The Role of Fatty Acid-Binding Protein 4 in the Characterization of Atrial Fibrillation and the Prediction of Outcomes after Catheter Ablation
Abstract
:1. Introduction
2. Results
2.1. Population Characteristics
2.2. Extent of Low-Voltage Area on EAM
2.3. Recurrence after AF Catheter Ablation
3. Discussion
3.1. Atrial Fibrillation Patterns
3.2. Atrial Cardiomyopathy and Biomarkers
3.3. Clinical Relevance
3.4. Study Limitations
4. Methods and Materials
4.1. Subjects
4.2. Blood Sample Collection
4.3. Plasma Measurements
4.4. Ablation Procedure and Patient Follow-Up
4.5. Left Atrial Low-Voltage Areas
4.6. AF Type and FABP4 Score
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goette, A.; Kalman, J.M.; Aguinaga, L.; Akar, J.; Cabrera, J.A.; Chen, S.A.; Chugh, S.S.; Corradi, D.; D’Avila, A.; Dobrev, D.; et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: Definition, characterization, and clinical implication. Europace 2016, 18, 1455–1490. [Google Scholar] [CrossRef] [PubMed]
- Kapa, S.; Desjardins, B.; Callans, D.J.; Marchlinski, F.E.; Dixit, S. Contact Electroanatomic Mapping Derived Voltage Criteria for Characterizing Left Atrial Scar in Patients Undergoing Ablation for Atrial Fibrillation: Voltage Criteria for Left Atrial Scar. J. Cardiovasc. Electrophysiol. 2014, 25, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, B.; Morady, F.; Bogun, F. Effect of Epicardial Fat on Electroanatomical Mapping and Epicardial Catheter Ablation. J. Am. Coll. Cardiol. 2010, 56, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Jadidi, A.S.; Lehrmann, H.; Keyl, C.; Sorrel, J.; Markstein, V.; Minners, J.; Park, C., II; Denis, A.; Jaïs, P.; Hocini, M.; et al. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas with Selective Activation Characteristics. Circ. Arrhythmia Electrophysiol. 2016, 9, e002962. Available online: https://www.ahajournals.org/doi/10.1161/CIRCEP.115.002962 (accessed on 1 March 2021). [CrossRef]
- Garin-Shkolnik, T.; Rudich, A.; Hotamisligil, G.S.; Rubinstein, M. FABP4 Attenuates PPAR and Adipogenesis and Is Inversely Correlated with PPAR in Adipose Tissues. Diabetes 2014, 63, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.X.; Wang, T.; Su, H.X.; Gao, D.D.; Xu, Y.C.; Li, Y.X.; Wang, H.Y. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes. Endocrine 2020, 67, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Liu, Z.; Cao, W.; Zhang, Z.; Sun, C. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Sci. Rep. 2015, 5, 13588. [Google Scholar] [CrossRef]
- López-Canoa, J.N.; Couselo-Seijas, M.; Baluja, A.; González-Melchor, L.; Rozados, A.; Llorente-Cortés, V.; de Gonzalo-Calvo, D.; Guerra, J.M.; Vilades, D.; Leta, R.; et al. Sex-related differences of fatty acid-binding protein 4 and leptin levels in atrial fibrillation. EP Eur. 2021, 23, 682–690. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Potpara, T.S.; Stankovic, G.R.; Beleslin, B.D.; Polovina, M.M.; Marinkovic, J.M.; Ostojic, M.C.; Lip, G.Y. A 12-Year Follow-up Study of Patients with Newly Diagnosed Lone Atrial Fibrillation. Chest 2012, 141, 339–347. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation: The DECAAF Study. JAMA 2014, 5, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Xintarakou, A.; Tzeis, S.; Psarras, S.; Asvestas, D.; Vardas, P. Atrial fibrosis as a dominant factor for the development of atrial fibrillation: Facts and gaps. EP Eur. 2020, 22, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Characterization, Pathogenesis, and Clinical Implications of Inflammation-Related Atrial Myopathy as an Important Cause of Atrial Fibrillation. JAHA 2020, 9, e015343. Available online: https://www.ahajournals.org/doi/10.1161/JAHA.119.015343 (accessed on 7 March 2021). [CrossRef] [PubMed]
- Verma, A.; Wazni, O.M.; Marrouche, N.F.; Martin, D.O.; Kilicaslan, F.; Minor, S.; Schweikert, R.A.; Saliba, W.; Cummings, J.; Burkhardt, J.D.; et al. Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation. J. Am. Coll. Cardiol. 2005, 45, 285–292. [Google Scholar] [CrossRef]
- Seewöster, T.; Kosich, F.; Sommer, P.; Bertagnolli, L.; Hindricks, G.; Kornej, J. Prediction of low-voltage areas using modified APPLE score. EP Eur. 2021, 23, 575–580. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, L.; Chen, W.; Sang, C.; Xu, C.; Zhang, C. Left atrial epicardial adipose tissue is associated with low voltage zones in the left atrium in patients with non-valvular atrial fibrillation. Front. Cardiovasc. Med. 2022, 9, 924646. [Google Scholar] [CrossRef]
- Ernault, A.C.; Meijborg, V.M.F.; Coronel, R. Modulation of Cardiac Arrhythmogenesis by Epicardial Adipose Tissue. J. Am. Coll. Cardiol. 2021, 78, 1730–1745. [Google Scholar] [CrossRef]
- Lipson, A.; Alexopoulos, N.; Hartlage, G.R.; Arepalli, C.; Oeser, A.; Bian, A.; Gebretsadik, T.; Shintani, A.; Stillman, A.E.; Stein, C.M.; et al. Epicardial adipose tissue is increased in patients with systemic lupus erythematosus. Atherosclerosis 2012, 223, 389–393. [Google Scholar] [CrossRef]
- Lind, L.; Sundström, J.; Stenemo, M.; Hagström, E.; Ärnlöv, J. Discovery of new biomarkers for atrial fibrillation using a custom-made proteomics chip. Heart 2017, 103, 377–382. [Google Scholar] [CrossRef]
- Feng, Y.; Guo, F.; Xia, Z.; Liu, J.; Mai, H.; Liang, Y.; Zhu, G.; Li, Y.; Bai, L.; Li, L.; et al. Inhibition of Fatty Acid–Binding Protein 4 Attenuated Kidney Fibrosis by Mediating Macrophage-to-Myofibroblast Transition. Front. Immunol. 2020, 11, 566535. [Google Scholar] [CrossRef]
- Lamounier-Zepter, V.; Look, C.; Alvarez, J.; Christ, T.; Ravens, U.; Schunck, W.H.; Ehrhart-Bornstein, M.; Bornstein, S.R.; Morano, I. Adipocyte Fatty Acid–Binding Protein Suppresses Cardiomyocyte Contraction: A New Link Between Obesity and Heart Disease. Circ. Res. 2009, 105, 326–334. [Google Scholar] [CrossRef] [PubMed]
- De With, R.R.; Artola Arita, V.; Nguyen, B.O.; Linz, D.; Ten Cate, H.; Spronk, H.; Schotten, U.; van Zonneveld, A.J.; Erküner, Ö; Bayón, M.A.; et al. Different circulating biomarkers in women and men with paroxysmal atrial fibrillation: Results from the AF-RISK and RACE V studies. EP Eur. 2022, 24, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ma, X.; Pan, X.; Luo, Y.; Xu, Y.; Xiong, Q.; Bao, Y.; Jia, W. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels. Sci. Rep. 2016, 6, 27762. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Ma, X.; Luo, Y.; Hu, X.; Pan, X.; Xiao, Y.; Bao, Y.; Jia, W. Associations of Serum Adipocyte Fatty Acid Binding Protein With Body Composition and Fat Distribution in Nondiabetic Chinese Women. J. Clin. Endocrinol. Metab. 2015, 100, 2055–2062. [Google Scholar] [CrossRef]
- Lopez-Canoa, J.N.; Baluja, A.; Couselo-Seijas, M.; Naveira, A.B.; Gonzalez-Melchor, L.; Rozados, A.; Martínez-Sande, L.; García-Seara, J.; Fernandez-Lopez, X.A.; Fernandez, A.L.; et al. Plasma FABP4 levels are associated with left atrial fat volume in persistent atrial fibrillation and predict recurrence after catheter ablation. Int. J. Cardiol. 2019, 292, 131–135. [Google Scholar] [CrossRef]
% | N | Mean | SD | Percentiles | |||
---|---|---|---|---|---|---|---|
25 | 50 | 75 | |||||
Gender (female/male) | 33/67 | 98/201 | |||||
Age | 299 | 58.2 | 10 | 52 | 59 | 66 | |
BMI (Kg/m2) | 299 | 29.7 | 4.8 | 26.7 | 29.4 | 32 | |
AF type (1/2/3) | 33/43/23 | 100/130/69 | |||||
LA LVA (%) | 299 | 9.6 | 17.8 | 0.06 | 1.44 | 9.98 | |
Years (AF) | 299 | 3.8 | 4.6 | 1 | 2 | 5 | |
Redo procedure (no/yes) | 11 | 266/33 | |||||
Heart Rate (bpm) | 299 | 70 | 21.5 | 56 | 65 | 80 | |
PR (ms) | 299 | 161.4 | 31.5 | 140 | 160 | 180 | |
QRS (ms) | 299 | 92.7 | 15.4 | 80 | 90 | 100 | |
LA area (cm2) | 299 | 20.4 | 6 | 15 | 20 | 24 | |
LVEF | 299 | 60.6 | 9 | 56 | 61 | 66 | |
Laboratory measurements | |||||||
Hemoglobin (g/dL) | 299 | 14.3 | 1.4 | 13.4 | 14.4 | 15.3 | |
Platelets (109/L) | 299 | 201.9 | 50.5 | 170 | 200 | 235 | |
Blood urea nitrogen (mg/dL) | 299 | 47 | 15.7 | 38 | 45 | 53 | |
Creatinine (mg/dL) | 299 | 1.3 | 3.4 | 0.8 | 1 | 1.1 | |
eGFR (mL/min/1.73 m2) | 299 | 95.8 | 32.5 | 72.5 | 90.9 | 114.7 | |
Plasma Sodium (mEq/L) | 299 | 140.6 | 8.9 | 140 | 141 | 143 | |
Plasma Potassium (mEq/L) | 299 | 4.4 | 2.3 | 4 | 4.2 | 4.5 | |
Total cholesterol (mg/dL) | 299 | 189 | 39.2 | 163 | 188 | 215 | |
LDLc (mg/dL) | 299 | 115.1 | 39.2 | 163 | 188 | 215 | |
HDLc (mg/dL) | 299 | 51.4 | 15.8 | 41.7 | 50 | 59 | |
Triglycerides (mg/dL) | 299 | 118 | 57.6 | 84 | 105 | 138.3 | |
Glucose (mg/dL) | 299 | 106.7 | 24.3 | 93 | 103 | 113 | |
HbA1c (g/dL) | 199 | 5.7 | 0.6 | 5.3 | 5.6 | 5.9 | |
TSH (mU/L) | 299 | 2.9 | 2.3 | 1.6 | 2.3 | 3.6 | |
LA Gal-3 (ng/mL) | 272 | 10.1 | 6.3 | 5.8 | 8.6 | 12.9 | |
Peripheral Gal-3 (ng/mL) | 299 | 11.5 | 6.9 | 5.7 | 8.5 | 13.7 | |
LA FABP4 (ng/mL) | 274 | 20.5 | 16.7 | 9.6 | 15.9 | 24.7 | |
Peripheral FABP4 (ng/mL) | 299 | 24.1 | 18.2 | 12.4 | 19.6 | 29.2 | |
LA Leptin (ng/mL) | 271 | 21.2 | 27.8 | 6.5 | 12.4 | 24.6 | |
Peripheral Leptin (ng/mL) | 299 | 23.9 | 32.2 | 8.5 | 17.21 | 31.4 | |
Disease-Risk factors | |||||||
Taquicardiomyopathy (no/yes) | 16 | 251/48 | |||||
AHT (no/yes) | 46 | 161/138 | |||||
T2DM (no/yes) | 13 | 260/39 | |||||
Smoker (no/yes) | 30 | 209/90 | |||||
COPD (no/yes) | 7 | 281/18 | |||||
OSA (no/yes) | 5 | 284/15 | |||||
Treatments | |||||||
Statins (no/yes) | 43 | 170/129 | |||||
ACEi (no/yes) | 20 | 239/60 | |||||
ARB (no/yes) | 23 | 230/69 | |||||
NDHP CCB (no/yes) | 5 | 284/15 | |||||
Vitamin K antagonist (no/yes) | 36 | 191/108 | |||||
DOAC (no/yes) | 62 | 114/185 | |||||
Class I ADT (no/yes) | 32 | 203/96 | |||||
Class II ADT (no/yes) | 69 | 93/206 | |||||
Class III ADT (no/yes) | 29 | 212/87 | |||||
Class IV ADT (no/yes) | 7 | 278/21 | |||||
Follow-up (days) | 299 | 972 | 451 |
Coefficient | CI95% | Sig. | |
---|---|---|---|
Age | 0.262 | 0.03–0.49 | 0.028 |
AHT | 3.084 | −1.81–7.98 | 0.218 |
T2DM | 4.233 | −2.99–11.46 | 0.252 |
LA area | 0.558 | 0.18–0.94 | 0.005 |
LDLc | −0.031 | −0.10–0.04 | 0.396 |
TG | −0.035 | −0.07–0.003 | 0.072 |
Score of 1 | |||
Score of 2 | 2.557 | −2.13–7.24 | 0.286 |
Score of 3 | 10.97 | 3.37–18.56 | 0.005 |
Score 1 (n = 162) | Score 2 (n = 112) | Score 3 (n = 28) | Sig. (p Value) | |
---|---|---|---|---|
Gender (female n/%) | 52/32 | 32/28 | 14/50 | 0.1304 |
Age | 58 (52–66) | 59(52–66) | 63 (55–70) | 0.1168 |
BMI (Kg/m2) | 29 (26–32) | 29(27–30) | 31 (28–34) | 0.0329 |
AF type (1/2/3) | 100/62/0 | 0/70/42 | 0/0/28 | |
LVA (%) | 1 (0.06–6.78) | 3.4(0.1–10) | 7 (0.25–35) | 0.0274 |
PR (ms) | 163 ± 33 | 159 ± 28 | 157 ± 17 | 0.9410 |
QRS (ms) | 93 ± 14 | 92 ± 17 | 93 ± 17 | 0.4270 |
LA area (cm2) | 19 ± 6 | 21 ± 6 | 23 ± 6 | 0.0010 |
LVEF | 63 ± 8 | 59 ± 9 | 59 ± 12 | 0.0010 |
Laboratory measurements | ||||
Hemoglobin (g/dL) | 14 ± 2 | 14 ± 1 | 14 ± 1 | 0.1378 |
Platelets (109/L) | 206 ± 52 | 198 ± 48 | 199 ± 40 | 0.4383 |
Blood urea nitrogen (mg/dL) | 46 ± 12 | 47 ± 16 | 50 ± 15 | 0.4216 |
Creatinine (mg/dL) | 1.0 ± 0.2 | 1.4 ± 0.4 | 1.0 ± 0.3 | 0.7110 |
eGFR (mL/min/1.73 m2) | 96 ± 30 | 95 ± 34 | 94 ± 55 | 0.7556 |
Plasma Sodium (mEq/L) | 141 ± 10 | 141 ± 5 | 142 ± 2 | 0.2247 |
Plasma Potassium (mEq/L) | 4.2 ± 0.4 | 6.3 ± 0.1 | 4.2 ± 0.3 | 0.0379 |
Total cholesterol (mg/dL) | 190 ± 39 | 188 ± 40 | 185 ± 35 | 0.7170 |
LDLc (mg/dL) | 116 ± 32 | 116 ± 32 | 108 ± 28 | 0.3504 |
HDLc (mg/dL) | 52 ± 17 | 50 ± 14 | 54 ± 13 | 0.4501 |
Triglycerides (mg/dL) | 116 ± 51 | 118 ± 52 | 131 ± 99 | 0.9708 |
HbA1c (g/dL) | 5.7 ± 0.5 | 6.4 ± 0.6 | 5.8 ± 0.7 | 0.5504 |
LA Gal-3 (ng/mL) | 8.5 (5.7–13) | 8.8 (5.8–13) | 7.8 (6.0–10) | 0.4687 |
Peripheral Gal-3 (ng/mL) | 8.5 (5.7–14) | 8.8 (5.8–14) | 7.6 (5.5–11) | 0.6107 |
LA FABP4 (ng/mL) | 13 (8.7–18.5) | 20 (11–29) | 24 (21–28) | <0.001 |
Peripheral FABP4 (ng/mL) | 16 (11–22) | 24 (13–36) | 28 (24–38) | <0.001 |
Disease and risk factors | ||||
AHT (n/%) | 52/32 | 44/39 | 19/68 | 0.0178 |
T2DM (n/%) | 19/11 | 13/12 | 6/21 | 0.3914 |
Smoker (n/%) | 51/31 | 37/33 | 4/14 | 0.4800 |
COPD (n/%) | 9/0.05 | 10/0.09 | 0/0 | 0.1926 |
OSA (n/%) | 7/0.04 | 9/0.08 | 1/0.04 | 0.3933 |
Treatments | ||||
Statins (n/%) | 68/42 | 50/45 | 13/46 | 0.7821 |
ACEi (n/%) | 27/17 | 24/21 | 8/28 | 0.2899 |
Class I ADT (n/%) | 59/36 | 32/28 | 4/14 | 0.0374 |
Class II ADT (n/%) | 100/62 | 87/78 | 23/82 | 0.0051 |
Class III ADT (n/%) | 40/25 | 34/30 | 13/46 | 0.0798 |
Class IV ADT (n/%) | 11/0.07 | 9/0.08 | 2/0.07 | 0.9455 |
HR (95% CI) | Sig. | |
---|---|---|
Gender (male) | 0,924 (0.591–1.445) | 0.729 |
LA area | 1.028 (0.991–1.066) | 0.139 |
TG | 0,997 (0.994–1,001) | 0.179 |
LVA | 1.014 (1.005–1.024) | 0.003 |
Score of 1 | ||
Score of 2 | 1.828 (1.170–2.860) | 0.008 |
Score of 3 | 2.320 (1.190–4.524) | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Canoa, J.N.; Couselo-Seijas, M.; González-Ferrero, T.; Almengló, C.; Álvarez, E.; González-Maestro, A.; González-Melchor, L.; Martínez-Sande, J.L.; García-Seara, J.; Fernández-López, J.; et al. The Role of Fatty Acid-Binding Protein 4 in the Characterization of Atrial Fibrillation and the Prediction of Outcomes after Catheter Ablation. Int. J. Mol. Sci. 2022, 23, 11107. https://doi.org/10.3390/ijms231911107
López-Canoa JN, Couselo-Seijas M, González-Ferrero T, Almengló C, Álvarez E, González-Maestro A, González-Melchor L, Martínez-Sande JL, García-Seara J, Fernández-López J, et al. The Role of Fatty Acid-Binding Protein 4 in the Characterization of Atrial Fibrillation and the Prediction of Outcomes after Catheter Ablation. International Journal of Molecular Sciences. 2022; 23(19):11107. https://doi.org/10.3390/ijms231911107
Chicago/Turabian StyleLópez-Canoa, José Nicolás, Marinela Couselo-Seijas, Teba González-Ferrero, Cristina Almengló, Ezequiel Álvarez, Adrián González-Maestro, Laila González-Melchor, José Luis Martínez-Sande, Javier García-Seara, Jesús Fernández-López, and et al. 2022. "The Role of Fatty Acid-Binding Protein 4 in the Characterization of Atrial Fibrillation and the Prediction of Outcomes after Catheter Ablation" International Journal of Molecular Sciences 23, no. 19: 11107. https://doi.org/10.3390/ijms231911107
APA StyleLópez-Canoa, J. N., Couselo-Seijas, M., González-Ferrero, T., Almengló, C., Álvarez, E., González-Maestro, A., González-Melchor, L., Martínez-Sande, J. L., García-Seara, J., Fernández-López, J., Kreidieh, B., González-Babarro, E., González-Juanatey, J. R., Eiras, S., & Rodríguez-Mañero, M. (2022). The Role of Fatty Acid-Binding Protein 4 in the Characterization of Atrial Fibrillation and the Prediction of Outcomes after Catheter Ablation. International Journal of Molecular Sciences, 23(19), 11107. https://doi.org/10.3390/ijms231911107