Interspecies Comparison of Interaction Energies between Photosynthetic Protein RuBisCO and 2CABP Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Remark on FMO Calculation Results for the RuBisCO–2CABP System
2.2. Comparison of the Sequence-Based Phylogenetic Tree and IFIE-Based Dendrogram
2.3. Singular Value Decomposition (SVD) Analysis
2.4. Dendrogram Generated by Residues Surrounding the Active Site
2.5. Comparison of Features with Different Preprocessing Methods
3. Materials and Methods
3.1. FMO Method and IFIE
3.2. Structure Preparation
3.3. Singular Value Decomposition (SVD)
3.4. Ward’s Method
3.5. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weissbach, A.; Horecker, B.L.; Hurwitz, J. The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J. Biol. Chem. 1956, 218, 756–810. [Google Scholar] [CrossRef]
- Savir, Y.; Noor, E.; Milo, R.; Tlusty, T. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc. Natl. Acad. Sci. USA 2010, 107, 3475–3480. [Google Scholar] [CrossRef]
- Flamholz, A.I.; Prywes, N.; Moran, U.; Davidi, D.; Bar-On, Y.M.; Oltrogge, L.M.; Alves, R.; Savage, D.; Milo, R. Revisiting trade-offs between Rubisco kinetic parameters. Biochemistry 2019, 58, 3365–3376. [Google Scholar] [CrossRef]
- Matsumura, H.; Shiomi, K.; Yamamoto, A.; Taketani, Y.; Kobayashi, N.; Yoshizawa, T.; Tanaka, S.I.; Yoshikawa, H.; Endo, M.; Fukayama, H. Hybrid Rubisco with complete replacement of rice Rubisco small by sorghum counterparts confers C4 plant-like high catalytic activity. Mol. Plant 2020, 13, 1570–1581. [Google Scholar] [CrossRef]
- Genkov, T.; Spreitzer, R.J. Highly conserved small subunit residues influence Rubisco large subunit catalysis. J. Biol. Chem. 2009, 284, 30105–30112. [Google Scholar] [CrossRef]
- Ashida, H.; Mizohata, E.; Yokota, A. Learning RuBisCO’s birth and subsequent environmental adaptation. Biochem. Soc. Trans. 2019, 14, 179–185. [Google Scholar] [CrossRef]
- Aono, R.; Sato, T.; Imanaka, T.; Atomi, H. A pentose bisphosphate pathway for nucleoside degradation in archaea. Nat. Chem. Biol. 2015, 11, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Atomi, H.; Imanaka, T. Archaeal type III RubisCOs function in a pathway for AMP metabolism. Science 2007, 315, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Ashida, H.; Saito, Y.; Kojima, C.; Kobayashi, K.; Ogasawara, N.; Yokota, A. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 2003, 302, 286–290. [Google Scholar] [CrossRef]
- Gunn, L.H.; Valegård, K.; Andersson, I. A unique structural domain in Methanococcoides burtonii ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts as a small subunit mimic. J. Biol. Chem. 2017, 292, 6838–6850. [Google Scholar] [CrossRef] [Green Version]
- Kono, T.; Mehrotra, S.; Endo, C.; Kizu, N.; Matusda, M.; Kimura, H.; Mizohata, E.; Inoue, T.; Hasunuma, T.; Yokota, A.; et al. A RuBisCO-mediated carbon metabolic pathway in metanogenic archaea. Nat. Commun. 2017, 8, 14007. [Google Scholar] [CrossRef]
- Banda, D.M.; Pereira, J.H.; Liu, A.K.; Orr, D.J.; Hammel, M.; He, C.; Parry, M.; Carmo-Silva, E.; Adams, P.D.; Banfield, J.F.; et al. Nobel bacterial clade reveals origin of form I Rubisco. Nat. Plants 2020, 6, 1158–1166. [Google Scholar] [CrossRef]
- Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment molecular orbital method: An approximate computational method for large molecules. Chem. Phys. Lett. 1999, 313, 701–706. [Google Scholar] [CrossRef]
- Tanaka, S.; Mochizuki, Y.; Komeiji, Y.; Fukuzawa, K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys. Chem. Chem. Phys. 2014, 16, 10310–10344. [Google Scholar] [CrossRef]
- Maruyama, K.; Sheng, Y.; Watanabe, H.; Fukuzawa, K.; Tanaka, S. Application of singular value decomposition to the inter-fragment interaction energy analysis for ligand screening. Comput. Theor. Chem. 2018, 1132, 23–34. [Google Scholar] [CrossRef]
- Hori, M.; Hirano, T.; Sato, F. Computational study of key steps of RuBisCO carboxylase reaction and roles of active-site residues. Seisankenkyu 2012, 64, 351–357. [Google Scholar]
- Watanabe, H.; Enomoto, T.; Tanaka, S. Ab initio study of molecular interactions in higher plant and Galdieria partita Rubiscos with the fragment molecular orbital method. Biochem. Biophys. Res. Commun. 2007, 361, 367–372. [Google Scholar] [CrossRef]
- Amari, S.; Aizawa, M.; Zhang, J.; Fukuzawa, K.; Mochizuki, Y.; Iwasawa, Y.; Nakata, K.; Chuman, H.; Nakano, T. VISCANA: visualized cluster analysis of protein−ligand interaction based on the ab Initio fragment molecular orbital method for virtual ligand screening. J. Chem. Inf. Model. 2006, 46, 221–230. [Google Scholar] [CrossRef]
- Kurisaki, I.; Fukuzawa, K.; Komeiji, Y.; Mochizuki, Y.; Nakano, T.; Imada, J.; Chmielewski, A.; Rothstein, S.M.; Watanabe, H.; Tanaka, S. Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method. Biophys. Chem. 2007, 130, 1–9. [Google Scholar] [CrossRef]
- Protein Data Bank (PDB). Available online: https://www.rcsb.org/ (accessed on 22 September 2022).
- Molecular Operating Environment (MOE) v2020.09; Chemical Computing Group Inc.: Montreal, QC, Canada, 2020.
- FMO Database (FMODB). Available online: https://drugdesign.riken.jp/FMODB/ (accessed on 22 September 2022).
- Watanabe, C.; Watanabe, H.; Okiyama, Y.; Takaya, D.; Fukuzawa, K.; Tanaka, S.; Honma, T. Development of an automated fragment molecular orbital (FMO) calculation protocol toward construction of quantum mechanical calculation database for large biomolecules. CBI J. 2019, 19, 5–18. [Google Scholar] [CrossRef]
- Takaya, D.; Watanabe, C.; Nagase, S.; Kamisaka, K.; Okiyama, Y.; Moriwaki, H.; Yuki, H.; Sato, T.; Kurita, N.; Yagi, Y.; et al. FMODB: The World’s First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method. J. Chem. Inf. Model. 2021, 61, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Eagar, C.R. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Camel, V.; Zolla, G. An insight of RuBisCO evolution through a multilevel approach. Biomolecules 2021, 11, 1761. [Google Scholar] [CrossRef]
First | 204 | 206 | 230 | 302 | 329 | 370 | 631 | 1115 |
Second | 332 | 451 | 533 | 536 | 582 | 627 | 708 | 710 |
Third | 183 | 244 | 252 | 383 | 514 | 529 | 532 | 708 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Residue site | 329 | 370 | 204 | 631 | 230 | 206 | 1115 | 332 |
332 | 451 | 533 | 536 | 582 | 627 | 708 | 710 | |
Form I | H, N | H, Q | I, N | E, D, N | K, E, Q | A | A, P | R, K, S, A, G |
Form II | H | R | D | K | D | H | D | E, A |
Form III | H | N | V | V | D | A | R | K |
First | 95 | 148 | 270 | 340 | 344 | 398 | 699 | 900 |
Second | 170 | 183 | 252 | 264 | 280 | 529 | 739 | 955 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujii, M.; Tanaka, S. Interspecies Comparison of Interaction Energies between Photosynthetic Protein RuBisCO and 2CABP Ligand. Int. J. Mol. Sci. 2022, 23, 11347. https://doi.org/10.3390/ijms231911347
Fujii M, Tanaka S. Interspecies Comparison of Interaction Energies between Photosynthetic Protein RuBisCO and 2CABP Ligand. International Journal of Molecular Sciences. 2022; 23(19):11347. https://doi.org/10.3390/ijms231911347
Chicago/Turabian StyleFujii, Masayasu, and Shigenori Tanaka. 2022. "Interspecies Comparison of Interaction Energies between Photosynthetic Protein RuBisCO and 2CABP Ligand" International Journal of Molecular Sciences 23, no. 19: 11347. https://doi.org/10.3390/ijms231911347
APA StyleFujii, M., & Tanaka, S. (2022). Interspecies Comparison of Interaction Energies between Photosynthetic Protein RuBisCO and 2CABP Ligand. International Journal of Molecular Sciences, 23(19), 11347. https://doi.org/10.3390/ijms231911347