErnA, NopBW and NopL (B. vignae ORS3257) | [135] | |||
trinervia | InnB (B. elkanii USDA61) | T3SS (B. elkanii USDA61) | [155] | |||
radiata | CN36 | T3SS (B. elkanii USDA61) | [130] | |||
CN72 | T3SS (Bradyrhizobium sp. SUTN9-2) T3SS (B. diazoefficiens USDA110) | T3SS (B. vignae ORS3257) T3SS (Bradyrhizobium sp. DOA9) | [156] | |||
KPS1 | T3SS and InnB (B. elkanii USDA61) | [77,78,130,155] | ||||
KPS2 | NopE1 and NopE2 (B. diazoefficiens USDA110) | T3SS (B. vignae ORS3257 and B. diazoefficiens USDA110) T3SS (Bradyrhizobium sp. SUTN9-2 and DOA9) | [86,156] | |||
SUT1 | Brad7238, ErnA, NopBW, NopL and NopP1 (B. vignae ORS3257) | T3SS and NopP2 (B. vignae ORS3257) | [135] | |||
SUT4 | T3SS (B. diazoefficiens USDA110) | T3SS (B. vignae ORS3257) T3SS (Bradyrhizobium sp. SUTN9-2 and Bradyrhizobium sp. DOA9) | [116,117,156] | |||
V4718 | T3SS (Bradyrhizobium sp. SUTN9-2) | T3SS (B. vignae ORS3257 and DOA9 and B. diazoefficiens USDA110) | [156] | |||
V4758 | T3SS (Bradyrhizobium sp. SUTN9-2 and DOA9 and B. diazoefficiens USDA110) | T3SS (B. vignae ORS3257) | [156] | |||
V4785 | T3SS (Bradyrhizobium sp. SUTN9-2) | T3SS (B. vignae ORS3257 and DOA9 and B. diazoefficiens USDA110) | [156] | |||
- | GunA and GunA2 (B. diazoefficiens USDA110) | [73] | ||||
unguiculata | T3SS and NopAB (B. elkanii USDA61) T3SS and NopT (B. vignae ORS3257) T3SS, NopC and NopI (S. fredii HH103) | Brad7238, Brad7707, ErnA, NopAO, NopBW, NopL and NopP2 (B. vignae ORS3257) T3SS, NopA, NopB and NopP (S. fredii NGR234) NopB (S. fredii USDA257) | InnB (B. elkanii USDA61) T3SS (B. elkanii SEMIA587) GunA, NopA, NopL (S. fredii HH103) | [65,98,132,135,137,138,145,151,155] | ||
Non legume plants | ||||||
Oryza | sativa L. ssp. indica | Phatum Thani 1 | T3SS (Bradyrhizobium sp. SUTN9-2)-colonization | T3SS (Bradyrhizobium sp. DOA9) T3SS (Bradyrhizobium sp. SUTN9-2)-growth promotion | [116,117] | |
sativa L. ssp. japonica | Nipponbare | T3SS (Bradyrhizobium sp. SUTN9-2)-growth promotion | T3SS (Bradyrhizobium sp. SUTN9-2)-colonization | [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Guerrero, I.; Medina, C.; Vinardell, J.M.; Ollero, F.J.; López-Baena, F.J. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int. J. Mol. Sci. 2022, 23, 11089. https://doi.org/10.3390/ijms231911089
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. International Journal of Molecular Sciences. 2022; 23(19):11089. https://doi.org/10.3390/ijms231911089
Chicago/Turabian StyleJiménez-Guerrero, Irene, Carlos Medina, José María Vinardell, Francisco Javier Ollero, and Francisco Javier López-Baena. 2022. "The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis" International Journal of Molecular Sciences 23, no. 19: 11089. https://doi.org/10.3390/ijms231911089
APA StyleJiménez-Guerrero, I., Medina, C., Vinardell, J. M., Ollero, F. J., & López-Baena, F. J. (2022). The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. International Journal of Molecular Sciences, 23(19), 11089. https://doi.org/10.3390/ijms231911089