One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Use of HCA Analysis to Compare the Similarity of Designed TiO2-Based NTs
2.2. How to Control the Morphology of Designed TiO2-Based NTs? Virtual Screening of Structure—Experimental Condition Relationship
2.3. The Quantitative Relationship between Structure, Synthesis Condition, and Photocatalytic Activity of TiO2-Based NTs: Predictive Nano-QSPCRmix Model Development
3. Methodology
3.1. Dataset of Structure
3.2. Dataset of Endpoints
3.3. Dataset of Descriptors
3.4. Hierarchic Clustering Analysis (HCA)
3.5. Principal Component Analysis (PCA)
3.6. Nano-QSAR for Multicomponent Nanomaterials (Nano-QSARmix)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, J.L.; Baruch, M.F.; Pander, J.E.; Hu, Y.; Fortmeyer, I.C.; Park, J.E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; et al. Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chem. Rev. 2015, 115, 12888–12935. [Google Scholar] [CrossRef] [PubMed]
- Dalle, K.E.; Warnan, J.; Leung, J.J.; Reuillard, B.; Karmel, I.S.; Reisner, E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem. Rev. 2019, 119, 2752–2875. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, J.N.; Matson, M.M.; Atsumi, S. Nonphotosynthetic Biological CO2 Reduction. Biochemistry 2019, 58, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Mazierski, P.; Mikolajczyk, A.; Bajorowicz, B.; Malankowska, A.; Zaleska-Medynska, A.; Nadolna, J. The Role of Lanthanides in TiO2-Based Photocatalysis: A Review. Appl. Catal. B Environ. 2018, 233, 301–317. [Google Scholar] [CrossRef]
- Zaleska-Medynska, A. Metal Oxide-Based Photocatalysis; Elsevier: Amsterdam, The Netherlands, 2020; ISBN1 9780128116333. ISBN2 9780128116340. [Google Scholar]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Zeng, S.; Kar, P.; Thakur, U.K.; Shankar, K. A Review on Photocatalytic CO2 Reduction Using Perovskite Oxide Nanomaterials. Nanotechnology 2018, 29, 052001. [Google Scholar] [CrossRef]
- Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, L.; Shi, J. Converting CO2 into Fuels by Graphitic Carbon Nitride-Based Photocatalysts. Nanotechnology 2018, 29, 412001. [Google Scholar] [CrossRef] [Green Version]
- Pancielejko, A.; Mazierski, P.; Lisowski, W.; Zaleska-Medynska, A.; Kosek, K.; Łuczak, J. Facile Formation of Self-Organized TiO2 Nanotubes in Electrolyte Containing Ionic Liquid-Ethylammonium Nitrate and Their Remarkable Photocatalytic Properties. ACS Sustain. Chem. Eng. 2018, 6, 14510–14522. [Google Scholar] [CrossRef]
- Pancielejko, A.; Mazierski, P.; Lisowski, W.; Zaleska-Medynska, A.; Łuczak, J. Ordered TiO2 Nanotubes with Improved Photoactivity through Self-Organizing Anodization with the Addition of an Ionic Liquid: Effects of the Preparation Conditions. ACS Sustain. Chem. Eng. 2019, 7, 15585–15596. [Google Scholar] [CrossRef]
- Mazierski, P.; Łuczak, J.; Lisowski, W.; Winiarski, M.J.; Klimczuk, T.; Zaleska-Medynska, A. The ILs-Assisted Electrochemical Synthesis of TiO2 Nanotubes: The Effect of Ionic Liquids on Morphology and Photoactivity. Appl. Catal. B Environ. 2017, 214, 100–113. [Google Scholar] [CrossRef]
- Mazierski, P.; Nischk, M.; Gołkowska, M.; Lisowski, W.; Gazda, M.; Winiarski, M.J.; Klimczuk, T.; Zaleska-Medynska, A. Photocatalytic Activity of Nitrogen Doped TiO2 Nanotubes Prepared by Anodic Oxidation: The Effect of Applied Voltage, Anodization Time and Amount of Nitrogen Dopant. Appl. Catal. B Environ. 2016, 196, 77–88. [Google Scholar] [CrossRef]
- Mazierski, P.; Malankowska, A.; Kobylański, M.; Diak, M.; Kozak, M.; Winiarski, M.J.; Klimczuk, T.; Lisowski, W.; Nowaczyk, G.; Zaleska-Medynska, A. Photocatalytically Active TiO2/Ag2O Nanotube Arrays Interlaced with Silver Nanoparticles Obtained from the One-Step Anodic Oxidation of Ti–Ag Alloys. ACS Catal. 2017, 7, 2753–2764. [Google Scholar] [CrossRef]
- Parnicka, P.; Mazierski, P.; Lisowski, W.; Klimczuk, T.; Nadolna, J.; Zaleska-Medynska, A. A New Simple Approach to Prepare Rare-Earth Metals-Modified TiO2 Nanotube Arrays Photoactive under Visible Light: Surface Properties and Mechanism Investigation. Results Phys. 2019, 12, 412–423. [Google Scholar] [CrossRef]
- Mazierski, P.; Nadolna, J.; Nowaczyk, G.; Lisowski, W.; Winiarski, M.J.; Klimczuk, T.; Kobylański, M.P.; Jurga, S.; Zaleska-Medynska, A. Highly Visible-Light-Photoactive Heterojunction Based on TiO2 Nanotubes Decorated by Pt Nanoparticles and Bi2S3 Quantum Dots. J. Phys. Chem. C 2017, 121, 17215–17225. [Google Scholar] [CrossRef]
- Mikolajczyk, A.; Gajewicz, A.; Mulkiewicz, E.; Rasulev, B.; Marchelek, M.; Diak, M.; Hirano, S.; Zaleska-Medynska, A.; Puzyn, T. Nano-QSAR Modeling for Ecosafe Design of Heterogeneous TiO2-Based Nano-Photocatalysts. Environ. Sci. Nano 2018, 5, 1150–1160. [Google Scholar] [CrossRef]
- Mikolajczyk, A.; Malankowska, A.; Nowaczyk, G.; Gajewicz, A.; Hirano, S.; Jurga, S.; Zaleska-Medynska, A.; Puzyn, T. Combined Experimental and Computational Approach to Developing Efficient Photocatalysts Based on Au/Pd–TiO2 Nanoparticles. Environ. Sci. Nano 2016, 3, 1425–1435. [Google Scholar] [CrossRef] [Green Version]
- Nevárez-Martínez, M.C.; Mazierski, P.; Kobylański, M.P.; Szczepańska, G.; Trykowski, G.; Malankowska, A.; Kozak, M.; Espinoza-Montero, P.J.; Zaleska-Medynska, A. Growth, Structure, and Photocatalytic Properties of Hierarchical V2O5–TiO2 Nanotube Arrays Obtained from the One-Step Anodic Oxidation of Ti–V Alloys. Molecules 2017, 22, 580. [Google Scholar] [CrossRef] [Green Version]
- Nischk, M.; Mazierski, P.; Gazda, M.; Zaleska, A. Ordered TiO2 Nanotubes: The Effect of Preparation Parameters on the Photocatalytic Activity in Air Purification Process. Appl. Catal. B Environ. 2014, 144, 674–685. [Google Scholar] [CrossRef]
- Nischk, M.; Mazierski, P.; Wei, Z.; Siuzdak, K.; Kouame, N.A.; Kowalska, E.; Remita, H.; Zaleska-Medynska, A. Enhanced Photocatalytic, Electrochemical and Photoelectrochemical Properties of TiO2 Nanotubes Arrays Modified with Cu, AgCu and Bi Nanoparticles Obtained via Radiolytic Reduction. Appl. Surf. Sci. 2016, 387, 89–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazierski, P.; Lisowski, W.; Grzyb, T.; Winiarski, M.J.; Klimczuk, T.; Mikołajczyk, A.; Flisikowski, J.; Hirsch, A.; Kołakowska, A.; Puzyn, T.; et al. Enhanced Photocatalytic Properties of Lanthanide-TiO2 Nanotubes: An Experimental and Theoretical Study. Appl. Catal. B Environ. 2017, 205, 376–385. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, T.; Zhu, S.; Gu, C. Synergistic Mechanism of Rare-Earth Modification TiO2 and Photodegradation on Benzohydroxamic Acid. Appl. Sci. 2019, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Tobaldi, D.M.; Pullar, R.C.; Škapin, A.S.; Seabra, M.P.; Labrincha, J.A. Visible Light Activated Photocatalytic Behaviour of Rare Earth Modified Commercial TiO2. Mater. Res. Bull. 2014, 50, 183–190. [Google Scholar] [CrossRef]
- Nevárez-Martínez, M.C.; Kobylański, M.P.; Mazierski, P.; Wółkiewicz, J.; Trykowski, G.; Malankowska, A.; Kozak, M.; Espinoza-Montero, P.J.; Zaleska-Medynska, A. Self-Organized TiO2–MnO2 Nanotube Arrays for Efficient Photocatalytic Degradation of Toluene. Molecules 2017, 22, 564. [Google Scholar] [CrossRef] [Green Version]
- OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models; OECD Series on Testing and Assessment; OECD: Paris, France, 2014; Available online: https://www.oecd.org/env/guidance-document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-models-9789264085442-en.htm (accessed on 28 September 2022).
- Liu, Z.; Zhang, X.; Nishimoto, S.; Murakami, T.; Fujishima, A. Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays. Environ. Sci. Technol. 2008, 42, 8547–8551. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [Green Version]
- Macak, J.M.; Zlamal, M.; Krysa, J.; Schmuki, P. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small 2007, 3, 300–304. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. A Review of Photocatalysis Using Self-organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures. Small 2012, 8, 3073–3103. [Google Scholar] [CrossRef]
- Paszkiewicz, M.; Łuczak, J.; Lisowski, W.; Patyk, P.; Zaleska-Medynska, A. The ILs-Assisted Solvothermal Synthesis of TiO2 Spheres: The Effect of Ionic Liquids on Morphology and Photoactivity of TiO2. Appl. Catal. B Environ. 2016, 184, 223–237. [Google Scholar] [CrossRef]
- Lee, I.; Yang, J. Common Clustering Algorithms. Compr. Chemom. 2009, 2, 577–618. [Google Scholar] [CrossRef]
- Python 3. Available online: https://www.python.org (accessed on 28 September 2022).
- Sosnowska, A.; Barycki, M.; Zaborowska, M.; Rybinska, A.; Puzyn, T. Towards Designing Environmentally Safe Ionic Liquids: The Influence of the Cation Structure. Green Chem. 2014, 16, 4749–4757. [Google Scholar] [CrossRef]
- Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient. J. Chem. Inf. Model. 2011, 51, 2320–2335. [Google Scholar] [CrossRef]
- Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A New Software for the Development, Analysis, and Validation of QSAR MLR Models. J. Comput. Chem. 2013, 34, 2121–2132. [Google Scholar] [CrossRef]
Endpoint | Group Name | Group Size | Model Equation | Statistics | Ref. to Figure 5 | |||
---|---|---|---|---|---|---|---|---|
R2 | RMSEC | MAEC | CCC | |||||
UV-VIS | IL | 12 | y = 1.19 + 0.411 × Length | 0.96 | 0.09 | 0.06 | 0.98 | (a) |
UV-VIS | REE2 | 6 | y = 2.58 + 0.41 × Ti3+ | 0.61 | 0.31 | 0.23 | 0.76 | (b) |
UV-VIS | Ag2O | 5 | y = 2.42 + 0.60 × Diameter | 0.58 | 0.32 | 0.28 | 0.74 | (c) |
VIS | IL | 12 | y = 0.382 + 0.13 × Length | 0.87 | 0.05 | 0.04 | 0.93 | (d) |
VIS | REE2 | 6 | y = 0.29 + 0.16 × Length | 0.86 | 0.06 | 0.05 | 0.93 | (e) |
VIS | Ag2O | 5 | y = 0.40 − 0.06 × ∑ Ti [% at.] | 0.80 | 0.03 | 0.03 | 0.89 | (f) |
Descriptor | UV-VIS Activity | |||
---|---|---|---|---|
Sample | Length [nm] | Experimental | Predicted | Set 1 |
IL2_10 V | 600 | 2.30 | 2.28 | T |
IL2_500 | 2050 | 3.04 | 3.92 | V |
IL2_400 | 1990 | 3.04 | 3.85 | T |
IL2_20 V | 1030 | 3.11 | 2.76 | V |
IL2_0.01 | 2050 | 3.37 | 3.92 | T |
IL2_4%H2O | 1540 | 3.44 | 3.34 | V |
IL2_0.005 | 1970 | 3.48 | 3.83 | T |
IL2_6%H2O | 1290 | 3.49 | 3.06 | V |
IL2_10%H2O | 1220 | 3.54 | 2.98 | T |
IL2_0.007 | 2030 | 3.56 | 3.89 | V |
IL2_15%H2O | 1050 | 3.58 | 2.79 | T |
IL4_1.0 | 8100 | 7.10 | 10.75 | V |
IL4_0.1 | 6200 | 8.35 | 8.61 | T |
IL4_0.3 | 6800 | 8.38 | 9.28 | V |
IL4_0.2 | 6200 | 8.45 | 8.61 | T |
IL4_0.5 | 7200 | 8.59 | 9.74 | V |
IL4_0.05 | 6000 | 9.12 | 8.38 | T |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikolajczyk, A.; Falkowski, D. One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials. Int. J. Mol. Sci. 2022, 23, 13196. https://doi.org/10.3390/ijms232113196
Mikolajczyk A, Falkowski D. One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials. International Journal of Molecular Sciences. 2022; 23(21):13196. https://doi.org/10.3390/ijms232113196
Chicago/Turabian StyleMikolajczyk, Alicja, and Dawid Falkowski. 2022. "One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials" International Journal of Molecular Sciences 23, no. 21: 13196. https://doi.org/10.3390/ijms232113196
APA StyleMikolajczyk, A., & Falkowski, D. (2022). One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials. International Journal of Molecular Sciences, 23(21), 13196. https://doi.org/10.3390/ijms232113196