Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection, Extraction, and Analyses
2.4. Bioinformatic Analyses
- (1)
- To find out whether muscle fibre proteins are encoded we performed a String analysis (https://string-db.org/; RRID:SCR_005223 [37]).
- (2)
- To identify common functions and properties of muscle fibre genes, we performed a ToppGene enrichment analysis (https://toppgene.cchmc.org/ [38]).
- (3)
- To determine whether the skeletal muscle distribution and MHC expression genes are expressed specifically in skeletal muscle or elsewhere, we retrieved expression figures from the Genotype-Tissue Expression (GTEx; RRID:SCR_001618 [39]).
- (4)
- To identify associations between muscle fibre genes and human phenotypes we searched the Genome-wide association studies (GWAS) catalogue (https://www.ebi.ac.uk/gwas/; RRID:SCR_012745).
- (5)
- To find out whether muscle fibre genes change their expression after acute endurance exercise, resistance exercise, or in response to activity, we used the Meta-analysis of skeletal muscle response to exercise (MetaMEx) gene expression database to determine expression changes in muscle biopsies after acute endurance exercise, acute resistance exercise, and activity in health subjects (https://www.metamex.eu [40]). We also investigated whether muscle fibre proteins become phosphorylated or dephosphorylated after exercise. For this, we retrieved supplementary data from two phospho-proteome studies. Study 1 investigated protein phosphorylation changes after a single bout of high intensity training in human muscles [41]. Study 2 investigated protein phosphorylation in mouse skeletal muscle after electrically evoked maximal-intensity contractions [42].
3. Results and Discussion
3.1. Results
Genes Whose Gain or Loss of Function Significantly Changes Muscle Fibre Distribution in Mice
- (1)
- Do muscle fibre proteins interact, and do muscle fibre genes share common functional features?
- (2)
- In what human tissues are muscle fibre genes expressed?
- (3)
- Are muscle fibre genes regulated in response to exercise or inactivity?
- (4)
- What is known about sequence variability of the muscle fibre genes in human exome?
3.2. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Actn3 | Actinin alpha 3 |
Akirin1 | Akirin 1 |
Bdkrb2 | Bradykinin receptor 2 |
Bdnf | Brain derived neurotrophic factor |
Brd4 | Bromodomain containing 4 |
Camk4 | Calcium-/calmodulin-dependent protein kinase IV |
Ccnd3 | Cyclin D3 |
Cpt1a | Carnitine palmitoyltransferase 1A |
EDL | Extensor digitorum longus |
Epas1 | Endothelial PAS domain protein 1 |
Esrrg | Oestrogen related receptor gamma |
Foxj3 | Forkhead box J3 |
Foxo1 | Forkhead box O1 |
GTEx | Genotype-Tissue Expression |
GWAS | Genome Wide Association Studies |
Il15 | Interleukin 15 |
IMPC | International Mouse Phenotyping Consortium |
lincRNAs | long intergenic non-coding |
Mapk12 | Mitogen-activated protein kinase 12 |
Med1 | Mediator complex subunit 1 |
Mef2C | Myocyte enhancer factor 2C |
MeSH | Medical Subjects Heading |
MetaMEx | Meta-analysis of Skeletal Muscle Response to Exercise |
MHC | Myosin Heavy Chain |
Mstn | Myostatin |
Myh1 | Myosin heavy chain 1; encodes myosin 2X protein |
Myh2 | Myosin heavy chain 2; encodes myosin 2A protein |
Myh4 | Myosin heavy chain 4; encodes myosin 2AB protein |
Myh7 | Myosin heavy chain 7; encodes myosin type 1 protein |
Myod1 | Myogenic differentiation 1 |
NCBI | National Center for Biotechnology Information |
Ncor1 | Nuclear receptor corepressor 1 |
Nfatc1 | Nuclear factor of activated T cells 1 |
Nfatc2 | Nuclear factor of activated T cells 2 |
Nol3 | Nuclear protein 3 |
PICO | Population/Problem, Intervention, Comparison, Outcome |
PMID | PubMed identificatory |
Ppargc1a | Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha |
Ppargc1b | Peroxisome proliferative activated receptor, gamma, coactivator 1beta |
Ppara | Peroxisome proliferator activated receptor alpha |
PRISMA | Preferred Reporting Items for Systematic Review and Meta-Analysis Guideline |
Sirt1 | Sirtuin 1 |
Sirt3 | Sirtuin 3 |
Sox1 | SRY (sex determining region Y)-box 1 |
Thra | Thyroid hormone receptor alpha |
Thrb | Thyroid hormone receptor beta |
TPM | Transcript per million |
Trib3 | Tribbles pseudokinase 3 |
Uniprot | Universal Protein Resources |
Vgll2 | Vestigial like family member 2 |
References
- Heron, M.I.; Richmond, F.J. In-series fiber architecture in long human muscles. J. Morphol. 1993, 216, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Cristea, A.; Qaisar, R.; Edlund, P.K.; Lindblad, J.; Bengtsson, E.; Larsson, L. Effects of aging and gender on the spatial organization of nuclei in single human skeletal muscle cells. Aging Cell 2010, 9, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Lexell, J.; Henriksson-Larsen, K.; Winblad, B.; Sjostrom, M. Distribution of different fiber types in human skeletal muscles: Effects of aging studied in whole muscle cross sections. Muscle Nerve 1983, 6, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S. Fibre types in skeletal muscle: A personal account. Acta Physiol. 2010, 199, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Barany, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 1967, 50, 197–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowry, C.V.; Kimmey, J.S.; Felder, S.; Chi, M.M.; Kaiser, K.K.; Passonneau, P.N.; Kirk, K.A.; Lowry, O.H. Enzyme patterns in single human muscle fibers. J. Biol. Chem. 1978, 253, 8269–8277. [Google Scholar] [CrossRef]
- Brooke, M.H.; Kaiser, K.K. Three “myosin adenosine triphosphatase” systems: The nature of their pH lability and sulfhydryl dependence. J. Histochem. Cytochem. 1970, 18, 670–672. [Google Scholar] [CrossRef]
- Schiaffino, S. Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. FEBS J. 2018, 285, 3688–3694. [Google Scholar] [CrossRef]
- LaFramboise, W.A.; Daood, M.J.; Guthrie, R.D.; Moretti, P.; Schiaffino, S.; Ontell, M. Electrophoretic separation and immunological identification of type 2X myosin heavy chain in rat skeletal muscle. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 1990, 1035, 109–112. [Google Scholar] [CrossRef]
- Lang, F.; Khaghani, S.; Türk, C.; Wiederstein, J.L.; Hölper, S.; Piller, T.; Nogara, L.; Blaauw, B.; Günther, S.; Müller, S.; et al. Single Muscle Fiber Proteomics Reveals Distinct Protein Changes in Slow and Fast Fibers during Muscle Atrophy. J. Proteome Res. 2018, 17, 3333–3347. [Google Scholar] [CrossRef]
- Murgia, M.; Nogara, L.; Baraldo, M.; Reggiani, C.; Mann, M.; Schiaffino, S. Protein profile of fiber types in human skeletal muscle: A single-fiber proteomics study. Skelet. Muscle 2021, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Smerdu, V.; Karsch-Mizrachi, I.; Campione, M.; Leinwand, L.; Schiaffino, S. Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am. J. Physiol. 1994, 267 Pt 1, C1723–C1728. [Google Scholar] [CrossRef]
- Pette, D.; Staron, R.S. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 2000, 50, 500–509. [Google Scholar] [CrossRef]
- Schiaffino, S.; Rossi, A.C.; Smerdu, V.; Leinwand, L.A.; Reggiani, C. Developmental myosins: Expression patterns and functional significance. Skelet. Muscle 2015, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.A.; Polgar, J.; Weightman, D.; Appleton, D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 1973, 18, 111–129. [Google Scholar] [CrossRef]
- Simoneau, J.A.; Bouchard, C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am. J. Physiol. 1989, 257 Pt 1, E567–E572. [Google Scholar] [CrossRef]
- Costill, D.L.; Daniels, J.; Evans, W.; Fink, W.; Krahenbuhl, G.; Saltin, B. Skeletal muscle enzymes and fiber composition in male and female track athletes. J. Appl. Physiol. 1976, 40, 149–154. [Google Scholar] [CrossRef]
- Costill, D.L.; Fink, W.J.; Pollock, M.L. Muscle fiber composition and enzyme activities of elite distance runners. Med. Sci. Sports 1976, 8, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F.; Bell, S.; Costill, D.L.; Fink, W.J. Skeletal muscle fiber characteristics of world class shot-putters. Res. Q. 1978, 49, 278–284. [Google Scholar] [CrossRef]
- Foster, C.; Costill, D.L.; Daniels, J.T.; Fink, W.J. Skeletal muscle enzyme activity, fiber composition and VO2 max in relation to distance running performance. Eur. J. Appl. Physiol. Occup. Physiol. 1978, 39, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, J.A.; Bouchard, C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995, 9, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, P.D.; Armstrong, R.B.; Saltin, B.; Saubert, C.W.; Sembrowich, W.L.; Shepherd, R.E. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J. Appl. Physiol. 1973, 34, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Rico-Sanz, J.; Rankinen, T.; Joanisse, D.R.; Leon, A.S.; Skinner, J.S.; Wilmore, J.H.; Rao, D.C.; Bouchard, C. Familial resemblance for muscle phenotypes in the HERITAGE Family Study. Med. Sci. Sports Exerc. 2003, 35, 1360–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Vrbova, G. The effect of motoneurone activity on the speed of contraction of striated muscle. J. Physiol. 1963, 169, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Buller, A.J.; Eccles, J.C.; Eccles, R.M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol. 1960, 150, 417–439. [Google Scholar] [CrossRef] [PubMed]
- Pette, D.; Vrbova, G. What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 1999, 22, 666–677. [Google Scholar] [CrossRef]
- Windisch, A.; Gundersen, K.; Szabolcs, M.J.; Gruber, H.; Lomo, T. Fast to slow transformation of denervated and electrically stimulated rat muscle. J. Physiol. 1998, 510 Pt 1, 623–632. [Google Scholar] [CrossRef]
- Chin, E.R.; Olson, E.N.; Richardson, J.A.; Yang, Q.; Humphries, C.; Shelton, J.M.; Wu, H.; Zhu, W.; Bassel-Duby, R.; Williams, R.S. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 1998, 12, 2499–2509. [Google Scholar] [CrossRef] [Green Version]
- Serrano, A.L.; Murgia, M.; Pallafacchina, G.; Calabria, E.; Coniglio, P.; Lomo, T.; Schiaffino, S. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc. Natl. Acad. Sci. USA 2001, 98, 13108–13113. [Google Scholar] [CrossRef]
- Murgia, M.; Serrano, A.L.; Calabria, E.; Pallafacchina, G.; Lomo, T.; Schiaffino, S. Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat. Cell Biol. 2000, 2, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.; et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Birling, M.C.; Yoshiki, A.; Adams, D.J.; Ayabe, S.; Beaudet, A.L.; Bottomley, J.; Bradley, A.; Brown, S.D.M.; Bürger, A.; Bushell, W.; et al. A resource of targeted mutant mouse lines for 5061 genes. Nat. Genet. 2021, 53, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37, W305–W311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GTExConsortium; Ardlie, K.G.; Deluca, D.S.; Segre, A.V.; Sullivan, T.J.; Young, T.R.; Gelfand, E.T.; Trowbridge, C.A.; Maller, J.B.; Tukiainen, T.; et al. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015, 348, 648–660. [Google Scholar]
- Pillon, N.J.; Gabriel, B.M.; Dollet, L.; Smith, J.A.B.; Sardón Puig, L.; Botella, J.; Bishop, D.J.; Krook, A.; Zierath, J.R. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 2020, 11, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, N.J.; Parker, B.L.; Chaudhuri, R.; Fisher-Wellman, K.H.; Kleinert, M.; Humphrey, S.J.; Yang, P.; Holliday, M.; Trefely, S.; Fazakerley, D.J.; et al. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metab. 2015, 22, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Potts, G.K.; McNally, R.M.; Blanco, R.; You, J.-S.; Hebert, A.S.; Westphall, M.S.; Coon, J.J.; Hornberger, T.A. A map of the phosphoproteomic alterations that occur after a bout of maximal-intensity contractions. J. Physiol. 2017, 595, 5209–5226. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.V.; Sangiah, U.; Mary, K.A.; Akira, S.; Mohanty, A. Role of Akirin1 in the regulation of skeletal muscle fiber-type switch. J. Cell. Biochem. 2019, 120, 11284–11304. [Google Scholar] [CrossRef]
- Reis, F.C.G.; Haro, A.S.; Bacurau, A.V.N.; Hirabara, S.M.; Wasinski, F.; Ormanji, M.S.; Moreira, J.B.N.; Kiyomoto, B.H.; Bertoncini, C.R.A.; Brum, P.C.; et al. Deletion of Kinin B2 Receptor Alters Muscle Metabolism and Exercise Performance. PLoS ONE 2015, 10, e0134844. [Google Scholar] [CrossRef] [Green Version]
- Delezie, J.; Weihrauch, M.; Maier, G.; Tejero, R.; Ham, D.J.; Gill, J.F.; Karrer-Cardel, B.; Rüegg, M.A.; Tabares, L.; Handschin, C. BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proc. Natl. Acad. Sci. USA 2019, 116, 16111–16120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akimoto, T.; Ribar, T.J.; Williams, R.S.; Yan, Z. Skeletal muscle adaptation in response to voluntary running in Ca2+/calmodulin-dependent protein kinase IV-deficient mice. Am. J. Physiology. Cell Physiol. 2004, 287, C1311–C1319. [Google Scholar] [CrossRef] [Green Version]
- Giannattasio, S.; Giacovazzo, G.; Bonato, A.; Caruso, C.; Luvisetto, S.; Coccurello, R.; Caruso, M. Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism. Sci. Rep. 2018, 8, 12792. [Google Scholar] [CrossRef] [Green Version]
- Hénique, C.; Mansouri, A.; Vavrova, E.; Lenoir, V.; Ferry, A.; Esnous, C.; Ramond, E.; Girard, J.; Bouillaud, F.; Prip-Buus, C.; et al. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype. FASEBJ. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015, 29, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.S.; Shi, X.; Voelker, K.A.; Grange, R.W.; Garcia, J.A.; Hammer, R.E.; Garry, D.J. Foxj3 transcriptionally activates Mef2c and regulates adult skeletal muscle fiber type identity. Dev. Biol. 2010, 337, 396–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamei, Y.; Miura, S.; Suzuki, M.; Kai, Y.; Mizukami, J.; Taniguchi, T.; Mochida, K.; Hata, T.; Matsuda, J.; Aburatani, H.; et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 2004, 279, 41114–41123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, W.H.; Tidball, J.G.; Wang, Y. p38γ activity is required for maintenance of slow skeletal muscle size. Muscle Nerve 2012, 45, 266–273. [Google Scholar] [CrossRef]
- Hennebry, A.; Berry, C.; Siriett, V.; O’Callaghan, P.; Chau, L.; Watson, T.; Sharma, M.; Kambadur, R. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am. J. Physiol. Cell Physiol. 2009, 296, C525–C534. [Google Scholar] [CrossRef]
- Macharia, R.; Otto, A.; Valasek, P.; Patel, K. Neuromuscular junction morphology, fiber-type proportions, and satellite-cell proliferation rates are altered in MyoD(-/-) mice. Muscle Nerve 2010, 42, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, M.L.; Celona, B.; Black, B.L. NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity. Cell Rep. 2014, 8, 1639–1648. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.S.; Smith, I.C.; Gamu, D.; Donath, S.; Tupling, A.R.; Quadrilatero, J. Functional, morphological, and apoptotic alterations in skeletal muscle of ARC deficient mice. Apoptosis 2015, 20, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Göthe, S.; Wikström, L.; Forrest, D.; Vennström, B.; Larsson, L. Effects of thyroid hormone receptor gene disruption on myosin isoform expression in mouse skeletal muscles. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2000, 278, R1545–R1554. [Google Scholar] [CrossRef] [Green Version]
- Rasbach, K.A.; Gupta, R.K.; Ruas, J.L.; Wu, J.; Naseri, E.; Estall, J.L.; Spiegelman, B.M. PGC-1alpha regulates a HIF2alpha-dependent switch in skeletal muscle fiber types. Proc. Natl. Acad. Sci. USA 2010, 107, 21866–21871. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, S.M.; Wang, X.; Calvo, J.A.; Lindsley, L.; Zhang, Y.; Deyneko, G.; Beaulieu, V.; Gao, J.; Turner, G.; Markovits, J. Estrogen-related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity. J. Biol. Chem. 2010, 285, 22619–22629. [Google Scholar] [CrossRef] [Green Version]
- Quinn, L.S.; Anderson, B.G.; Conner, J.D.; Wolden-Hanson, T. IL-15 overexpression promotes endurance, oxidative energy metabolism, and muscle PPARdelta, SIRT1, PGC-1alpha, and PGC-1beta expression in male mice. Endocrinology 2013, 154, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Williams, E.G.; Mouchiroud, L.; Canto, C.; Fan, W.; Downes, M.; Heligon, C.; Barish, G.D.; Desvergne, B.; Evans, R.M.; et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 2011, 147, 827–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arany, Z.; Lebrasseur, N.; Morris, C.; Smith, E.; Yang, W.; Ma, Y.; Chin, S.; Spiegelman, B.M. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 2007, 5, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, K.; Abdel Khalek, W.; Ward, J.L., 3rd; Yang, H.; Chabi, B.; Wrutniak-Cabello, C.; Tong, Q. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS ONE 2014, 9, e85636. [Google Scholar] [CrossRef]
- An, D.; Lessard, S.J.; Toyoda, T.; Lee, M.-Y.; Koh, H.-J.; Qi, L.; Hirshman, M.F.; Goodyear, L.J. Overexpression of TRB3 in muscle alters muscle fiber type and improves exercise capacity in mice. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2014, 306, R925–R933. [Google Scholar] [CrossRef] [Green Version]
- Honda, M.; Hidaka, K.; Fukada, S.-I.; Sugawa, R.; Shirai, M.; Ikawa, M.; Morisaki, T. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci. Rep. 2017, 7, 7168. [Google Scholar] [CrossRef] [Green Version]
- Chalkiadaki, A.; Igarashi, M.; Nasamu, A.S.; Knezevic, J.; Guarente, L. Muscle-specific SIRT1 gain-of-function increases slow-twitch fibers and ameliorates pathophysiology in a mouse model of duchenne muscular dystrophy. PLoS Genet. 2014, 10, e1004490. [Google Scholar] [CrossRef]
- Izumo, S.; Nadal-Ginard, B.; Mahdavi, V. All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 1986, 231, 597–600. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Hnisz, D.; Abraham, B.J.; Lee, T.I.; Lau, A.; Saint-André, V.; Sigova, A.A.; Hoke, H.A.; Young, R.A. Super-enhancers in the control of cell identity and disease. Cell 2013, 155, 934–947. [Google Scholar] [CrossRef] [Green Version]
- Sabari, B.R.; Dall’Agnese, A.; Boija, A.; Klein, I.A.; Coffey, E.L.; Shrinivas, K.; Abraham, B.J.; Hannett, N.M.; Zamudio, A.V.; Manteiga, J.C.; et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018, 361, eaar3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zhang, X.; Birsoy, K.; Roeder, R.G. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 10196–10201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soibam, B. Super-lncRNAs: Identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplex formation. RNA 2017, 23, 1729–1742. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, I.; Santolini, M.; Ferry, A.; Hakim, V.; Maire, P. Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype. PLoS Genet. 2014, 10, e1004386. [Google Scholar] [CrossRef]
- Bengtsen, M.; Winje, I.M.; Eftestøl, E.; Landskron, J.; Sun, C.; Nygård, K.; Domanska, D.; Millay, D.P.; Meza-Zepeda, L.A.; Gundersen, K. Comparing the epigenetic landscape in myonuclei purified with a PCM1 antibody from a fast/glycolytic and a slow/oxidative muscle. PLoS Genet. 2021, 17, e1009907. [Google Scholar] [CrossRef] [PubMed]
- Tothova, J.; Blaauw, B.; Pallafacchina, G.; Rudolf, R.; Argentini, C.; Reggiani, C.; Schiaffino, S. NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle. J. Cell Sci. 2006, 119 Pt 8, 1604–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuelke, M.; Wagner, K.R.; Stolz, L.E.; Hubner, C.; Riebel, T.; Komen, W.; Braun, T.; Tobin, J.F.; Lee, S.J. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 2004, 350, 2682–2688. [Google Scholar] [CrossRef] [Green Version]
- MacArthur, D.G.; Seto, J.T.; Chan, S.; Quinlan, K.G.; Raftery, J.M.; Turner, N.; Nicholson, M.D.; Kee, A.J.; Hardeman, E.C.; Gunning, P.W.; et al. An Actn3 knockout mouse provides mechanistic insights into the association between {alpha}-actinin-3 deficiency and human athletic performance. Hum. Mol. Genet. 2008, 17, 1076–1086. [Google Scholar] [CrossRef] [Green Version]
- Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Casas, F.; Pessemesse, L.; Grandemange, S.; Seyer, P.; Gueguen, N.; Baris, O.; Lepourry, L.; Cabello, G.; Wrutniak-Cabello, C. Overexpression of the mitochondrial T3 receptor p43 induces a shift in skeletal muscle fiber types. PLoS ONE 2008, 3, e2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbrugge, S.A.J.; Schönfelder, M.; Becker, L.; Yaghoob Nezhad, F.; Hrabě de Angelis, M.; Wackerhage, H. Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review. Front. Physiol. 2018, 9, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nezhad, Y.F.; Verbrugge, S.A.J.; Schonfelder, M.; Becker, L.; Hrabe de Angelis, M.; Wackerhage, H. Genes Whose Gain or Loss-of-Function Increases Endurance Performance in Mice: A Systematic Literature Review. Front. Physiol. 2019, 10, 262. [Google Scholar] [CrossRef] [Green Version]
- Verbrugge, S.A.J.; Alhusen, J.A.; Kempin, S.; Pillon, N.J.; Rozman, J.; Wackerhage, H.; Kleinert, M. Genes controlling skeletal muscle glucose uptake and their regulation by endurance and resistance exercise. J. Cell. Biochem. 2022, 123, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Sarzynski, M.A.; Bouchard, C. World-class athletic performance and genetic endowment. Nat. Metab. 2020, 2, 796–798. [Google Scholar] [CrossRef] [PubMed]
Database | Search Formula |
---|---|
Medline (via PubMed) | (mice OR “mouse” OR “mouse transgenic” OR “mice transgenic” OR “mouse knockout” OR “mice knockout” OR “mouse model” OR “mice model” OR “mice overexpressed” OR “mouse overexpressed”) AND (“gene expression” OR “gene knockout” OR “gene overexpression” OR “gene knock in” OR “gene transfer techniques” OR “gene deletion”) AND (“muscle fiber distribution” OR “muscle fiber fast twitch” OR “muscle fiber slow twitch” OR “muscle fiber type I” OR “muscle fiber type II” OR “oxidative muscle” OR “oxidative fiber” OR “glycolytic muscle” OR “glycolytic fiber”) |
Study | Gene | Knockout or Overexpression | Fibre Type Analysis Procedure | Output Measure | Outcome (Relative to Wildtype) |
---|---|---|---|---|---|
[43] | Akirin1 | Knockout | MHC immunofluorescence MHC analysis | Quadriceps Type 1 | ↓ |
Quadriceps Type 2A | ↑ | ||||
Quadriceps Myh7 1 | ↓ | ||||
Quadriceps Myh2 2A | ↑ | ||||
[44] | Bdkrb2 | Knockout | ATPase staining | Soleus % type 1 | ↑ |
Soleus % type 2A | ↓ | ||||
Soleus % type Intermediary | ↑ | ||||
[45] | Bdnf | Knockout | MHC immunohistochemistry | TA % type 2X | ↑ |
TA % type 2B | ↓ | ||||
EDL % type 2X | ↑ | ||||
EDL % type 2B | ↓ | ||||
[46] | CamK4 | Knockout | MHC immunofluorescence | Soleus % type 1 | ↑ |
Soleus % type 2A | ↓ | ||||
Soleus % type other | ↓ | ||||
[47] | Ccnd3 | Knockout | MHC immunostaining | TA % myofiber type 2A | ↑ |
TA % myofiber type 2B | ↓ | ||||
[48] | Cpt1a | Conditional knockout | MHC immunostaining | TA % type 2A | ↑ |
[49] | FoxJ3 | Knockout | ATPase staining | EDL % type 1 | ↓ |
Soleus % type 1 | ↓ | ||||
[50] | Foxo1 | Overexpression | ATPase staining | Soleus number type 1 | ↓ |
Soleus number type 2 | ↑ | ||||
[51] | Mapk12 | Knockout | MHC immunostaining | Soleus % type 1 | ↑ |
Soleus % type 2A | ↓ | ||||
[52] | Mstn | Knockout | MHC immunostaining | Biceps femoris % type 1 | ↓ |
Biceps femoris % type 2A | ↓ | ||||
Biceps femoris % type 2B/X | ↑ | ||||
TA % type 2A | ↓ | ||||
TA % type 2B/X | ↑ | ||||
[53] | MyoD1 | Knockout | MHC immunohistochemistry | EDL % Type 1 | ↑ |
[54] | Nfatc1 | Conditional knockout | ATPase staining | Soleus number Type 1 | ↓ |
[55] | Nol3 | Knockout | Immunofluorescence MHC | Soleus % type 1 | ↓ |
Soleus % Type 2A | ↑ | ||||
Plantaris % Type 2A | ↓ | ||||
Plantaris % Type 2B | ↑ | ||||
[32] | Ppargc1a | Overexpression | ATPase staining | Plantaris number Type 1 | ↑ |
Plantaris number Type 2A | ↑ | ||||
Plantaris number Type 2B | ↓ | ||||
[56] | Thra | Knockout | ATPase staining | Soleus % Type 1 | ↑ |
Soleus % Type 2A | ↓ | ||||
Thrb | Soleus % Type 1 | ↓ | |||
Soleus % Type 2A | ↑ | ||||
[57] | Epas1 | Conditional Knockout | MHC analysis | Soleus number type 1 | ↓ |
Soleus number type 2B | ↑ | ||||
Soleus MHC 1 | ↓ | ||||
Soleus MHC 2B | ↑ | ||||
[58] | Esrrg | Conditional overexpression | MHC gene expression analysis | Gastrocnemius MHC 2A | ↑ |
Gastrocnemius MHC 2B | ↓ | ||||
[59] | Il15 | Conditional overexpression | MHC gene expression analysis | Soleus MHC 1 | ↑ |
Soleus MHC 2A | ↓ | ||||
Soleus a MHC 2X | ↓ | ||||
EDL MHC 1 | ↑ | ||||
EDL MHC 2X | ↑ | ||||
Gastrocnemius MHC 1 | ↑ | ||||
[60] | Ncor1 | Conditional knockout | MHC gene expression analysis | Gastrocnemius MHC 2A | ↑ |
Gastrocnemius MHC 2X | ↑ | ||||
Quadriceps MHC 1 | ↑ | ||||
Quadriceps MHC 2A | ↑ | ||||
Quadriceps MHC 2X | ↑ | ||||
[61] | Ppargc1b | Conditional overexpression | MHC gene expression analysis | Gastrocnemius MHC 1 | ↓ |
Gastrocnemius MHC 2X | ↑ | ||||
Gastrocnemius MHC 2B | ↓ | ||||
EDL MHC 1 | ↓ | ||||
EDL MHC 2A | ↓ | ||||
EDL MHC 2X | ↑ | ||||
EDL MHC 2B | ↓ | ||||
TA MHC 2A | ↓ | ||||
TA MHC 2X | ↑ | ||||
TA MHC 2B | ↓ | ||||
[62] | Sirt3 | Conditional overexpression | Western blot | Quadriceps MHC 1 | ↑ |
Quadriceps MHC 2B | ↓ | ||||
[63] | Trib3 | Conditional overexpression | Electrophorese of MHC | Soleus MHC 1 | ↑ |
Soleus MHC 2B | ↓ | ||||
TA MHC 2B | ↓ | ||||
[64] | Vgll2 | Knockout | qPCR MHC analysis | Soleus number type 2A | ↓ |
Soleus number type 2B | ↑ | ||||
Soleus Myh7 1 | ↓ | ||||
Soleus Myh2 2A | ↓ | ||||
Soleus Myh1 2X | ↑ | ||||
Soleus Myh4 2B | ↑ | ||||
[65] | Sirt1 | Conditional overexpression | ATPase staining and PCR MHC analysis | Gastrocnemius % Type 1 | ↑ |
Gastrocnemius % Type 2 | ↓ | ||||
Gastrocnemius MHC 2A | ↑ | ||||
Gastrocnemius MHC 2X | ↑ | ||||
Gastrocnemius MHC 2B | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuhnen, G.; Guedes Russomanno, T.; Murgia, M.; Pillon, N.J.; Schönfelder, M.; Wackerhage, H. Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review. Int. J. Mol. Sci. 2022, 23, 12933. https://doi.org/10.3390/ijms232112933
Kuhnen G, Guedes Russomanno T, Murgia M, Pillon NJ, Schönfelder M, Wackerhage H. Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review. International Journal of Molecular Sciences. 2022; 23(21):12933. https://doi.org/10.3390/ijms232112933
Chicago/Turabian StyleKuhnen, Gabryela, Tiago Guedes Russomanno, Marta Murgia, Nicolas J. Pillon, Martin Schönfelder, and Henning Wackerhage. 2022. "Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review" International Journal of Molecular Sciences 23, no. 21: 12933. https://doi.org/10.3390/ijms232112933
APA StyleKuhnen, G., Guedes Russomanno, T., Murgia, M., Pillon, N. J., Schönfelder, M., & Wackerhage, H. (2022). Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review. International Journal of Molecular Sciences, 23(21), 12933. https://doi.org/10.3390/ijms232112933