Photocatalytic Activity of TiO2 Coatings Obtained at Room Temperature on a Polymethyl Methacrylate Substrate
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Synthesis of TiO2 Nanoparticles
4.2. Coating Deposition
4.3. Sample Characterisation
4.4. Photocatalysis Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senarathna, U.L.N.H.; Fernando, S.S.N.; Gunasekara, T.D.C.P.; Weerasekera, M.M.; Hewageegana, H.G.S.P.; Arachchi, N.D.H.; Siriwardena, H.D.; Jayaweera, P.M. Enhanced Antibacterial Activity of TiO2 Nanoparticle Surface Modified with Garcinia Zeylanica Extract. Chem. Cent. J. 2017, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cedillo-González, E.I.; Riccò, R.; Montorsi, M.; Montorsi, M.; Falcaro, P.; Siligardi, C. Self-Cleaning Glass Prepared from a Commercial TiO2 Nano-Dispersion and Its Photocatalytic Performance under Common Anthropogenic and Atmospheric Factors. Build. Environ. 2014, 71, 7–14. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Li, R.; Weng, Y.; Zhou, X.; Wang, X.; Mi, Y.; Chong, R.; Han, H.; Li, C. Achieving Overall Water Splitting Using Titanium Dioxide-Based Photocatalysts of Different Phases. Energy Environ. Sci. 2015, 8, 2377–2382. [Google Scholar] [CrossRef]
- Mathur, S.; Kuhn, P. CVD of Titanium Oxide Coatings: Comparative Evaluation of Thermal and Plasma Assisted Processes. Surf. Coat. Technol. 2006, 201, 807–814. [Google Scholar] [CrossRef]
- Hemissi, M.; Amardjia-Adnani, H.; Plenet, J.C. Titanium Oxide Thin Layers Deposed by Dip-Coating Method: Their Optical and Structural Properties. Curr. Appl. Phys. 2009, 9, 717–721. [Google Scholar] [CrossRef]
- Chen, Z.; Dündar, I.; Oja Acik, I.; Mere, A. TiO2 Thin Films by Ultrasonic Spray Pyrolysis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 503, 012006. [Google Scholar] [CrossRef]
- Nagasawa, H.; Xu, J.; Kanezashi, M.; Tsuru, T. Atmospheric-Pressure Plasma-Enhanced Chemical Vapor Deposition of UV-Shielding TiO2 Coatings on Transparent Plastics. Mater. Lett. 2018, 228, 479–481. [Google Scholar] [CrossRef]
- Shahmohammadi, M.; Nagay, B.E.; Barão, V.A.R.; Sukotjo, C.; Jursich, G.; Takoudis, C.G. Atomic Layer Deposition of TiO2, ZrO2 and TiO2/ZrO2 Mixed Oxide Nanofilms on PMMA for Enhanced Biomaterial Functionalization. Appl. Surf. Sci. 2022, 578, 151891. [Google Scholar] [CrossRef]
- Phuinthiang, P.; Trinh, D.T.T.; Channei, D.; Ratananikom, K.; Sirilak, S.; Khanitchaidecha, W.; Nakaruk, A. Novel Strategy for the Development of Antibacterial TiO2 Thin Film onto Polymer Substrate at Room Temperature. Nanomaterials 2021, 11, 1493. [Google Scholar] [CrossRef]
- Teixeira, S.; Magalhães, B.; Martins, P.M.; Kühn, K.; Soler, L.; Lanceros-Méndez, S.; Cuniberti, G. Reusable Photocatalytic Optical Fibers for Underground, Deep-Sea, and Turbid Water Remediation. Glob. Chall. 2018, 2, 1700124. [Google Scholar] [CrossRef]
- Eglitis, R.; Zukuls, A.; Viter, R.; Šutka, A. Kinetics of TiO2 Photochromic Response in Different Hole Scavenging Solvents. Photochem. Photobiol. Sci. 2020, 19, 1072–1077. [Google Scholar] [CrossRef]
- Frank, O.; Zukalova, M.; Laskova, B.; Kürti, J.; Koltai, J.; Kavan, L. Raman Spectra of Titanium Dioxide (Anatase, Rutile) with Identified Oxygen Isotopes (16, 17, 18). Phys. Chem. Chem. Phys. 2012, 14, 14567. [Google Scholar] [CrossRef]
- Choi, H.C.; Jung, Y.M.; Kim, S. Bin Size Effects in the Raman Spectra of TiO2 Nanoparticles. Vib. Spectrosc. 2005, 37, 33–38. [Google Scholar] [CrossRef]
- Zhang, W.F.; He, Y.L.; Zhang, M.S.; Yin, Z.; Chen, Q. Raman Scattering Study on Anatase TiO2 Nanocrystals. J. Phys. D Appl. Phys. 2000, 33, 912–916. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V.; Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of Electron Inelastic Mean Free Paths. V. Data for 14 Organic Compounds over the 50-2000 EV Range. Surf. Interface Anal. 1994, 21, 165–176. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, B.; Su, Q.; Xie, E.; Lan, W. A Simple Method for the Preparation of Hollow ZnO Nanospheres for Use as a High Performance Photocatalyst. Nanoscale 2012, 4, 3060–3064. [Google Scholar] [CrossRef]
- Blažeka, D.; Car, J.; Klobučar, N.; Jurov, A.; Zavašnik, J.; Jagodar, A.; Kovacevic, E.; Krstulović, N.; Kovačevi’c, E.K.; Krstulovi’ckrstulovi’c, N. Photodegradation of Methylene Blue and Rhodamine B Using Laser-Synthesized ZnO Nanoparticles. Materials 2020, 13, 4357. [Google Scholar] [CrossRef]
- Pijpers, A.P.; Meier, R.J. Core Level Photoelectron Spectroscopy for Polymer and Catalyst Characterisation. Chem. Soc. Rev. 1999, 28, 233–238. [Google Scholar] [CrossRef]
- Zheng, J.; Xia, L.; Song, S. Electrosorption of Pb(II) in Water Using Graphene Oxide-Bearing Nickel Foam as the Electrodes. RSC Adv. 2017, 7, 23543–23549. [Google Scholar] [CrossRef] [Green Version]
- Ofosu, C.K.; Truskett, T.M.; Milliron, D.J. Solvent-Ligand Interactions Govern Stabilizing Repulsions between Colloidal Metal Oxide Nanocrystals. ChemRxiv 2022. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, H.; Zou, Y.; Wang, R.; Lyu, Y.; Jiang, S.P.; Wang, S. Efficiency and Stability of Narrow-Gap Semiconductor-Based Photoelectrodes. Energy Environ. Sci. 2019, 12, 2345–2374. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J.Y. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878. [Google Scholar] [CrossRef]
- Lin, H.; Huang, C.; Li, W.; Ni, C.; Shah, S.; Tseng, Y. Size Dependency of Nanocrystalline TiO2 on Its Optical Property and Photocatalytic Reactivity Exemplified by 2-Chlorophenol. Appl. Catal. B 2006, 68, 1–11. [Google Scholar] [CrossRef]
- Choi, H.; Stathatos, E.; Dionysiou, D.D. Sol-Gel Preparation of Mesoporous Photocatalytic TiO2 Films and TiO2/Al2O3 Composite Membranes for Environmental Applications. Appl. Catal. B 2006, 63, 60–67. [Google Scholar] [CrossRef]
- Mathews, N.R.; Morales, E.R.; Cortés-Jacome, M.A.; Toledo Antonio, J.A. TiO2 Thin Films-Influence of Annealing Temperature on Structural, Optical and Photocatalytic Properties. Sol. Energy 2009, 83, 1499–1508. [Google Scholar] [CrossRef]
- Pore, V.; Rahtu, A.; Leskelä, M.; Ritala, M.; Sajavaara, T.; Keinonen, J. Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water. Chem. Vap. Depos. 2004, 10, 143–148. [Google Scholar] [CrossRef]
- Zhuang, J.; Dai, W.; Tian, Q.; Li, Z.; Xie, L.; Wang, J.; Liu, P.; Shi, X.; Wang, D. Photocatalytic Degradation of RhB over TiO2 Bilayer Films: Effect of Defects and Their Location. Langmuir 2010, 26, 9686–9694. [Google Scholar] [CrossRef]
- Goei, R.; Lim, T.T. Ag-Decorated TiO2 Photocatalytic Membrane with Hierarchical Architecture: Photocatalytic and Anti-Bacterial Activities. Water Res. 2014, 59, 207–218. [Google Scholar] [CrossRef]
- Carneiro, J.O.; Teixeira, V.; Portinha, A.; Magalhães, A.; Coutinho, P.; Tavares, C.J.; Newton, R. Iron-Doped Photocatalytic TiO2 Sputtered Coatings on Plastics for Self-Cleaning Applications. Mater. Sci. Eng. B 2007, 138, 144–150. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Nanostructured N-Doped TiO2 Coated on Glass Spheres for the Photocatalytic Removal of Organic Dyes under UV or Visible Light Irradiation. Appl. Catal. B 2015, 170–171, 153–161. [Google Scholar] [CrossRef]
- Fu, P.; Luan, Y.; Dai, X. Preparation of Activated Carbon Fibers Supported TiO2 Photocatalyst and Evaluation of Its Photocatalytic Reactivity. J. Mol. Catal. A Chem. 2004, 221, 81–88. [Google Scholar] [CrossRef]
- Soni, S.S.; Henderson, M.J.; Bardeau, J.F.; Gibaud, A. Visible-Light Photocatalysis in Titania-Based Mesoporous Thin Films. Adv. Mater. 2008, 20, 1493–1498. [Google Scholar] [CrossRef]
- Yaghoubi, H.; Taghavinia, N.; Alamdari, E.K. Self Cleaning TiO2 Coating on Polycarbonate: Surface Treatment, Photocatalytic and Nanomechanical Properties. Surf. Coat. Technol. 2010, 204, 1562–1568. [Google Scholar] [CrossRef]
- Tavares, C.J.; Vieira, J.; Rebouta, L.; Hungerford, G.; Coutinho, P.; Teixeira, V.; Carneiro, J.O.; Fernandes, A.J. Reactive Sputtering Deposition of Photocatalytic TiO2 Thin Films on Glass Substrates. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2007, 138, 139–143. [Google Scholar] [CrossRef]
- Scolan, E.; Sanchez, C. Synthesis and Characterization of Surface-Protected Nanocrystalline Titania Particles. Chem. Mater. 1998, 10, 3217–3223. [Google Scholar] [CrossRef]
- Sutka, A.; Eglitis, R.; Kuzma, A.; Smits, K.; Zukuls, A.; Prades, J.D. Photodoping-Inspired Room-Temperature Gas Sensing by Anatase TiO2 Quantum Dots. ACS Appl. Nano Mater. 2021, 4, 2522–2527. [Google Scholar] [CrossRef]
- Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J.M.; Murray, C.B. A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Baer, D.R.; Artyushkova, K.; Cohen, H.; Easton, C.D.; Engelhard, M.; Gengenbach, T.R.; Greczynski, G.; Mack, P.; Morgan, D.J.; Roberts, A. XPS Guide: Charge Neutralization and Binding Energy Referencing for Insulating Samples. J. Vac. Sci. Technol. A 2020, 38, 031204. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.J.; Biesinger, M.C.; McIntyre, N.S. Interactions of CO2 and CO at Fractional Atmosphere Pressures with Iron and Iron Oxide Surfaces: One Possible Mechanism for Surface Contamination? Surf. Interface Anal. 2002, 33, 299–305. [Google Scholar] [CrossRef]
- ISO 10678:2010 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Photocatalytic Activity of Surfaces in an Aqueous Medium by Degradation of Methylene Blue. Available online: https://www.iso.org/standard/46019.html (accessed on 25 March 2022).
- Guan, S.; Hao, L.; Lu, Y.; Yoshida, H.; Pan, F.; Asanuma, H. Fabrication of Oxygen-Deficient TiO2 Coatings with Nano-Fiber Morphology for Visible-Light Photocatalysis. Mater. Sci. Semicond. Process. 2016, 41, 358–363. [Google Scholar] [CrossRef]
- Loncar, E.; Radeka, M.; Petrovic, S.; Skapin, A.; Rudic, O.; Ranogajec, J. Determination of the Photocatalytic Activity of TiO2 Coatings on Clay Roofing Tile Substrates Methylene Blue as Model Pollutant. Acta Period. Technol. 2009, 40, 125–133. [Google Scholar] [CrossRef]
- Mills, A. An Overview of the Methylene Blue ISO Test for Assessing the Activities of Photocatalytic Films. Appl. Catal. B 2012, 128, 144–149. [Google Scholar] [CrossRef]
- Neren Ökte, A.; Yilmaz, Ö. Photodecolorization of Methyl Orange by Yttrium Incorporated TiO2 Supported ZSM-5. Appl. Catal. B 2008, 85, 92–102. [Google Scholar] [CrossRef]
- Bouarioua, A.; Zerdaoui, M. Photocatalytic Activities of TiO2 Layers Immobilized on Glass Substrates by Dip-Coating Technique toward the Decolorization of Methyl Orange as a Model Organic Pollutant. J. Environ. Chem. Eng. 2017, 5, 1565–1574. [Google Scholar] [CrossRef]
- Jiang, W.; Joens, J.A.; Dionysiou, D.D.; O’Shea, K.E. Optimization of Photocatalytic Performance of TiO2 Coated Glass Microspheres Using Response Surface Methodology and the Application for Degradation of Dimethyl Phthalate. J. Photochem. Photobiol. A Chem. 2013, 262, 7–13. [Google Scholar] [CrossRef]
Substrate | Coating Method and Temperature | Area | Dye | Concentration of the Dye | Light Source and Intensity | Rate Constant | Ref. |
---|---|---|---|---|---|---|---|
Glass | Dip-coating and annealing at 500 °C | 10 cm2 | MB | 30 µM | 365 nm UV lamp with 3.48 mW/cm2 | k = 1.5 × 10−2×min−1 | [26] |
Glass | Dip-coating and annealing at 600 °C | 6.5 cm2 | MB | 100 mg/L | 370 nm 15 W UV light | k = 2.6 × 10−3 min−1 | [27] |
Glass | Atomic layer deposition at 250 °C and 350 °C | 23 cm2 | MB | 1 mM | 365 nm UV lamp at distance of 11 cm | k = 4.6 × 10−3 min−1 | [28] |
Quartz Glass | Dip-coating and annealing at 120 °C | 18.75 cm2 | RB | 10 µM | Four 4 W UV lamps (365 nm) | k = 1.9 × 10−3 min−1 | [29] |
Al2O3 membrane | Dip-coating and annealing at 500 °C | 4.15 cm2 | RB | 25 µM | 40 W/m2 UV lamp | 1007 mg × m−2 × h−1 | [30] |
Glass and PC | Magnetron sputtering | 18.75 cm2 | RB | 0.5 mg/L | Hg tube lamp with a wavelength of 254 nm at 11 cm distance | k = 3.5 × 10−3 min−1 for polycarbonatek = 2.9 × 10−3 min−1 for glass sample | [31] |
Pyrex spheres | Dip-coating and annealing at 450 °C | 0.58 cm2 per sphere. | MB | 5 mg/L | Visible light 32 mW/cm2 and UV light 35 mW/cm2 | For MB k = 4.6 × 10−3 min−1 (UV) k = 3.4 × 10−3 min−1 (Vis) | [32] |
Activated carbon fibres | Molecular adsorption-desorption | 49.5 cm2 | MB | 2.498 mmol/L | 24 W mercury lamp (254 nm) at a distance of 12 mm | k = 3.1 × 10−2 min−1 | [33] |
Glass | Dip-coating | 10 cm2 | MB | 25 µM | He-Cd laser (442 nm) at a distance of 6 cm | k = 4.2 × 10−3 min−1 | [34] |
PC | Dip-coating | 8.75 cm2 | MB | 5 µM | 4W UV lamp (254 nm) 11 mW/cm2 | k = 2.5 × 10−2 min−1 | [35] |
Glass | DC magnetron sputtering at 200 °C | 1.75 cm2 | RB | 1 µM | 200W Hg lamp (280–380 nm) at a distance of 12 cm | k = 7.8 × 10−3 min−1 | [36] |
PC, PMMA, PS, and PP | Spin-coating | 3.14 cm2 | RB | 10 mg/L | 100W Hg lamp (365 nm) at a distance of 20 cm | k = 1.1 × 10−2 min−1 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iesalnieks, M.; Eglītis, R.; Juhna, T.; Šmits, K.; Šutka, A. Photocatalytic Activity of TiO2 Coatings Obtained at Room Temperature on a Polymethyl Methacrylate Substrate. Int. J. Mol. Sci. 2022, 23, 12936. https://doi.org/10.3390/ijms232112936
Iesalnieks M, Eglītis R, Juhna T, Šmits K, Šutka A. Photocatalytic Activity of TiO2 Coatings Obtained at Room Temperature on a Polymethyl Methacrylate Substrate. International Journal of Molecular Sciences. 2022; 23(21):12936. https://doi.org/10.3390/ijms232112936
Chicago/Turabian StyleIesalnieks, Mairis, Raivis Eglītis, Tālis Juhna, Krišjānis Šmits, and Andris Šutka. 2022. "Photocatalytic Activity of TiO2 Coatings Obtained at Room Temperature on a Polymethyl Methacrylate Substrate" International Journal of Molecular Sciences 23, no. 21: 12936. https://doi.org/10.3390/ijms232112936
APA StyleIesalnieks, M., Eglītis, R., Juhna, T., Šmits, K., & Šutka, A. (2022). Photocatalytic Activity of TiO2 Coatings Obtained at Room Temperature on a Polymethyl Methacrylate Substrate. International Journal of Molecular Sciences, 23(21), 12936. https://doi.org/10.3390/ijms232112936