Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family
Abstract
:1. Introduction
2. Classification and Function of Type VI CRISPR Systems
2.1. Type VI CRISPR-Cas Family
2.2. Properties of CRISPR-Cas13 System in Type VI CRISPR Systems
2.3. The Process of Adaptation of the CRISPR/Cas13 Family
2.4. Function and Molecular Mechanism of CRISPR-Cas13 System
3. Properties Difference of Cas13 in Type VI CRISPR Systems
4. Application and Prospect of Cas13 in Type VI CRISPR Systems
4.1. Basic Biochemical Research
4.2. Nucleic Acid Detection and Diagnosis
4.3. Nucleic Acid Imaging Technology
4.4. Antiviral Applications
4.5. Disease Treatment Strategies Based on CRISPR/Cas13
4.6. Other Applications
5. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide-sequence of the iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia-coli, and identification of the gene-product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.M.; Juez, G.; Rodriguezvalera, F. Transcription at different salinities of haloferax-mediterranei sequences adjacent to partially modified psti sites. Mol. Microbiol. 1993, 9, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.M.; Rodriguez-Valera, F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016, 283, 3162–3169. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, A.; Ouinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005, 151, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.M.; Diez-Villasenor, C.; Garcia-Martinez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef]
- Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005, 151, 653–663. [Google Scholar] [CrossRef]
- Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.M.; Wolf, Y.I.; Yakunin, A.F.; et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.H.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.L.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.B.; Jiang, W.Y.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.T.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhou, Y.; Xiao, Q.; He, B.; Geng, G.; Wang, Z.; Cao, B.; Dong, X.; Bai, W.; Wang, Y.; et al. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat. Methods 2021, 18, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Konermann, S.; Lotfy, P.; Brideau, N.J.; Oki, J.; Shokhirev, M.N.; Hsu, P.D. Transcriptome engineering with RNA-Targeting type VI-D CRISPR effectors. Cell 2018, 173, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Adli, M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018, 9, 1911. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I. Evolutionary genomics of defense systems in archaea and bacteria. Annu. Rev. Microbiol. 2017, 71, 233–261. [Google Scholar] [CrossRef]
- Garneau, J.E.; Dupuis, M.-E.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadan, A.H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67–71. [Google Scholar] [CrossRef]
- Yosef, I.; Goren, M.G.; Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 2012, 40, 5569–5576. [Google Scholar] [CrossRef]
- Hale, C.R.; Majumdar, S.; Elmore, J.; Pfister, N.; Compton, M.; Olson, S.; Resch, A.M.; Glover, C.V.C.; Graveley, B.R., III; Terns, R.M.; et al. Essential Features and Rational Design of CRISPR RNAs that Function with the Cas RAMP Module Complex to Cleave RNAs. Mol. Cell 2012, 45, 292–302. [Google Scholar] [CrossRef]
- Kunin, V.; Sorek, R.; Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 2007, 8, R61. [Google Scholar] [CrossRef] [Green Version]
- Burmistrz, M.; Krakowski, K.; Krawczyk-Balska, A. RNA-targeting CRISPR-Cas systems and their applications. Int. J. Mol. Sci. 2020, 21, 1122. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Jore, M.M.; Lundgren, M.; van Duijn, E.; Bultema, J.B.; Westra, E.R.; Waghmare, S.P.; Wiedenheft, B.; Pul, U.; Wurm, R.; Wagner, R.; et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 2011, 18, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Spilman, M.; Cocozaki, A.; Hale, C.; Shao, Y.; Ramia, N.; Terns, R.; Terns, M.; Li, H.; Stagg, S. Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol. Cell 2013, 52, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Haft, D.H.; et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef]
- Makarova, K.S.; Zhang, F.; Koonin, E.V. SnapShot: Class 1 CRISPR-Cas Systems. Cell 2017, 168, 946. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. B-Biol. Sci. 2019, 374, 20180087. [Google Scholar] [CrossRef]
- Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O.O.; Gootenberg, J.S.; Makarova, K.S.; Wolf, Y.I.; et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 2017, 15, 169–182. [Google Scholar] [CrossRef]
- Hajizadeh Dastjerdi, A.; Newman, A.; Burgio, G. The expanding class 2 CRISPR toolbox: Diversity, applicability, and targeting drawbacks. Biodrugs 2019, 33, 503–513. [Google Scholar] [CrossRef]
- Mohanraju, P.; Makarova, K.S.; Zetsche, B.; Zhang, F.; Koonin, E.V.; van der Oost, J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 2016, 353, aad5147. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, R.; Kannan, S.; Altae-Tran, H.; Takeda, S.N.; Tomita, A.; Hirano, H.; Kusakizako, T.; Nishizawa, T.; Yamashita, K.; Zhang, F.; et al. Structure and engineering of the minimal type VI CRISPR-Cas13bt3. Mol. Cell 2022, 82, 3178–3192.e5. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, W.; Ye, Y.; Zhou, H.; Saeed, A.F.U.H.; Chen, J.; Lin, J.; Perculija, V.; Chen, Q.; Chen, C.-J.; et al. Structural insights into Cas13b-guided CRISPR RNA maturation and recognition. Cell Res. 2018, 28, 1198–1201. [Google Scholar] [CrossRef]
- Zhang, C.; Konermann, S.; Brideau, N.J.; Lotfy, P.; Wu, X.; Novick, S.J.; Strutzenberg, T.; Griffin, P.R.; Hsu, P.D.; Lyumkis, D. Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell 2018, 175, 212–223. [Google Scholar] [CrossRef]
- Knott, G.J.; East-Seletsky, A.; Cofsky, J.C.; Holton, J.M.; Charles, E.; O’Connell, M.R.; Doudna, J.A. Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat. Struct. Mol. Biol. 2017, 24, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Shmakov, S.; Abudayyeh, O.O.; Makarova, K.S.; Wolf, Y.I.; Gootenberg, J.S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K.; et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 2015, 60, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.X.; Chong, S.; Zhang, H.; Makarova, K.S.; Koonin, E.V.; Cheng, D.R.; Scott, D.A. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 2018, 70, 327–339. [Google Scholar] [CrossRef]
- Cao, H.K.; Wang, Y.C.; Zhang, N.; Xia, S.Y.; Tian, P.F.; Lu, L.; Du, J.; Du, Y.A. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front. Cell Dev. Biol. 2022, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Altae-Tran, H.; Jin, X.; Madigan, V.J.; Oshiro, R.; Makarova, K.S.; Koonin, E.V.; Zhang, F. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 2021, 40, 194–197. [Google Scholar] [CrossRef]
- Toro, N.; Mestre, M.R.; Martinez-Abarca, F.; Gonzalez-Delgado, A. Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems. Front. Microbiol. 2019, 10, 2160. [Google Scholar] [CrossRef] [PubMed]
- Silas, S.; Mohr, G.; Sidote, D.J.; Markham, L.M.; Sanchez-Amat, A.; Bhaya, D.; Lambowitz, A.M.; Fire, A.Z. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 2016, 351, 12. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Delgado, A.; Mestre, M.R.; Martinez-Abarca, F.; Toro, N. Prokaryotic reverse transcriptases: From retroelements to specialized defense systems. FEMS Microbiol. Rev. 2021, 45, 19. [Google Scholar] [CrossRef]
- East-Seletsky, A.; O’Connell, M.R.; Burstein, D.; Knott, G.J.; Doudna, J.A. RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. Mol. Cell 2017, 66, 373–383. [Google Scholar] [CrossRef]
- Smargon, A.A.; Cox, D.B.T.; Pyzocha, N.K.; Zheng, K.; Slaymaker, I.M.; Gootenberg, J.S.; Abudayyeh, O.A.; Essletzbichler, P.; Shmakov, S.; Makarova, K.S.; et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol. Cell 2017, 65, 618–630.e7. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, C.; Li, L.; Wasney, G.A.; Min, J. Structural insights into the modulatory role of the accessory protein WYL1 in the Type VI-D CRISPR-Cas system. Nucleic Acids Res. 2019, 47, 5420–5428. [Google Scholar] [CrossRef]
- Chuang, Y.-F.; Wang, P.-Y.; Kumar, S.; Lama, S.; Lin, F.-L.; Liu, G.-S. Methods for in vitro CRISPR/CasRx-mediated RNA editing. Front. Cell Dev. Biol. 2021, 9, 667879. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- Sharma, V.K.; Marla, S.; Zheng, W.G.; Mishra, D.; Huang, J.; Zhang, W.; Morris, G.P.; Cook, D.E. CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biol. 2022, 23, 6. [Google Scholar] [CrossRef]
- Mendez-Mancilla, A.; Wessels, H.-H.; Legut, M.; Kadina, A.; Mabuchi, M.; Walker, J.; Robb, G.B.; Holden, K.; Sanjana, N.E. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells. Cell Chem. Biol. 2021, 29, 321–327. [Google Scholar] [CrossRef]
- Mahas, A.; Aman, R.; Mahfouz, M. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol. 2019, 20, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.-Y.; Li, S.-Q.; Gao, S.-G.; Dong, D.-Y. A one-step platform for screening high-efficient and minimal off-target CRISPR/Cas13 crRNAs to eradicate SARS-CoV-2 virus for treatment of COVID-19 patients. Med. Hypotheses 2022, 159, 110754. [Google Scholar] [CrossRef]
- Mahas, A.; Wang, Q.; Marsic, T.; Mahfouz, M.M. A novel miniature CRISPR-Cas13 system for SARS-CoV-2 diagnostics. ACS Synth. Biol. 2021, 10, 2541–2551. [Google Scholar] [CrossRef]
- Palaz, F.; Kalkan, A.K.; Can, O.; Demir, A.N.; Tozluyurt, A.; Ozcan, A.; Ozsoz, M. CRISPR-Cas13 system as a promising and versatile tool for cancer diagnosis, therapy, and research. ACS Synth. Biol. 2021, 10, 1245–1267. [Google Scholar] [CrossRef] [PubMed]
- Arizti-Sanz, J.; Freije, C.A.; Stanton, A.C.; Petros, B.A.; Boehm, C.K.; Siddiqui, S.; Shaw, B.M.; Adams, G.; Kosoko-Thoroddsen, T.F.; Kemball, M.E.; et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 2020, 11, 5921. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tian, Y.; Xu, L.; Fan, Z.H.; Cao, Y.L.; Ma, Y.M.; Li, H.; Ren, F. CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection. Hepatol. Int. 2022, 16, 306–315. [Google Scholar] [CrossRef]
- Wang, H.; Nakamura, M.; Abbott, T.R.; Zhao, D.; Luo, K.; Yu, C.; Nguyen, C.M.; Lo, A.; Daley, T.P.; La Russa, M.; et al. CRISPR-mediated live imaging of genome editing and transcription. Science 2019, 365, 1301–1305. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.-Z.; Chen, L.-L. Protocol for Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 System. STAR Protoc. 2020, 1, 100037. [Google Scholar] [CrossRef]
- Yang, L.-Z.; Wang, Y.; Li, S.-Q.; Yao, R.-W.; Luan, P.-F.; Wu, H.; Carmichael, G.G.; Chen, L.-L. Dynamic imaging of RNA in living cells by CRISPR-Cas13 systems. Mol. Cell 2019, 76, 981–997. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, S.; Cao, L.; Luo, Y.; Du, H.; Li, S.; Zhang, Z.; Guo, X.; Tian, W.; Wong, C.C.; et al. CBRPP: A new RNA-centric method to study RNA-protein interactions. RNA Biol. 2021, 18, 1608–1621. [Google Scholar] [CrossRef]
- Chen, M.; Sui, T.T.; Yang, L.; Qian, Y.Q.; Liu, Z.Q.; Liu, Y.S.; Wang, G.R.; Lai, L.X.; Li, Z.J. Live imaging of RNA and RNA splicing in mammalian cells via the dcas13a-SunTag-BiFC system. Biosens. Bioelectron. 2022, 204, 11. [Google Scholar] [CrossRef]
- Abbott, T.R.; Dhamdhere, G.; Liu, Y.; Lin, X.; Goudy, L.; Zeng, L.; Chemparathy, A.; Chmura, S.; Heaton, N.S.; Debs, R.; et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and ifluenza. Cell 2020, 181, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Techakriengkrai, N.; Nedumpun, T.; Suradhat, S. Abrogation of PRRSV infectivity by CRISPR-Cas13b-mediated viral RNA cleavage in mammalian cells. Sci. Rep. 2020, 10, 9617. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Y.; Ye, J.; Cao, X.; Xu, C.; Chen, B.; An, H.; Jiao, Y.; Zhang, F.; Yang, X.; et al. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnol. J. 2019, 17, 1185–1187. [Google Scholar] [CrossRef]
- Ashraf, M.U.; Salman, H.M.; Khalid, M.F.; Khan, M.H.F.; Anwar, S.; Afzal, S.; Idrees, M.; Chaudhary, S.U. CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy. Biomed. Pharmacother. 2021, 136, 111239. [Google Scholar] [CrossRef]
- Bagchi, R.; Tinker-Kulberg, R.; Supakar, T.; Chamberlain, S.; Ligaba-Osena, A.; Josephs, E.A. Polyvalent Guide RNAs for CRISPR Antivirals. Biophys. J. 2021, 121, 422a. [Google Scholar] [CrossRef]
- Xiao, Q.Q.; Xu, Z.J.; Xue, Y.Y.; Xu, C.L.; Han, L.; Liu, Y.H.; Wang, F.; Zhang, R.Z.; Han, S.; Wang, X.; et al. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor. Sci. Transl. Med. 2022, 14, 12. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Li, X.; Wang, Y.; Huang, X.; Gao, J.; Hu, X. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing. Cell Commun. Signal. 2021, 19, 84. [Google Scholar] [CrossRef]
- Kaminski, M.M.; Alcantar, M.A.; Lape, I.T.; Greensmith, R.; Huske, A.C.; Valeri, J.A.; Marty, F.M.; Klambt, V.; Azzi, J.; Akalin, E.; et al. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat. Biomed. Eng. 2020, 4, 601–609. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Hoenisch, R.C.; Chang, Y.; Bao, X.P.; Cameron, C.E.; Lian, X.L. Robust genome and RNA editing via CRISPR nucleases in PiggyBac systems. Bioact. Mater. 2022, 14, 313–320. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, L.; Zhang, Y.; Fang, D. Alleviation of neurological disease by RNA editing. Methods 2021, 194, 94–99. [Google Scholar] [CrossRef]
- Powell, J.E.; Lim, C.K.W.; Krishnan, R.; McCallister, T.X.; Saporito-Magrina, C.; Zeballos, M.A.; McPheron, G.D.; Gaj, T. Targeted gene silencing in the nervous system with CRISPR-Cas13. Sci. Adv. 2022, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, M.; Munir, M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front. Microbiol. 2021, 12, 743580. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Zhou, X.; Huang, R.; Xing, D. High-Fidelity and Rapid Quantification of miRNA Combining crRNA Programmability and CRISPR/Cas13a trans-Cleavage Activity. Anal. Chem. 2019, 91, 5278–5285. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, L.; Liang, J.; Cheng, K.; Wang, Y.; Li, X.; Shi, J.; Wang, Y.; Nie, G. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett. 2018, 431, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Azmi, I.; Faizan, M.I.; Kumar, R.; Raj Yadav, S.; Chaudhary, N.; Kumar Singh, D.; Butola, R.; Ganotra, A.; Datt Joshi, G.; Deep Jhingan, G.; et al. A Saliva-Based RNA Extraction-Free Workflow Integrated With Cas13a for SARS-CoV-2 Detection. Front. Cell. Infect. Microbiol. 2021, 11, 632646. [Google Scholar] [CrossRef]
- Yin, D.D.; Yin, L.; Wang, J.R.; Shen, X.H.; Pan, X.C.; Hou, H.Y.; Zhao, R.H.; Hu, X.M.; Wang, G.J.; Qi, K.Z.; et al. Visual Detection of Duck Tembusu Virus With CRISPR/Cas13: A Sensitive and Specific Point-of-Care Detection. Front. Cell. Infect. Microbiol. 2022, 12, 8. [Google Scholar] [CrossRef]
- Tian, S.H.; Liu, Y.; Appleton, E.; Wang, H.; Church, G.M.; Dong, M. Targeted intracellular delivery of Cas13 and Cas9 nucleases using bacterial toxin-based platforms. Cell Rep. 2022, 38, 22. [Google Scholar] [CrossRef]
- Noureen, A.; Khan, M.Z.; Amin, I.; Zainab, T.; Ahmad, N.; Haider, S.; Mansoor, S. Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in Solanum tuberosum crop. GM Crop. Food 2022, 13, 97–111. [Google Scholar] [CrossRef]
- Singh, A.; Bhatia, P. Effective Downregulation of BCR-ABL Tumorigenicity by RNA Targeted. Curr. Gene Ther. 2021, 21, 270–277. [Google Scholar] [CrossRef]
- Saifullah, S.; Sakari, M.; Suzuki, T.; Yano, S.; Tsukahara, T. The CRISPR-Cas13a gene-editing system underlies a potential therapeutic strategy for EML4-ALK-positive lung cancer cells. Ann. Oncol. 2021, 32, S347. [Google Scholar] [CrossRef]
- Zhou, T.; Huang, R.; Huang, M.Q.; Shen, J.J.; Shan, Y.Y.; Xing, D. CRISPR/Cas13a Powered Portable Electrochemiluminescence Chip for Ultrasensitive and Specific MiRNA Detection. Adv. Sci. 2020, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. CRISPR-Cas13 as an Antiviral Strategy for Coronavirus Disease 2019. Cris. J. 2020, 3, 140–142. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.Y.; Ma, J.; Li, Z.Q.; You, L.L.; Wang, J.Y.; Wang, M.; Zhang, X.Z.; Wang, Y.L. The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell 2017, 170, 714–726.e10. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.X.; Liang, D.M.; Wilusz, J.E. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. 2022, 50, 16. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.Y.; Ttofali, F.; Slotkowski, R.A.; Denny, S.R.; Cecil, T.D.; Leenay, R.T.; Keung, A.J.; Beisel, C.L. Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nat. Commun. 2019, 10, 14. [Google Scholar] [CrossRef]
- Aman, R.; Ali, Z.; Butt, H.; Mahas, A.; Aljedaani, F.; Khan, M.Z.; Ding, S.; Mahfouz, M. RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018, 19, 1. [Google Scholar] [CrossRef]
- Liu, T.Y.; Knott, G.J.; Smock, D.C.J.; Desmarais, J.J.; Son, S.; Bhuiya, A.; Jakhanwal, S.; Prywes, N.; Agrawal, S.; de Leon Derby, M.D.; et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 2021, 17, 982–988. [Google Scholar] [CrossRef]
- Tambe, A.; East-Seletsky, A.; Knott, G.J.; Doudna, J.A.; O’Connell, M.R. RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. Cell Rep. 2018, 24, 1025–1036. [Google Scholar] [CrossRef]
- Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science 2017, 358, 1019–1027. [Google Scholar] [CrossRef]
- Wilson, C.; Chen, P.J.; Miao, Z.; Liu, D.R. Programmable m(6)A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 2020, 38, 1431–1440. [Google Scholar] [CrossRef]
- Kushawah, G.; Hernandez-Huertas, L.; Abugattas-Nuñez del Prado, J.; Martinez-Morales, J.R.; DeVore, M.L.; Hassan, H.; Moreno-Sanchez, I.; Tomas-Gallardo, L.; Diaz-Moscoso, A.; Monges, D.E.; et al. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev. Cell 2020, 54, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhao, B.S.; Myers, S.A.; Carr, S.A.; He, C.; Ting, A.Y. RNA-protein interaction mapping via MS2-or Cas13-based APEX targeting. Proc. Natl. Acad. Sci. USA 2020, 117, 22068–22079. [Google Scholar] [CrossRef] [PubMed]
- Wessels, H.H.; Mendez-Mancilla, A.; Guo, X.Y.; Legut, M.; Daniloski, Z.; Sanjana, N.E. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 2020, 38, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, J.; Zhu, Z.; Zhu, Z.; Liao, X.; Wu, J.; Cheng, J.; Zhang, X.; Mei, H.; Yang, G. CRISPR-Cas13-mediated knockdown of IncRNA-GACAT3 inhibited cell proliferation and motility, and induced apoptosis by increasing p21, Bax, and E-cadherin expression in bladder cancer. Front. Mol. Biosci. 2021, 7, 627774. [Google Scholar] [CrossRef] [PubMed]
- Zeballos, M.A.C.; Moore, H.; Powell, J.E.; Gaj, T. CRISPR-Cas13-Mediated knockdown of Ataxin-2 in a stress granule cell model and a TDP-43 rodent model. Mol. Ther. 2021, 29, 281. [Google Scholar]
- Buchman, A.; Brogan, D.J.; Sun, R.C.; Yang, T.; Hsu, P.; Akbari, O.S. Programmable RNA targeting using CasRx in flies. Cris. J. 2020, 3, 164–176. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef]
- Khan, W.A.; Barney, R.E.; Tsongalis, G.J. CRISPR-cas13 enzymology rapidly detects SARS-CoV-2 fragments in a clinical setting. J. Clin. Virol. 2021, 145, 105019. [Google Scholar] [CrossRef]
- Fozouni, P.; Son, S.; de León Derby, M.D.; Knott, G.J.; Gray, C.N.; D’Ambrosio, M.V.; Zhao, C.; Switz, N.A.; Kumar, G.R.; Stephens, S.I.; et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333. [Google Scholar] [CrossRef]
- Ackerman, C.M.; Myhrvold, C.; Thakku, S.G.; Freije, C.A.; Metsky, H.C.; Yang, D.K.; Ye, S.H.; Boehm, C.K.; Kosoko-Thoroddsen, T.-S.F.; Kehe, J.; et al. Massively multiplexed nucleic acid detection with Cas13. Nature 2020, 582, 277–282. [Google Scholar] [CrossRef]
- Cunningham, C.H.; Hennelly, C.M.; Lin, J.T.; Ubalee, R.; Boyce, R.M.; Mulogo, E.M.; Hathaway, N.; Thwai, K.L.; Phanzu, F.; Kalonji, A.; et al. A novel CRISPR-based malaria diagnostic capable of Plasmodium detection, species differentiation, and drug-resistance genotyping. Ebiomedicine 2021, 68, 103415. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; van den Bogaard, P.; Rifkin, S.A.; van Oudenaarden, A.; Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 2008, 5, 877–879. [Google Scholar] [CrossRef]
- Heaton, S.M. Harnessing host-virus evolution in antiviral therapy and immunotherapy. Clin. Transl. Immunol. 2019, 8, e1067. [Google Scholar] [CrossRef] [PubMed]
- Freije, C.A.; Myhrvold, C.; Boehm, C.K.; Lin, A.E.; Welch, N.L.; Carter, A.; Metsky, H.C.; Luo, C.Y.; Abudayyeh, O.O.; Gootenberg, J.S.; et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell 2019, 76, 826–837. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Zhang, Y.; Pandolfi, P.P. Virus against virus: A potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020, 30, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Sun, M.X.; Lian, Y.X.; Wang, T.Y.; Jia, M.Y.; Leng, C.L.; Chen, M.; Bai, Y.Z.; Meng, F.D.; Cai, X.H.; et al. CRISPR-Cas13d Exhibits Robust Antiviral Activity Against Seneca Valley Virus. Front. Microbiol. 2022, 13, 835040. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yan, Z.; Wu, X.; Zhang, M.; Xu, C.; Shi, L.; Yang, H.; Fang, K. Ptbp1 knockdown in mouse striatum did not induce astrocyte-to-neuron conversion using HA-tagged labeling system. bioRxiv 2022. [Google Scholar] [CrossRef]
- Moller, D.E. Metabolic disease drug discovery—“Hitting the Target” is easier said than done. Cell Metab. 2012, 15, 19–24. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Peng, W.; Huang, J.; Zhang, H.; Zhou, Y.; Yang, X.; Liu, J.; Li, Z.; Xu, C.; Xue, M.; et al. Modulation of metabolic functions through Cas13d-mediated gene knockdown in liver. Protein Cell 2020, 11, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Rezaei, N. CRISPR/Cas13: A potential therapeutic option of COVID-19. Biomed. Pharmacother. 2020, 131, 110738. [Google Scholar] [CrossRef]
- Abbaszadeh-Goudarzi, K.; Nematollahi, M.H.; Khanbabaei, H.; Nave, H.H.; Mirzaei, H.R.; Pourghadamyari, H.; Sahebkar, A. Targeted delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2. Curr. Pharm. Biotechnol. 2021, 22, 1149–1155. [Google Scholar] [CrossRef]
- Gao, J.L.; Luo, T.; Lin, N.; Zhang, S.Y.; Wang, J.K. A New Tool for CRISPR-Cas13a-Based Cancer Gene Therapy. Mol. Ther.-Oncolytics 2020, 19, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.X.; Liu, X.; Zhou, J.H.; Yang, C.; Wang, G.X.; Tan, Y.L.; Wu, Y.; Zhang, S.J.; Yi, K.K.; Kang, C.S. The CRISPR-Cas13a Gene-Editing System Induces Collateral Cleavage of RNA in Glioma Cells. Adv. Sci. 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhang, B.; He, Y.; Sun, Z.; Li, J.; Li, Y.; Yi, H.; Zhao, Y.; Zou, X.; Li, Y.; et al. CRISPR-iPAS: A novel dCAS13-based method for alternative polyadenylation interference. Nucleic Acids Res. 2022, 50, e26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, Y.; Yuan, F. Emerging applications of catalytically inactive CRISPR-Cas13 system in mRNA engineering. Biomed. Eng. Commun. 2022, 1, 2. [Google Scholar]
- Kordys, M.; Sen, R.; Warkocki, Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. Wiley Interdiscip. Rev.-RNA 2021, 13, e1694. [Google Scholar] [CrossRef]
- Rauch, S.; Dickinson, B.C. Targeted m(6)A reader proteins to study the epitranscriptome. In Chemical and Synthetic Biology Approaches to Understand Cellular Functions—Part A; Rauch, S., Dickinson, B.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 621, pp. 1–16. [Google Scholar]
- Abudayyeh, O.O.; Gootenberg, J.S.; Franklin, B.; Koob, J.; Kellner, M.J.; Ladha, A.; Joung, J.; Kirchgatterer, P.; Cox, D.B.T.; Zhang, F. A cytosine deaminase for programmable single-base RNA editing. Science 2019, 365, 382–386. [Google Scholar] [CrossRef]
- Zhou, H.; Su, J.; Hu, X.; Zhou, C.; Li, H.; Chen, Z.; Xiao, Q.; Wang, B.; Wu, W.; Sun, Y.; et al. Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 2020, 181, 590–603.e16. [Google Scholar] [CrossRef] [PubMed]
Cas Effectors | Cas9 | Cas13 |
---|---|---|
Protein size | ~1100 aa | ~775–1250 aa |
Targeted substrate | dsDNA | RNA |
PAM/PFS | The PAM region of spCas9 was NGG, while that of saCas9 was NNGRRT | Different Cas13 family types have different PFS requirements, among which Cas13a tends to A, U, and C, Cas13b tends to A, U, and G, while Cas13d and Cas13X have not been found to have PFS. |
Targeted site distribution | Due to the limitation of the PAM region of Cas9, the distribution of editable sites is relatively general. | Due to the limitation of the PAM region of Cas13a and Cas13b, the distribution of editable sites is relatively general. However, for Cas13d and Cas13X, no obvious PFS region has been found, which has an extensive selection of editing sites. |
Trans-cleavage | No trans-cleavage activity was found | Cas13a, Cas13b, and Cas13X were found to have significant trans-cleavage activity. |
Damage to organisms | There’s permanent damage to the genome | Because the Cas13 family effectors target editing at the RNA level, they rarely cause permanent genetic damage to cells or organisms. |
Application | Knockin and knockout of genes; single base mutation in DNA; epigenetic regulation | Basic biochemical research; nucleic acid detection and diagnosis; nucleic acid imaging technology; antiviral applications; disease treatment strategies based on CRISPR/Cas13 |
Cas Effectors | Cas13a (VI-A) | Cas13b (VI-B) | Cas13d (VI-D) | Cas13x (VI-X) |
---|---|---|---|---|
Cas protein size | ~1250 aa | ~1150 aa | ~930 aa | ~775–805 aa |
Protospacer-flanking site (PFS) | A, U and C | A, U and G | no PFS constraints | no PFS constraints |
Architecture | REC and NUC lobes | pyramidal (binary complex) | REC and NUC lobes | REC and NUC lobes |
pre-crRNA processing site | Helical-1 and HEPN-2 domains | RRI-2 domain | HEPN-2 domain | not process |
Direct repeat lengths | 35–39 nt | 36 nt | 36 nt | 36 nt |
Orientation (repeat to spacer) | 5′–3′ | 3′–5′ | 5′–3′ | 3′–5′ |
Application Field | Cas Effectors | Efficiency | Application |
---|---|---|---|
Basic biochemical research | Cas13a | Medium | RNA knockdown, Nucleic acid detection [46] |
Cas13a | 2 × 103 copies/mL | Nucleic acid detection (SHERLOCK) [47] | |
Cas13a | High (90%) | Virus interference, transcript targeting guide-induced, gene silencing [48] | |
Cas13d | High (89%) | Chemically modified crRNAs can modify the transcriptome of human primary T cells [49] | |
Cas13a | 40.4–83.9% | Demonstrates the RNA-guided RNase activity of the Cas13a [46] | |
Cas13b | Discovery and biochemical activity of Cas13b [43] | ||
Cas13a, Cas13b | RNA interference, virus interference, and virus resistance [50] | ||
Cas13d | 34–46% | Therapeutic potential, generation of AAV all-in-one vector consisting of up to three pre-sgRNAs for effective knockdown of VEGFA gene expression [45] | |
Cas13d | Discovery and biochemical activity of Cas13d [36] | ||
Cas13X | Discovered Cas13x effector; exhibited robust editing efficiency and high specificity to induce RNA base conversions [13] | ||
Nucleic acid detection | Cas13a | Medium | Nucleic acid detection (SHERLOCKv2) [47] |
Cas13a | High | One-step experimental screening system, diagnostics, and therapeutics for COVID-19 [51] | |
Cas13a | High (100%) | RT-LAMP, point-of-care diagnostics, detect SARS-CoV-2 [52] | |
Cas13a | CRISPR diagnostics and targeted cancer therapy [53] | ||
Cas13a | High (90%) | Lateral flow strip, single-step SARS-CoV-2, two-step SARS-CoV-2 assay (SHINE) [54] | |
Cas13a | Hepatitis B virus covalently closed circular DNA detection [55] | ||
Nucleic acid imaging | Cas13d | CRISPR Live-cell fluorescent in situ hybridization (LiveFISH) accurately detects chromosomal disorders and tracks the real-time movement of DNA double-strand breaks [56,57] | |
Cas13b | Dynamic imaging of RNA in living cells, simultaneous visualization of RNA-RNA and DNA-RNA in living cells [58] | ||
Cas13b | RNA-protein interactions identify proteins associated with an endogenous RNA, CRISPR-based RNA proximity proteomics (CBRPP) [59] | ||
Cas13a | Endogenous RNA foci imaging of RNA in the nucleus and cytoplasm in living cells [60] | ||
Antiviral application | Cas13d | 90% | CRISPR-based strategy for RNA-guided viral RNA inhibition and degradation (PAC-MAN) [61] |
Cas13b | 50% | Abrogation of pRRSV infectivity in mammalian cells [62] | |
Cas13a | RNA virus resistance in both dicot and monocot plants [63] | ||
Cas13a | 70–84% | CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) [64] | |
Disease treatment | Cas13d | Using pgRNAs can robustly suppress the propagation of plant RNA viruses [65] | |
Cas13a | GIGS offers a novel and flexible approach to RNA reduction for crop improvement and functional genomics [48] | ||
Cas13X | Rescue of autosomal dominant hearing loss by in vivo delivery [66] | ||
Cas13b | RNA base editing; an efficient RNA base editor, dPspCas13b-RESCUE-NES, a potentially useful tool for biomedical research and genetic disease [67] | ||
Cas13a, Cas13b, Cas13d | A one-step platform for screening high-efficient and minimal off-target CRISPR/Cas13 crRNAs to eradicate the SARS-CoV-2 virus for the treatment of COVID-19 patients [51] | ||
Cas13a | Detects BK polyomavirus DNA and cytomegalovirus DNA from patient-derived blood and urine samples [68] | ||
Cas13d | 100% | PiggyBac systems; Cas13d vector achieved extremely high efficiency in RNA knockdown (98% knockdown for CD90) with optimized gRNA designs [69] | |
Cas13d | 99% | Alleviation of neurological disease by RNA editing [70] | |
Cas13d | Establish RfxCas13d as a versatile platform for knocking down gene expression in the nervous system [71] | ||
Cas13 | 50% | A versatile tool for cancer diagnosis, therapy, and research [72] | |
Cas13 | Cas13s for targeting viral RNA [53] |
Cas Effectors | Name of Plasmid Vector | Use | References |
---|---|---|---|
Cas13a | pET-Sumo-LbuCas13a | Expression plasmid | [73] |
pCas13a-gRNA | Antiviral strategy | [64] | |
pET-Lsh.Cas13a vector | Disease treatment | [74] | |
pC013-Twinstrep SUMO-huLwCas13a | Detection and diagnosis | [75] | |
pMD19T-E | Detection and diagnosis | [76] | |
pC016-LwCas13a-GFP | Disease treatment | [77] | |
pC016-LwCas13a-Ctrl | Disease treatment | [77] | |
pC016-LwCas13a-RdRP | Disease treatment | [77] | |
pC016-LwCas13a-PPIB | Disease treatment | [77] | |
pC016-LwCas13a-CXCR4 | Disease treatment | [77] | |
pC016-LwCas13a-KRAS | Disease treatment | [77] | |
pC016-LwCas13a-N | Disease treatment | [77] | |
pET28a-Cas13a-XLCHN-DTR-His | Disease treatment | [77] | |
pK2GW7-pCas13a vector | Plant resistance | [78] | |
pC016 LwCas13a | Cancer treatment | [79] | |
pC034-LwCas13a-msfGFP-2A-Blast | Cancer treatment | [79] | |
Lentiviral vector (unnamed) | Cancer treatment | [80] | |
pET-Sumo-LbuCas13a expression vector | miRNA detection | [81] | |
pDUAL-HFF1-Cas13a expression vectors | Retrovirus interference | [82] | |
pKS-rrk1-(LshCas13a crRNA)-Control | Retrovirus interference | [82] | |
pET-Sumo-LbuCas13a expression vectors | Basic research | [83] | |
pUb LwaCas13a + LwaCas13a Guide RNA | Expresses LwaCas13a and guide RNA | [84] | |
pLsCas13aGG | Backbone plasmid | [85] | |
puc19-pCas13a | Intermediate/cloning vector | [86] | |
pC015-dLwCas13a-NF | Expresses negative | [46] | |
pC014-LwCas13a-msfGFP | Expresses active LwCas13a | [46] | |
pC035-dLwCas13a-msfGFP | Expresses catalytically inactive LwCas13a | [46] | |
pGJK_His-SUMO-LbuCas13a | Bacterial expression | [87] | |
pDuBir-Lbu-dCas13a-avitag | Dual expression of Lbu-dCas13a and BirA | [88] | |
pC0056-LwCas13a-msfGFP-NES | Expresses active LwaCas13a-NES | [46] | |
pC034-LwCas13a-msfGFP-2A-Blast | Expresses active LwCas13a | [46] | |
p2CT-His-MBP-Lwa_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
p2CT-His-MBP-Lne_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
p2CT-His-MBP-Lba_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
p2CT-His-MBP-Ere_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
p2CT-His-MBP-Cam_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
p2CT-His-MBP-Rca_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
p2CT-His-MBP-Hhe_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
p2CT-His-MBP-Ppr_Cas13a_WT | Bacterial expression for Cas13a | [42] | |
pHAGE-IRES-puro-NLS-dLwaCas13a-EGFP-NLS-3xFlag | Overexpression | [58] | |
pHAGE-IRES-puro-NLS-dLbaCas13a-EGFP-NLS-3xFlag | Overexpression | [58] | |
Cas13b | pUb PspCas13b + PspCas13b guide RNA | Expresses PspCas13b | [84] |
pBzCas13b/pPbcas13b/pBzCas13b/pBzCas13b-HEPN | Bacterial expression for Cas13b | [43] | |
pC0041-RanCas13b crRNA backbone | For cloning of guide RNAs compatible with RanCas13b | [89] | |
pU6-PspCas13b-gRNA-Actb1216 | PspCas13b guide RNA | [90] | |
pAB1620 hU6-BpiI-Cas13bt3-DR | hU6-BpiI-Cas13bt3-DR (crRNA expression) | [38] | |
Cas13d | pUb RxCas13d + RxCas13d guide RNA | Expresses RxCas13d | [84] |
pUb dRxCas13d + RxCas13d guide RNA | Expresses catalytic dead RxCas13d | [84] | |
pT3TS-RfxCas13d-HA | Plasmid to carry out IVT of RfxCas13d | [91] | |
pET28a-MH6-EsCas13d | Expresses E. coli codon-optimized EsCas13d | [36] | |
pET28a-MH6-RspCas13d_RspCasWYL1 | Expresses E. coli codon-optimized RspCas13d and RspCasWYL1 | [36] | |
pT3TS-RfxCas13d-NLS-HA | Plasmid to carry out IVT of RfxCas13d-NLS | [91] | |
dCas13d-dsRBD-APEX2 | TetON-APEX2-V5-BPNLS-dRfxCas13d-dsRBD-BPNLS-P2A-GFP | [92] | |
pET-28b-RfxCas13d-His | Plasmid for bacterial expression and purification of RfxCas13d protein | [91] | |
pSLQ5428_pHR_EF1a-mCherry-P2A-Rfx_Cas13d-2xNLS-3xFLAG | Lentiviral vector encoding Rfx Cas13d fused with 2xNLS, 3xFLAG, and 2A-tagged mCherry | [61] | |
pLentiRNAGuide_002-hU6-RfxCas13d-DR-BsmBI-EFS-Puro-WPRE | For cloning of guide RNAs libraries compatible with RfxCas13d | [93] | |
Cas13X | CMV-Cas13X.1-SV40pA_U6-BbsI-DR_CMV-mCherry-BGHpA | Expression vector for encoding a human codon-optimized Cas13X.1 driven by CMV promoter | [13] |
CMV-dCas13X.1-REPAIRv2-SV40pA_CMV-mCherry-BGHpA_U6-BbsI-DR | Expression vector for encoding a human codon-optimized dCas13X.1-REPAIRv2 driven by CMV promoter | [13] | |
U6-BbsI-DR_CMV-minidCas13X.1-REPAIRv2-BGHpA_CMV-EGFP-BGHpA | Expression vector for encoding a human codon-optimized minidCas13X.1-REPAIRv2 driven by CMV promoter | [13] | |
CMV-dCas13X.1-RESCUE-S-SV40pA_U6-BbsI-DR_CMV-mCherry-P2A-Puro-BGHpA | Expression vector for encoding a human codon-optimized dCas13X.1-RESCUE-S driven by CMV promoter | [13] | |
CMV-minidCas13X.1-RESCUE-S-SV40pA_U6-BbsI-DR_CMV-mCherry-P2A-Puro-BGHpA | Expression vector for encoding a human codon-optimized minidCas13X.1-RESCUE-S driven by CMV promoter | [13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Pei, D.-S. Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. Int. J. Mol. Sci. 2022, 23, 11400. https://doi.org/10.3390/ijms231911400
Liu L, Pei D-S. Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. International Journal of Molecular Sciences. 2022; 23(19):11400. https://doi.org/10.3390/ijms231911400
Chicago/Turabian StyleLiu, Li, and De-Sheng Pei. 2022. "Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family" International Journal of Molecular Sciences 23, no. 19: 11400. https://doi.org/10.3390/ijms231911400
APA StyleLiu, L., & Pei, D. -S. (2022). Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. International Journal of Molecular Sciences, 23(19), 11400. https://doi.org/10.3390/ijms231911400