APOE Genotypes Modulate Inflammation Independently of Their Effect on Lipid Metabolism
Abstract
:1. Introduction
2. Results
2.1. APOE Genotype and C-Reactive Protein
2.2. Association of APOE Genotype with Lipoprotein Particle Number, Composition, and Size
2.3. Association of APOE Genotype with Inflammatory Markers
3. Discussion
4. Materials and Methods
4.1. Design
4.2. Participants
4.2.1. AWHS
4.2.2. HUMS
4.3. Biochemical Analysis
4.4. APOE Genotype
4.5. Lipoprotein Particles and GlycA Concentration
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tudorache, I.F.; Trusca, V.G.; Gafencu, A.V. Apolipoprotein E—A Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput. Struct. Biotechnol. J. 2017, 15, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mahley, R.W. Apolipoprotein E: Structure and Function in Lipid Metabolism, Neurobiology, and Alzheimer’s Diseases. Neurobiol. Dis. 2014, 72 Pt A, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Greenow, K.; Pearce, N.J.; Ramji, D.P. The Key Role of Apolipoprotein E in Atherosclerosis. J. Mol. Med. 2005, 83, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Bu, G. Apolipoprotein E and Its Receptors in Alzheimer’s Disease: Pathways, Pathogenesis and Therapy. Nat. Rev. Neurosci. 2009, 10, 333–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennet, A.M.; Angelantonio, E.D.; Ye, Z.; Wensley, F.; Dahlin, A.; Ahlbom, A.; Keavney, B.; Collins, R.; Wiman, B.; de Faire, U.; et al. Association of Apolipoprotein E Genotypes With Lipid Levels and Coronary Risk. JAMA 2007, 298, 1300–1311. [Google Scholar] [CrossRef]
- Weiss, J.; Hossain, S.; Maldonado, A.I.; Shen, B.; Beydoun, H.A.; Kivimaki, M.; Evans, M.K.; Zonderman, A.B.; Beydoun, M.A. Associations between Race, APOE Genotype, Cognition, and Mortality among Urban Middle-Aged White and African American Adults. Sci. Rep. 2021, 11, 19849. [Google Scholar] [CrossRef]
- Schönknecht, Y.B.; Crommen, S.; Stoffel-Wagner, B.; Coenen, M.; Fimmers, R.; Stehle, P.; Ramirez, A.; Egert, S. APOE Ɛ4 Is Associated with Postprandial Inflammation in Older Adults with Metabolic Syndrome Traits. Nutrients 2021, 13, 3924. [Google Scholar] [CrossRef]
- Jofre-Monseny, L.; Minihane, A.-M.; Rimbach, G. Impact of ApoE Genotype on Oxidative Stress, Inflammation and Disease Risk. Mol. Nutr. Food Res. 2008, 52, 131–145. [Google Scholar] [CrossRef]
- Hasel, P.; Liddelow, S.A. Isoform-Dependent APOE Secretion Modulates Neuroinflammation. Nat. Rev. Neurol. 2021, 17, 265–266. [Google Scholar] [CrossRef]
- Chai, J.T.; Ruparelia, N.; Goel, A.; Kyriakou, T.; Biasiolli, L.; Edgar, L.; Handa, A.; Farrall, M.; Watkins, H.; Choudhury, R.P. Differential Gene Expression in Macrophages From Human Atherosclerotic Plaques Shows Convergence on Pathways Implicated by Genome-Wide Association Study Risk Variants. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2718–2730. [Google Scholar] [CrossRef]
- Lawler, P.R.; Akinkuolie, A.O.; Chandler, P.D.; Moorthy, M.V.; Vandenburgh, M.J.; Schaumberg, D.A.; Lee, I.-M.; Glynn, R.J.; Ridker, P.M.; Buring, J.E.; et al. Circulating N-Linked Glycoprotein Acetyls and Longitudinal Mortality Risk. Circ. Res. 2016, 118, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, S.T.; Charakida, M.; Georgiopoulos, G.; Roberts, J.D.; Stafford, S.J.; Park, C.; Mykkänen, J.; Kähönen, M.; Lehtimäki, T.; Ala-Korpela, M.; et al. Glycoprotein Acetyls: A Novel Inflammatory Biomarker of Early Cardiovascular Risk in the Young. J. Am. Heart Assoc. 2022, 11, e024380. [Google Scholar] [CrossRef] [PubMed]
- Lahoz, C.; Schaefer, E.J.; Cupples, L.A.; Wilson, P.W.; Levy, D.; Osgood, D.; Parpos, S.; Pedro-Botet, J.; Daly, J.A.; Ordovas, J.M. Apolipoprotein E Genotype and Cardiovascular Disease in the Framingham Heart Study. Atherosclerosis 2001, 154, 529–537. [Google Scholar] [CrossRef]
- Dankner, R.; Ben Avraham, S.; Harats, D.; Chetrit, A. ApoE Genotype, Lipid Profile, Exercise, and the Associations With Cardiovascular Morbidity and 18-Year Mortality. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Winkler, K.; Hoffmann, M.M.; Krane, V.; März, W.; Drechsler, C.; Wanner, C. Apolipoprotein E Genotype Predicts Cardiovascular Endpoints in Dialysis Patients with Type 2 Diabetes Mellitus. Atherosclerosis 2010, 208, 197–202. [Google Scholar] [CrossRef]
- Sofat, R.; Cooper, J.A.; Kumari, M.; Casas, J.P.; Mitchell, J.P.; Acharya, J.; Thom, S.; Hughes, A.D.; Humphries, S.E.; Hingorani, A.D. Circulating Apolipoprotein E Concentration and Cardiovascular Disease Risk: Meta-Analysis of Results from Three Studies. PLoS Med. 2016, 13, e1002146. [Google Scholar] [CrossRef] [Green Version]
- Corsetti, J.P.; Bakker, S.J.L.; Sparks, C.E.; Dullaart, R.P.F. Apolipoprotein A-II Influences Apolipoprotein E-Linked Cardiovascular Disease Risk in Women with High Levels of HDL Cholesterol and C-Reactive Protein. PLoS ONE 2012, 7, e39110. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lee, D.H.; Hu, J.; Tabung, F.K.; Li, Y.; Bhupathiraju, S.N.; Rimm, E.B.; Rexrode, K.M.; Manson, J.E.; Willett, W.C.; et al. Dietary Inflammatory Potential and Risk of Cardiovascular Disease Among Men and Women in the U.S. J. Am. Coll. Cardiol. 2020, 76, 2181–2193. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Yin, X.; Larson, M.G.; Yamamoto, J.F.; Fontes, J.D.; Kathiresan, S.; Rong, J.; Levy, D.; Keaney, J.F.; Wang, T.J.; et al. Multiple Inflammatory Biomarkers in Relation to Cardiovascular Events and Mortality in the Community. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1728–1733. [Google Scholar] [CrossRef] [Green Version]
- Woodward, M.; Welsh, P.; Rumley, A.; Tunstall-Pedoe, H.; Lowe, G.D.O. Do Inflammatory Biomarkers Add to the Discrimination of Cardiovascular Disease after Allowing for Social Deprivation? Results from a 10-Year Cohort Study in Glasgow, Scotland. Eur. Heart J. 2010, 31, 2669–2675. [Google Scholar] [CrossRef]
- Ridker, P.M. Clinician’s Guide to Reducing Inflammation to Reduce Atherothrombotic Risk: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2018, 72, 3320–3331. [Google Scholar] [CrossRef] [PubMed]
- Kofler, B.M.; Miles, E.A.; Curtis, P.; Armah, C.K.; Tricon, S.; Grew, J.; Napper, F.L.; Farrell, L.; Lietz, G.; Packard, C.J.; et al. Apolipoprotein E Genotype and the Cardiovascular Disease Risk Phenotype: Impact of Sex and Adiposity (the FINGEN Study). Atherosclerosis 2012, 221, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Peña, E.; Arderiu, G.; Padró, T.; Slevin, M.; Vilahur, G.; Chiva-Blanch, G. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front. Immunol. 2018, 9, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, L.A.; Carlson, C.S.; Hindorff, L.A.; Lange, E.M.; Walston, J.; Durda, J.P.; Cushman, M.; Bis, J.C.; Zeng, D.; Lin, D.; et al. Association of Polymorphisms in the CRP Gene with Circulating C-Reactive Protein Levels and Cardiovascular Events. JAMA 2006, 296, 2703–2711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schick, U.M.; Auer, P.L.; Bis, J.C.; Lin, H.; Wei, P.; Pankratz, N.; Lange, L.A.; Brody, J.; Stitziel, N.O.; Kim, D.S.; et al. Association of Exome Sequences with Plasma C-Reactive Protein Levels in >9000 Participants. Hum. Mol. Genet. 2015, 24, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Hubacek, J.A.; Peasey, A.; Pikhart, H.; Stavek, P.; Kubinova, R.; Marmot, M.; Bobak, M. APOE Polymorphism and Its Effect on Plasma C-Reactive Protein Levels in a Large General Population Sample. Hum. Immunol. 2010, 71, 304–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tziakas, D.N.; Chalikias, G.K.; Antonoglou, C.O.; Veletza, S.; Tentes, I.K.; Kortsaris, A.X.; Hatseras, D.I.; Kaski, J.C. Apolipoprotein E Genotype and Circulating Interleukin-10 Levels in Patients with Stable and Unstable Coronary Artery Disease. J. Am. Coll. Cardiol. 2006, 48, 2471–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gungor, Z.; Anuurad, E.; Enkhmaa, B.; Zhang, W.; Kim, K.; Berglund, L. Apo E4 and Lipoprotein-Associated Phospholipase A2 Synergistically Increase Cardiovascular Risk. Atherosclerosis 2012, 223, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Akinkuolie, A.O.; Pradhan, A.D.; Buring, J.E.; Ridker, P.M.; Mora, S. Novel Protein Glycan Side-Chain Biomarker and Risk of Incident Type 2 Diabetes Mellitus. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1544–1550. [Google Scholar] [CrossRef] [Green Version]
- Kinlay, S. Low-Density Lipoprotein-Dependent and -Independent Effects of Cholesterol-Lowering Therapies on C-Reactive Protein: A Meta-Analysis. J. Am. Coll. Cardiol. 2007, 49, 2003–2009. [Google Scholar] [CrossRef]
- Casasnovas, J.A.; Alcaide, V.; Civeira, F.; Guallar, E.; Ibañez, B.; Borreguero, J.J.; Laclaustra, M.; León, M.; Peñalvo, J.L.; Ordovás, J.M.; et al. Aragon Workers’ Health Study—Design and Cohort Description. BMC Cardiovasc. Disord. 2012, 12, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartens, W.; Rader, D.J.; Talley, G.; Brewer, H.B. Decreased Plasma Levels of Lipoprotein(a) in Patients with Hypertriglyceridemia. Atherosclerosis 1994, 108, 147–149. [Google Scholar] [CrossRef]
- Würtz, P.; Kangas, A.J.; Soininen, P.; Lawlor, D.A.; Davey Smith, G.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies. Am. J. Epidemiol. 2017, 186, 1084–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soininen, P.; Kangas, A.J.; Würtz, P.; Tukiainen, T.; Tynkkynen, T.; Laatikainen, R.; Järvelin, M.-R.; Kähönen, M.; Lehtimäki, T.; Viikari, J.; et al. High-Throughput Serum NMR Metabonomics for Cost-Effective Holistic Studies on Systemic Metabolism. Analyst 2009, 134, 1781–1785. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R development core team. RA Lang Environ. Stat. Comput. 2013, 55, 275–286. [Google Scholar]
HUMS (N = 3705) | AWHS (N = 4159) | ES (95% CI) | p | ||
---|---|---|---|---|---|
Age, years | 47.0 ± 14.5 | 48.2 ± 8.70 | 1.21 (0.69–1.73) | <0.001 | |
Men, n (%) | 1875 (49.4%) | 3921 (94.3%) | NA | <0.001 | |
BMI, kg/m2 | 26.4 ± 4.38 | 27.6 ± 3.81 | 1.19 (1.01–1.37) | <0.001 | |
TC, mg/dL | 281 ± 72.8 | 213 ± 37.8 | −67.6 (−70.1–(−65.1)) | <0.001 | |
HDL-cholesterol, mg/dL | 55.2 ± 17.6 | 53.1 ± 11.7 | −2.16 (−2.81–(−1.50)) | <0.001 | |
LDL-cholesterol, mg/dL | 194 ± 66.1 | 128 ± 42.5 | 66.0 (85.0–50.2) | <0.001 | |
TG, mg/dL | 132 (86.0–226) | 119 (83.0–177) | 13 | <0.001 | |
Apolipoprotein A1, mg/dL | 154 ± 48.3 | 142 ± 22.3 | −12.3 (−14.0–(−10.7)) | <0.001 | |
Apolipoprotein B, mg/dL | 144 ± 46.5 | 106 ± 25.3 | −37.9 (−39.5 –(−36.3)) | <0.001 | |
Lipoprotein(a), mg/dL | 24.6 (8.90–64.1) | 18.8 (9.00–44.0) | 5.80 | <0.001 | |
Glucose, mg/dL | 90.0 (83.0–99.0) | 96.0 (88.0–104) | −6.00 | <0.001 | |
Hb1Ac, % | 5.40 (5.20–5.70) | 5.40 (5.20–5.60) | 0.00 | 0.540 | |
Hypertension, n (%) | 716 (19.4%) | 735 (17.8%) | NA | 0.059 | |
Diabetes, n (%) | 191 (5.17%) | 128 (3.11%) | NA | <0.001 | |
APOE Genotype, n (%) | E2/E2 | 27 (0.73%) | 17 (0.41%) | NA | <0.001 |
E2/E3 | 277 (7.47%) | 446 (10.7%) | |||
E3/E3 | 2477 (66.9%) | 2980 (71.6%) | |||
E3/E4 | 847 (22.9%) | 684 (16.4%) | |||
E4/E4 | 77 (2.08%) | 32 (0.77%) |
HUMS | ALL (N = 3705) | E2/E2 (N = 27) | E2/E3 (N = 277) | E3/E3 (N = 2477) | E3/E4 (N = 847) | E4/E4 (N = 77) | p |
---|---|---|---|---|---|---|---|
Age, years | 47.0 ± 14.5 | 46.7 ± 13.3 | 49.4 ± 14.1 | 47.1 ± 14.6 | 46.7 ± 14.3 | 40.7 ± 14.3 | <0.001 |
Men, n (%) | 1875 (49.4%) | 20 (74.1%) | 168 (60.6%) | 1224 (49.4%) | 422 (49.8%) | 41 (53.2%) | 0.046 |
BMI, kg/m2 | 26.4 ± 4.38 | 27.7 ± 3.36 | 27.7 ± 4.03 | 26.3 ± 4.30 | 26.3 ± 4.64 | 26.5 ± 4.89 | <0.001 |
TC, mg/dL | 281 ± 72.8 | 361 ± 149 | 271 ± 95.3 | 281 ± 70.8 | 282 ± 66.5 | 280 ± 54.1 | 0.961 |
HDL-cholesterol, mg/dL | 55.2 ± 17.6 | 53.4 ± 15.4 | 49.8 ± 15.6 | 55.8 ± 17.7 | 55.1 ± 17.5 | 54.9 ± 18.6 | 0.030 |
LDL-cholesterol, mg/dL | 194 ± 66.1 | 153 ± 111 | 175 ± 70.5 | 195 ± 67.6 | 198 ± 59.8 | 197 ± 50.6 | <0.001 |
TG, mg/dL | 132 (86.0–226) | 454 (298–705) | 174 (103–311) | 127 (84.0–215) | 133 (89.0–227) | 126 (100–222) | <0.001 |
Apolipoprotein A1, mg/dL | 154 ± 48.3 | 151 ± 40.5 | 148 ± 30.5 | 155 ± 53.9 | 155 ± 34.3 | 151 ± 39.3 | 0.361 |
Apolipoprotein B, mg/dL | 144 ± 46.5 | 106 ± 45.3 | 131 ± 40.7 | 144 ± 48.8 | 148 ± 40.2 | 152 ± 38.0 | <0.001 |
Lipoprotein(a), mg/dL | 24.6 (8.90–64.1) | 19.4 (4.63–42.4) | 21.7 (7.93–60.0) | 25.4 (9.38–64.6) | 23.9 (8.21–64.9) | 17.0 (5.69–46.8) | <0.001 |
Glucose, mg/dL | 90.0 (83.0–99.0) | 87.0 (82.0–106) | 91.0 (82.0–101) | 90.0 (83.0–99.0) | 90.0 (83.0–97.0) | 88.0 (81.0–96.3) | 0.538 |
Hb1Ac, % | 5.40 (5.20–5.70) | 5.50 (5.15–5.95) | 5.50 (5.20–5.80) | 5.40 (5.20–5.70) | 5.40 (5.20–5.70) | 5.40 (5.10–5.60) | 0.162 |
Hypertension, n (%) | 716 (19.4%) | 7 (25.9%) | 63 (22.9%) | 483 (19.6%) | 150 (17.8%) | 13 (16.9%) | 0.323 |
Diabetes, n (%) | 191 (5.17%) | 3 (11.1%) | 20 (7.28%) | 121 (4.90%) | 44 (5.21%) | 3 (3.90%) | 0.281 |
AHWS | ALL (N = 4159) | E2/E2 (N = 17) | E2/E3 (N = 446) | E3/E3 (N = 2980) | E3/E4 (N = 684) | E4/E4 (N = 32) | p |
Age, years | 48.2 ± 8.70 | 47.9 ± 8.12 | 47.7 ± 9.26 | 48.4 ± 8.56 | 48.0 ±9.00 | 50.2 ± 7.58 | 0.428 |
Men, n (%) | 3921 (94.3%) | 17 (100%) | 420 (94.2%) | 2807 (94.2%) | 645 (94.3%) | 32 (100%) | 0.554 |
BMI, kg/m2 | 27.6 ± 3.81 | 29.3 ±4.17 | 27.6 ± 3.83 | 27.5 ± 3.82 | 27.6 ± 3.78 | 27.8 ± 3.53 | 0.775 |
CT, mg/dL | 213 ± 37.8 | 182 ± 33.2 | 202 ± 36.9 | 213 ± 37.4 | 219 ± 38.2 | 221 ± 41.7 | <0.001 |
HDL-cholesterol, mg/dL | 53.1 ± 11.7 | 49.5 ± 16.5 | 53.3 ± 11.4 | 53.3 ± 11.7 | 52.1 ± 11.6 | 49.2 ± 13.9 | 0.028 |
LDL-cholesterol, mg/dL | 128 ± 42.5 | 123 ± 43.6 | 125 ± 43.9 | 128 ± 42.2 | 128 ± 42.8 | 122 ± 47.9 | 0.450 |
TG, mg/dL | 119 (83.0–177) | 182 (108–281) | 135 (89.0–198) | 117 (82.0–172) | 119 (87.0–180) | 150 (113–209) | <0.001 |
Apolipoprotein A1, mg/dL | 142 ± 22.3 | 149 ± 26.4 | 144 ± 20.9 | 143 ± 22.6 | 140 ±21.7 | 141 ± 19.8 | <0.001 |
Apolipoprotein B, mg/dL | 106 ± 25.3 | 62.4 ± 20.2 | 94.5 ± 22.8 | 106 ±25.1 | 111 ± 24.7 | 115 ± 25.7 | <0.001 |
Lipoprotein(a), mg/dL | 18.8 (9.00–44.0) | 8.00 (6.00–18.0) | 17.0 (7.58–40.7) | 18.5 (9.00–43.0) | 20.0 (9.00–47.0) | 25.0 (10.0–51.8) | 0.036 |
Glucose, mg/dL | 96.0 (88.0–104) | 94.0 (89.0–101) | 96.0 (88.0–104) | 96.0 (88.0–104) | 96.0 (88.0–104) | 97.5 (88.8–114) | 0.848 |
Hb1Ac, % | 5.40 (5.20–5.60) | 5.20 (4.80–5.50) | 5.40 (5.20–5.60) | 5.40 (5.20–5.60) | 5.40 (5.20–5.60) | 5.40 (5.25–5.85) | 0.123 |
Hypertension, n (%) | 735 (17.8%) | 4 (23.5%) | 68 (15.6%) | 531 (18.0%) | 123 (18.1%) | 9 (28.1%) | 0.360 |
Diabetes, n (%) | 128 (3.11%) | 1 (5.89%) | 14 (3.20%) | 89 (3.01%) | 21 (3.91%) | 3 (9.38%) | 0.319 |
HUMS | E2/E2 (N = 27) | E2/E3 (N = 277) | E3/E3 (N = 2477) | E3/E4 (N = 847) | E4/E4 (N = 77) | p |
---|---|---|---|---|---|---|
CRP, mg/L | 2.09 ± 1.53 | 2.51 ± 1.02 | 2.32 ± 2.10 | 1.89 ± 1.89 | 1.64 ± 1.55 | <0.001 |
AHWS | E2/E2 (N = 17) | E2/E3 (N = 446) | E3/E3 (N = 2980) | E3/E4 (N = 684) | E4/E4 (N = 32) | p |
CRP, mg/L | 2.51 ± 1.66 | 2.72 ± 2.07 | 2.63 ± 1.99 | 2.32 ± 1.93 | 1.43 ± 1.13 | <0.001 |
E2 Allele 1 N = 132 | E3 Allele 2 N = 813 | E4 Allele 3 N = 183 | p | |
---|---|---|---|---|
LDL size (nm) | 23.56 ± 0.084 | 23.45 ± 0.075 | 23.53 ± 0.069 | 0.353 |
Cholesterol in LDL | 1.548 ± 0.472 | 1.756 ± 0.486 | 1.843 ± 0.474 | 0.004 |
Triglycerides in LDL | 0.185 ± 0.056 | 0.187 ± 0.052 | 0.192 ± 0.051 | 0.359 |
Small LDL particle (mol/L) | 1.635 × 10−7 ± 4.212 × 10−8 | 1.799 × 10−7 ± 4.364 × 10−8 | 1.881 × 10−7 ± 4.134 × 10−8 | 0.006 |
Cholesterol in small LDL | 0.280 ± 0.092 | 0.322 ± 0.092 | 0.338 ± 0.089 | 0.003 |
Triglycerides in small LDL | 0.033 ± 0.0126 | 0.032 ± 0.010 | 0.034 ± 0.011 | 0.435 |
Medium LDL particle (mol/L) | 1.387 × 10−7 ± 3.822 × 10−8 | 1.545 × 10−7 ± 3.974 × 10−8 | 1.620 × 10−7 ± 3.790 × 10−8 | 0.004 |
Cholesterol in medium LDL | 0.456 ± 0.151 | 0.525 ± 0.154 | 0.553 ± 0.149 | 0.003 |
Triglycerides in medium LDL | 0.050 ± 0.016 | 0.051 ± 0.014 | 0.052 ± 0.014 | 0.162 |
Large LDL particle (mol/L) | 1.724 × 10−7 ± 4.326 × 10−8 | 1.893 × 10−7 ± 4.576 × 10−8 | 1.973 × 10−7 | 0.008 |
Cholesterol in large LDL | 0.810 ± 0.233 | 0.908 ± 0.242 | 0.952 ± 0.237 | 0.005 |
Triglycerides in large LDL | 0.101 ± 0.029 | 0.103 ± 0.028 | 0.106 ± 0.027 | 0.299 |
E2 Allele 1 N = 132 | E3 Allele2 N = 813 | E4 Allele 3 N = 183 | p | |
---|---|---|---|---|
CRP, mg/L | 4.34 ± 5.59 | 3.66 ± 4.38 | 2.61 ± 2.91 | 0.009 |
Glycoprotein acetyls, mmol/L | 1.52 ± 0.386 | 1.45 ± 0.287 | 1.48 ± 0.302 | 0.737 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civeira-Marín, M.; Cenarro, A.; Marco-Benedí, V.; Bea, A.M.; Mateo-Gallego, R.; Moreno-Franco, B.; Ordovás, J.M.; Laclaustra, M.; Civeira, F.; Lamiquiz-Moneo, I. APOE Genotypes Modulate Inflammation Independently of Their Effect on Lipid Metabolism. Int. J. Mol. Sci. 2022, 23, 12947. https://doi.org/10.3390/ijms232112947
Civeira-Marín M, Cenarro A, Marco-Benedí V, Bea AM, Mateo-Gallego R, Moreno-Franco B, Ordovás JM, Laclaustra M, Civeira F, Lamiquiz-Moneo I. APOE Genotypes Modulate Inflammation Independently of Their Effect on Lipid Metabolism. International Journal of Molecular Sciences. 2022; 23(21):12947. https://doi.org/10.3390/ijms232112947
Chicago/Turabian StyleCiveira-Marín, María, Ana Cenarro, Victoria Marco-Benedí, Ana M. Bea, Rocío Mateo-Gallego, Belén Moreno-Franco, José M. Ordovás, Martín Laclaustra, Fernando Civeira, and Itziar Lamiquiz-Moneo. 2022. "APOE Genotypes Modulate Inflammation Independently of Their Effect on Lipid Metabolism" International Journal of Molecular Sciences 23, no. 21: 12947. https://doi.org/10.3390/ijms232112947
APA StyleCiveira-Marín, M., Cenarro, A., Marco-Benedí, V., Bea, A. M., Mateo-Gallego, R., Moreno-Franco, B., Ordovás, J. M., Laclaustra, M., Civeira, F., & Lamiquiz-Moneo, I. (2022). APOE Genotypes Modulate Inflammation Independently of Their Effect on Lipid Metabolism. International Journal of Molecular Sciences, 23(21), 12947. https://doi.org/10.3390/ijms232112947