Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits
Abstract
:1. Introduction
2. Cognitive Profiles in Migraineurs
2.1. Overview
2.2. Small-Vessel Disease, Vascular Dementia, and Genetic Conditions
3. Migraine Drugs, Neurodegenerative Pathways, and Cognition: Protection or Risk?
3.1. Anti-Seizure Medications (ASMs)
3.2. Antidepressants
3.2.1. Tricyclic Antidepressants
3.2.2. Serotonin and Norepinephrine Reuptake Inhibitors and Selective Serotonin Reuptake Inhibitors
3.3. Beta-Blockers
3.4. Calcium Channel Blockers
3.5. Inhibitors of the Renin–Angiotensin System (RAS)
3.6. Anti-CGRP and Gepants
3.7. Triptans and Ditans
3.8. Ergots
3.9. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
4. Discussion
4.1. Migraine and Dementia—The Missing Link
4.2. Migraine Therapies, Cognitive Deficits, and Neurodegenerative Pathways—Final Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bazargan-Hejazi, S.; Dehghan, K.; Edwards, C.; Mohammadi, N.; Attar, S.; Sahraian, M.A.; Eskandarieh, S. The health burden of non-communicable neurological disorders in the USA between 1990 and 2017. Brain Commun. 2020, 2, fcaa097. [Google Scholar] [CrossRef] [PubMed]
- Begasse de Dhaem, O.; Robbins, M.S. Cognitive Impairment in Primary and Secondary Headache Disorders. Curr. Pain Headache Rep. 2022, 26, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-S.; Lin, C.-L.; Lin, M.-C.; Sung, F.-C.; Kao, C.-H. Migraine and risk of dementia: A nationwide retrospective cohort study. Neuroepidemiology 2013, 41, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lim, J.S.; Oh, D.J.; Kong, I.G.; Choi, H.G. Increased risk of neurodegenerative dementia in women with migraines: A nested case-control study using a national sample cohort. Medicine 2019, 98, e14467. [Google Scholar] [CrossRef]
- Morton, R.E.; St. John, P.D.; Tyas, S.L. Migraine and the risk of all-cause dementia, Alzheimer’s disease, and vascular dementia: A prospective cohort study in community-dwelling older adults. Int. J. Geriatr. Psychiatry 2019, 34, 1667–1676. [Google Scholar] [CrossRef]
- Kostev, K.; Bohlken, J.; Jacob, L. Association between Migraine Headaches and Dementia in More than 7400 Patients Followed in General Practices in the United Kingdom. J. Alzheimer’s Dis. 2019, 71, 353–360. [Google Scholar] [CrossRef]
- Cai, X.; Xu, X.; Zhang, A.; Lin, J.; Wang, X.; He, W.; Fang, Y. Cognitive Decline in Chronic Migraine with Nonsteroid Anti-inflammation Drug Overuse: A Cross-Sectional Study. Pain Res. Manag. 2019, 2019, 7307198. [Google Scholar] [CrossRef]
- Daghlas, I.; Rist, P.M.; Chasman, D.I. Effect of genetic liability to migraine on cognition and brain volume: A Mendelian randomization study. Cephalalgia 2020, 40, 998–1002. [Google Scholar] [CrossRef]
- George, K.M.; Folsom, A.R.; Sharrett, A.R.; Mosley, T.H.; Gottesman, R.F.; Hamedani, A.G.; Lutsey, P.L. Migraine Headache and Risk of Dementia in the Atherosclerosis Risk in Communities Neurocognitive Study. Headache J. Head Face Pain 2020, 60, 946–953. [Google Scholar] [CrossRef]
- Baars, M.A.E.; van Boxtel, M.P.J.; Jolles, J. Migraine does not affect cognitive decline: Results from the Maastricht aging study. Headache 2010, 50, 176–184. [Google Scholar] [CrossRef]
- Jelicic, M.; van Boxtel, M.P.; Houx, P.J.; Jolles, J. Does migraine headache affect cognitive function in the elderly? Report from the Maastricht Aging Study (MAAS). Headache 2000, 40, 715–719. [Google Scholar] [CrossRef]
- Lee, H.-J.; Yu, H.; Gil Myeong, S.; Park, K.; Kim, D.-K. Mid- and Late-Life Migraine Is Associated with an Increased Risk of All-Cause Dementia and Alzheimer’s Disease, but Not Vascular Dementia: A Nationwide Retrospective Cohort Study. J. Pers. Med. 2021, 11, 990. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, G.-H.; Li, J.-A.; Yu, P.; Dong, M. Migraine and the risk of dementia: A meta-analysis and systematic review. Aging Clin. Exp. Res. 2022, 34, 1237–1246. [Google Scholar] [CrossRef]
- Bintener, C.; Miller, O.; Georges, J. Dementia in Europe Yearbook 2019: Estimating the prevalence of dementia in Europe. Alzheimer Eur. 2019, 2019, 180. [Google Scholar]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.J.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Jack, C.R.J.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Jetté, N.; Maxwell, C.J.; Fiest, K.M.; Hogan, D.B. Systematic Reviews and Meta-Analyses of the Incidence and Prevalence of Dementia and Its Commoner Neurodegenerative Causes. Can. J. Neurol. Sci. 2016, 43, S1–S2. [Google Scholar] [CrossRef]
- Harrison, W.T.; Lusk, J.B.; Liu, B.; Ervin, J.F.; Johnson, K.G.; Green, C.L.; Wang, S.-H.J. Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is independently associated with dementia and strongly associated with arteriolosclerosis in the oldest-old. Acta Neuropathol. 2021, 142, 917–919. [Google Scholar] [CrossRef]
- Ailani, J.; Burch, R.C.; Robbins, M.S.; The Board of Directors of the American Headache Society. The American Headache Society Consensus Statement: Update on integrating new migraine treatments into clinical practice. Headache J. Head Face Pain 2021, 61, 1021–1039. [Google Scholar] [CrossRef]
- Eigenbrodt, A.K.; Ashina, H.; Khan, S.; Diener, H.-C.; Mitsikostas, D.D.; Sinclair, A.J.; Pozo-Rosich, P.; Martelletti, P.; Ducros, A.; Lantéri-Minet, M.; et al. Diagnosis and management of migraine in ten steps. Nat. Rev. Neurol. 2021, 17, 501–514. [Google Scholar] [CrossRef]
- Sarchielli, P.; Granella, F.; Prudenzano, M.P.; Pini, L.A.; Guidetti, V.; Bono, G.; Pinessi, L.; Alessandri, M.; Antonaci, F.; Fanciullacci, M.; et al. Italian guidelines for primary headaches: 2012 revised version. J. Headache Pain 2012, 13, 31–70. [Google Scholar] [CrossRef] [Green Version]
- Steiner, T.J.; Jensen, R.; Katsarava, Z.; Linde, M.; MacGregor, E.A.; Osipova, V.; Paemeleire, K.; Olesen, J.; Peters, M.; Martelletti, P. Aids to management of headache disorders in primary care (2nd edition). J. Headache Pain 2019, 20, 57. [Google Scholar] [CrossRef]
- De Araújo, C.M.; Barbosa, I.G.; Lemos, S.M.A.; Domingues, R.B.; Teixeira, A.L. Cognitive impairment in migraine:A systematic review. Dement. Neuropsychol. 2012, 6, 74–79. [Google Scholar] [CrossRef]
- Braganza, D.L.; Fitzpatrick, L.E.; Nguyen, M.L.; Crowe, S.F. Interictal Cognitive Deficits in Migraine Sufferers: A Meta-Analysis. Neuropsychol. Rev. 2021, 1, 3. [Google Scholar] [CrossRef]
- Vuralli, D.; Ayata, C.; Bolay, H. Cognitive dysfunction and migraine. J. Headache Pain 2018, 19, 109. [Google Scholar] [CrossRef]
- Gil-Gouveia, R.; Oliveira, A.G.; Martins, I.P. Subjective Cognitive Symptoms During a Migraine Attack: A Prospective Study of a Clinic-Based Sample. Pain Physician 2016, 19, E137–E150. [Google Scholar] [CrossRef]
- Moriarty, O.; McGuire, B.E.; Finn, D.P. The effect of pain on cognitive function: A review of clinical and preclinical research. Prog. Neurobiol. 2011, 93, 385–404. [Google Scholar] [CrossRef]
- Schmitz, N.; Arkink, E.B.; Mulder, M.; Rubia, K.; Admiraal-Behloul, F.; Schoonmann, G.G.; Kruit, M.C.; Ferrari, M.D.; van Buchem, M.A. Frontal lobe structure and executive function in migraine patients. Neurosci. Lett. 2008, 440, 92–96. [Google Scholar] [CrossRef]
- Camarda, C.; Monastero, R.; Pipia, C.; Recca, D.; Camarda, R. Interictal Executive Dysfunction in Migraineurs without Aura: Relationship with Duration and Intensity of Attacks. Cephalalgia 2007, 27, 1094–1100. [Google Scholar] [CrossRef]
- Bashir, A.; Lipton, R.B.; Ashina, S.; Ashina, M. Migraine and structural changes in the brain: A systematic review and meta-analysis. Neurology 2013, 81, 1260–1268. [Google Scholar] [CrossRef]
- Øie, L.R.; Kurth, T.; Gulati, S.; Dodick, D.W. Migraine and risk of stroke. J. Neurol. Neurosurg. Psychiatry 2020, 91, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013, 33, 629–808. [Google Scholar] [CrossRef] [PubMed]
- Hagen, K.; Stordal, E.; Linde, M.; Steiner, T.J.; Zwart, J.-A.; Stovner, L.J. Headache as a risk factor for dementia: A prospective population-based study. Cephalalgia 2014, 34, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, J.; Wang, F.; Chen, X.; Wang, Y. Meta-analysis of association between migraine and risk of dementia. Acta Neurol. Scand. 2022, 145, 87–93. [Google Scholar] [CrossRef]
- Jolly, A.A.; Nannoni, S.; Edwards, H.; Morris, R.G.; Markus, H.S. Prevalence and Predictors of Vascular Cognitive Impairment in Patients with CADASIL. Neurology 2022, 99, e453–e461. [Google Scholar] [CrossRef]
- Kraya, T.; Neumann, L.; Paelecke-Habermann, Y.; Deschauer, M.; Stoevesandt, D.; Zierz, S.; Watzke, S. Cognitive impairment, clinical severity and MRI changes in MELAS syndrome. Mitochondrion 2019, 44, 53–57. [Google Scholar] [CrossRef]
- Stam, A.; Haan, J.; van den Maagdenberg, A.; Ferrari, M.; Terwindt, G. Migraine and Genetic and Acquired Vasculopathies. Cephalalgia 2009, 29, 1006–1017. [Google Scholar] [CrossRef]
- Koemans, E.A.; Voigt, S.; Rasing, I.; van Etten, E.S.; van Zwet, E.W.; van Walderveen, M.A.A.; Wermer, M.J.H.; Terwindt, G.M. Migraine with Aura as Early Disease Marker in Hereditary Dutch-Type Cerebral Amyloid Angiopathy. Stroke 2020, 51, 1094–1099. [Google Scholar] [CrossRef]
- Ringman, J.M.; Romano, J.D.; Medina, L.D.; Rodriguez-Agudelo, Y.; Schaffer, B.; Varpetian, A.; Ortiz, F.; Fitten, L.J.; Cummings, J.L.; Baloh, R.W. Increased Prevalence of Significant Recurrent Headache in Preclinical Familial Alzheimer’s Disease Mutation Carriers. Dement. Geriatr. Cogn. Disord. 2008, 25, 380–384. [Google Scholar] [CrossRef]
- Bagnato, F.; Good, J. The Use of Antiepileptics in Migraine Prophylaxis. Headache J. Head Face Pain 2016, 56, 603–615. [Google Scholar] [CrossRef]
- Cozzolino, O.; Marchese, M.; Trovato, F.; Pracucci, E.; Ratto, G.M.; Buzzi, M.G.; Sicca, F.; Santorelli, F.M. Understanding Spreading Depression from Headache to Sudden Unexpected Death. Front. Neurol. 2018, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Mula, M.; Cavanna, A.E.; Monaco, F. Psychopharmacology of topiramate: From epilepsy to bipolar disorder. Neuropsychiatr. Dis. Treat. 2006, 2, 475–488. [Google Scholar] [CrossRef]
- Shalaby, H.N.; El-Tanbouly, D.M.; Zaki, H.F. Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors. Food Chem. Toxicol. 2018, 118, 227–234. [Google Scholar] [CrossRef]
- Motaghinejad, M.; Motevalian, M.; Fatima, S. Mediatory role of NMDA, AMPA/kainate, GABAA and Alpha2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci. 2017, 179, 37–53. [Google Scholar] [CrossRef]
- Kockelmann, E.; Elger, C.E.; Helmstaedter, C. Cognitive profile of topiramate as compared with lamotrigine in epilepsy patients on antiepileptic drug polytherapy: Relationships to blood serum levels and comedication. Epilepsy Behav. 2004, 5, 716–721. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Lee, H.-W.; Jung, D.-K.; Suh, C.-K.; Park, S.-P. Cognitive Effects of Low-dose Topiramate Compared with Oxcarbazepine in Epilepsy Patients. J. Clin. Neurol. 2006, 2, 126. [Google Scholar] [CrossRef]
- Fritz, N.; Glogau, S.; Hoffmann, J.; Rademacher, M.; Elger, C.E.; Helmstaedter, C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav. 2005, 6, 373–381. [Google Scholar] [CrossRef]
- Fröscher, W.; Schier, K.R.; Hoffmann, M.; Meyer, A.; May, T.W.; Rambeck, B.; Rösche, J. Topiramate: A prospective study on the relationship between concentration, dosage and adverse events in epileptic patients on combination therapy. Epileptic Disord. 2005, 7, 237–248. [Google Scholar]
- Gomer, B.; Wagner, K.; Frings, L.; Saar, J.; Carius, A.; Härle, M.; Steinhoff, B.J.; Schulze-Bonhage, A. The influence of antiepileptic drugs on cognition: A comparison of levetiracetam with topiramate. Epilepsy Behav. 2007, 10, 486–494. [Google Scholar] [CrossRef]
- Jung, K.-Y.; Cho, J.-W.; Joo, E.Y.; Kim, S.H.; Choi, K.M.; Chin, J.; Park, K.-W.; Hong, S.B. Cognitive effects of topiramate revealed by standardised low-resolution brain electromagnetic tomography (sLORETA) of event-related potentials. Clin. Neurophysiol. 2010, 121, 1494–1501. [Google Scholar] [CrossRef]
- Naegel, S.; Obermann, M. Topiramate in the prevention and treatment of migraine: Efficacy, safety and patient preference. Neuropsychiatr. Dis. Treat. 2009, 6, 17–28. [Google Scholar] [CrossRef]
- Mula, M. Topiramate and cognitive impairment: Evidence and clinical implications. Ther. Adv. Drug Saf. 2012, 3, 279–289. [Google Scholar] [CrossRef]
- Coppola, G.; Verrotti, A.; Resicato, G.; Ferrarelli, S.; Auricchio, G.; Operto, F.F.; Pascotto, A. Topiramate in children and adolescents with epilepsy and mental retardation: A prospective study on behavior and cognitive effects. Epilepsy Behav. 2008, 12, 253–256. [Google Scholar] [CrossRef]
- Kanner, A.M.; Wuu, J.; Faught, E.; Tatum, W.O.; Fix, A.; French, J.A. A past psychiatric history may be a risk factor for topiramate-related psychiatric and cognitive adverse events. Epilepsy Behav. 2003, 4, 548–552. [Google Scholar] [CrossRef]
- Wandschneider, B.; Burdett, J.; Townsend, L.; Hill, A.; Thompson, P.J.; Duncan, J.S.; Koepp, M.J. Effect of topiramate and zonisamide on fMRI cognitive networks. Neurology 2017, 88, 1165–1171. [Google Scholar] [CrossRef]
- Johannessen, C. Mechanisms of action of valproate: A commentatory. Neurochem. Int. 2000, 37, 103–110. [Google Scholar] [CrossRef]
- Meador, K.J.; Loring, D.W.; Hulihan, J.F.; Kamin, M.; Karim, R. Differential cognitive and behavioral effects of topiramate and valproate. Neurology 2003, 60, 1483–1488. [Google Scholar] [CrossRef]
- Prevey, M.L. Effect of Valproate on Cognitive Functioning. Arch. Neurol. 1996, 53, 1008. [Google Scholar] [CrossRef]
- Ristić, A.J.; Vojvodić, N.; Janković, S.; Sindelić, A.; Sokić, D. The Frequency of Reversible Parkinsonism and Cognitive Decline Associated with Valproate Treatment: A Study of 364 Patients with Different Types of Epilepsy. Epilepsia 2006, 47, 2183–2185. [Google Scholar] [CrossRef]
- Acosta, G.B.; Wikinski, S.I.; Bonelli, C.C.G.; Rubio, M.C. Chronic administration of valproic acid induces a decrease in rat striatal glutamate and taurine levels. Amino Acids 1996, 10, 123–131. [Google Scholar] [CrossRef]
- Xuan, A.-G.; Pan, X.-B.; Wei, P.; Ji, W.-D.; Zhang, W.-J.; Liu, J.-H.; Hong, L.-P.; Chen, W.-L.; Long, D.-H. Valproic Acid Alleviates Memory Deficits and Attenuates Amyloid-β Deposition in Transgenic Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2015, 51, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Maneuf, Y.P.; Luo, Z.D.; Lee, K. α2δ and the mechanism of action of gabapentin in the treatment of pain. Semin. Cell Dev. Biol. 2006, 17, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Dodrill, C.B.; Arnett, J.L.; Hayes, A.G.; Garofalo, E.A.; Greeley, C.A.; Greiner, M.J.; Pierce, M.W. Cognitive abilities and adjustment with gabapentin: Results of a multisite study. Epilepsy Res. 1999, 35, 109–121. [Google Scholar] [CrossRef]
- Meador, K.J.; Loring, D.W.; Ray, P.G.; Murro, A.M.; King, D.W.; Nichols, M.E.; Deer, E.M.; Goff, W.T. Differential Cognitive Effects of Carbamazepine and Gabapentin. Epilepsia 1999, 40, 1279–1285. [Google Scholar] [CrossRef]
- Leach, J.P.; Girvan, J.; Paul, A.; Brodie, M.J. Gabapentin and cognition: A double blind, dose ranging, placebo controlled study in refractory epilepsy. J. Neurol. Neurosurg. Psychiatry 1997, 62, 372–376. [Google Scholar] [CrossRef]
- Salinsky, M.C.; Binder, L.M.; Oken, B.S.; Storzbach, D.; Aron, C.R.; Dodrill, C.B. Effects of Gabapentin and Carbamazepine on the EEG and Cognition in Healthy Volunteers. Epilepsia 2002, 43, 482–490. [Google Scholar] [CrossRef]
- Shem, K.; Barncord, S.; Flavin, K.; Mohan, M. Adverse cognitive effect of gabapentin in individuals with spinal cord injury: Preliminary findings. Spinal Cord Ser. Cases 2018, 4, 9. [Google Scholar] [CrossRef]
- Yan, B.C.; Wang, J.; Rui, Y.; Cao, J.; Xu, P.; Jiang, D.; Zhu, X.; Won, M.-H.; Bo, P.; Su, P. Neuroprotective Effects of Gabapentin Against Cerebral Ischemia Reperfusion-Induced Neuronal Autophagic Injury via Regulation of the PI3K/Akt/mTOR Signaling Pathways. J. Neuropathol. Exp. Neurol. 2019, 78, 157–171. [Google Scholar] [CrossRef]
- Taylor, C.P.; Angelotti, T.; Fauman, E. Pharmacology and mechanism of action of pregabalin: The calcium channel α2–δ (alpha2–delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res. 2007, 73, 137–150. [Google Scholar] [CrossRef]
- Cain, S.M.; Bohnet, B.; LeDue, J.; Yung, A.C.; Garcia, E.; Tyson, J.R.; Alles, S.R.A.; Han, H.; van den Maagdenberg, A.M.J.M.; Kozlowski, P.; et al. In vivo imaging reveals that pregabalin inhibits cortical spreading depression and propagation to subcortical brain structures. Proc. Natl. Acad. Sci. USA 2017, 114, 2401–2406. [Google Scholar] [CrossRef]
- Salinsky, M.; Storzbach, D.; Munoz, S. Cognitive effects of pregabalin in healthy volunteers: A double-blind, placebo-controlled trial. Neurology 2010, 74, 755–761. [Google Scholar] [CrossRef]
- Demir, C.F.; Balduz, M.; Taşcı, İ.; Kuloğlu, T. Protective effect of pregabalin on the brain tissue of diabetic rats. Diabetol. Int. 2021, 12, 207–216. [Google Scholar] [CrossRef]
- Sadleir, K.R.; Popovoic, J.; Zhu, W.; Reidel, C.T.; Do, H.; Silverman, R.B.; Vassar, R. Pregabalin Treatment does not Affect Amyloid Pathology in 5XFAD Mice. Curr. Alzheimer Res. 2021, 18, 283–297. [Google Scholar] [CrossRef]
- Placidi, F.; Marciani, M.G.; Diomedi, M.; Scalise, A.; Giacomini, P.; Gigli, G.L. Effects of lamotrigine on nocturnal sleep, daytime somnolence and cognitive functions in focal epilepsy. Acta Neurol. Scand. 2000, 102, 81–86. [Google Scholar] [CrossRef]
- Goldsmith, D.R.; Wagstaff, A.J.; Ibbotson, T.; Perry, C.M. Lamotrigine. Drugs 2003, 63, 2029–2050. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Zheng, C.-Y.; Zou, M.-M.; Zhu, J.-W.; Zhang, Y.; Wang, J.; Liu, C.-F.; Li, Q.-F.; Xiao, Z.-C.; Li, S.; et al. Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiol. Aging 2014, 35, 2713–2725. [Google Scholar] [CrossRef]
- Ciesielski, A.-S.; Samson, S.; Steinhoff, B.J. Neuropsychological and psychiatric impact of add-on titration of pregabalin versus levetiracetam: A comparative short-term study. Epilepsy Behav. 2006, 9, 424–431. [Google Scholar] [CrossRef]
- López-Góngora, M.; Martínez-Domeño, A.; García, C.; Escartín, A. Effect of levetiracetam on cognitive functions and quality of life: A one-year follow-up study. Epileptic Disord. 2008, 10, 297–305. [Google Scholar] [CrossRef]
- Sanz-Blasco, S.; Piña-Crespo, J.C.; Zhang, X.; McKercher, S.R.; Lipton, S.A. Levetiracetam inhibits oligomeric Aβ-induced glutamate release from human astrocytes. Neuroreport 2016, 27, 705–709. [Google Scholar] [CrossRef]
- Park, S.-P.; Kim, S.-Y.; Hwang, Y.-H.; Lee, H.-W.; Suh, C.-K.; Kwon, S.-H. Long-Term Efficacy and Safety of Zonisamide Monotherapy in Epilepsy Patients. J. Clin. Neurol. 2007, 3, 175. [Google Scholar] [CrossRef]
- He, Y.-X.; Shen, Q.-Y.; Tian, J.-H.; Wu, Q.; Xue, Q.; Zhang, G.-P.; Wei, W.; Liu, Y.-H. Zonisamide Ameliorates Cognitive Impairment by Inhibiting ER Stress in a Mouse Model of Type 2 Diabetes Mellitus. Front. Aging Neurosci. 2020, 12, 192. [Google Scholar] [CrossRef]
- Thour, A.; Marwaha, R. Amitriptyline; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sprenger, T.; Viana, M.; Tassorelli, C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics 2018, 15, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Wang, Q.; Fu, Q.; Ye, Q.; Xiao, H.; Wan, Q. Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons. Brain Res. 2010, 1336, 1–9. [Google Scholar] [CrossRef]
- Hiroki, T.; Suto, T.; Saito, S.; Obata, H. Repeated Administration of Amitriptyline in Neuropathic Pain. Anesth. Analg. 2017, 125, 1281–1288. [Google Scholar] [CrossRef]
- Wein, A.J. Re: A Systematic Review of Amnestic and Non-Amnestic Mild Cognitive Impairment Induced by Anticholinergic, Antihistamine, GABAergic and Opioid Drugs. J. Urol. 2013, 190, 2168–2169. [Google Scholar] [CrossRef]
- Pfistermeister, B.; Tümena, T.; Gaßmann, K.G.; Maas, R.; Fromm, M.F. Anticholinergic burden and cognitive function in a large German cohort of hospitalized geriatric patients. PLoS ONE 2017, 12, e0171353. [Google Scholar] [CrossRef]
- Meng, D.; Mohammadi-Nejad, A.-R.; Sotiropoulos, S.N.; Auer, D.P.; Alzheimer’s Disease Neuroimaging Initiative. Anticholinergic drugs and forebrain magnetic resonance imaging changes in cognitively normal people and those with mild cognitive impairment. Eur. J. Neurol. 2022, 29, 1344–1353. [Google Scholar] [CrossRef]
- Okamura, N.; Yanai, K.; Higuchi, M.; Sakai, J.; Iwata, R.; Ido, T.; Sasaki, H.; Watanabe, T.; Itoh, M. Functional neuroimaging of cognition impaired by a classical antihistamine, d-chlorpheniramine. Br. J. Pharmacol. 2000, 129, 115–123. [Google Scholar] [CrossRef]
- Jang, S.W.; Liu, X.; Chan, C.B.; Weinshenker, D.; Hall, R.A.; Xiao, G.; Ye, K. Amitriptyline is a TrkA and TrkB Receptor Agonist that Promotes TrkA/TrkB Heterodimerization and Has Potent Neurotrophic Activity. Chem. Biol. 2009, 16, 644–656. [Google Scholar] [CrossRef]
- Kandil, E.A.; Abdelkader, N.F.; El-Sayeh, B.M.; Saleh, S. Imipramine and amitriptyline ameliorate the rotenone model of Parkinson’s disease in rats. Neuroscience 2016, 332, 26–37. [Google Scholar] [CrossRef]
- Lauterbach, E.C.; Shillcutt, S.D.; Victoroff, J.; Coburn, K.L.; Mendez, M.F. Psychopharmacological neuroprotection in neurodegenerative disease: Heuristic clinical applications. J. Neuropsychiatry Clin. Neurosci. 2010, 22, 130–154. [Google Scholar] [CrossRef] [PubMed]
- Burch, R. Antidepressants for Preventive Treatment of Migraine. Curr. Treat. Options Neurol. 2019, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Ibor, J.J.L.; Carrasco, J.L.; Prieto, R.; García-Calvo, C. Effectiveness and safety of venlafaxine extended release in elderly depressed patients. Arch. Gerontol. Geriatr. 2008, 46, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Suwała, J.; Machowska, M.; Wiela-Hojeńska, A. Venlafaxine pharmacogenetics: A comprehensive review. Pharmacogenomics 2019, 20, 829–845. [Google Scholar] [CrossRef]
- Hedayat, M.; Nazarbaghi, S.; Heidari, M.; Sharifi, H. Venlafaxine can reduce the migraine attacks as well as amitriptyline: A noninferiority randomized trial. Clin. Neurol. Neurosurg. 2022, 214, 107151. [Google Scholar] [CrossRef]
- Zhang, Y.; Bi, X.; Adebiyi, O.; Wang, J.; Mooshekhian, A.; Cohen, J.; Wei, Z.; Wang, F.; Li, X.-M. Venlafaxine Improves the Cognitive Impairment and Depression-Like Behaviors in a Cuprizone Mouse Model by Alleviating Demyelination and Neuroinflammation in the Brain. Front. Pharmacol. 2019, 10, 332. [Google Scholar] [CrossRef]
- Shilyansky, C.; Williams, L.M.; Gyurak, A.; Harris, A.; Usherwood, T.; Etkin, A. Effect of antidepressant treatment on cognitive impairments associated with depression: A randomised longitudinal study. Lancet Psychiatry 2016, 3, 425–435. [Google Scholar] [CrossRef]
- Meejuru, G.F.; Somavarapu, A.; Danduga, R.C.S.R.; Nissankara Roa, L.S.; Kola, P.K. Protective effects of duloxetine against chronic immobilisation stress-induced anxiety, depression, cognitive impairment and neurodegeneration in mice. J. Pharm. Pharmacol. 2021, 73, 522–534. [Google Scholar] [CrossRef]
- Gao, W.; Chen, R.; Xie, N.; Tang, D.; Zhou, B.; Wang, D. Duloxetine-Induced Neural Cell Death and Promoted Neurite Outgrowth in N2a Cells. Neurotox. Res. 2020, 38, 859–870. [Google Scholar] [CrossRef]
- Greer, T.L.; Sunderajan, P.; Grannemann, B.D.; Kurian, B.T.; Trivedi, M.H. Does Duloxetine Improve Cognitive Function Independently of Its Antidepressant Effect in Patients with Major Depressive Disorder and Subjective Reports of Cognitive Dysfunction? Depress. Res. Treat. 2014, 2014, 627863. [Google Scholar] [CrossRef]
- Manev, R.; Uz, T.; Manev, H. Fluoxetine increases the content of neurotrophic protein S100β in the rat hippocampus. Eur. J. Pharmacol. 2001, 420, R1–R2. [Google Scholar] [CrossRef]
- Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic Antidepressant Treatment Increases Neurogenesis in Adult Rat Hippocampus. J. Neurosci. 2000, 20, 9104–9110. [Google Scholar] [CrossRef]
- Tizabi, Y. Duality of Antidepressants and Neuroprotectants. Neurotox. Res. 2016, 30, 1–13. [Google Scholar] [CrossRef]
- Tin, G.; Mohamed, T.; Shakeri, A.; Pham, A.T.; Rao, P.P.N. Interactions of Selective Serotonin Reuptake Inhibitors with β-Amyloid. ACS Chem. Neurosci. 2019, 10, 226–234. [Google Scholar] [CrossRef]
- Caraci, F.; Tascedda, F.; Merlo, S.; Benatti, C.; Spampinato, S.F.; Munafò, A.; Leggio, G.M.; Nicoletti, F.; Brunello, N.; Drago, F.; et al. Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Front. Pharmacol. 2016, 7, 389. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, J.; Wang, H.; Zhang, Y.; Zhu, S.; Adilijiang, A.; Guo, H.; Zhang, R.; Guo, W.; Luo, G.; et al. Regulation of astrocyte pathology by fluoxetine prevents the deterioration of Alzheimer phenotypes in an APP/PS1 mouse model. Glia 2016, 64, 240–254. [Google Scholar] [CrossRef]
- Mowla, A.; Mosavinasab, M.; Pani, A. Does Fluoxetine Have Any Effect on the Cognition of Patients with Mild Cognitive Impairment? J. Clin. Psychopharmacol. 2007, 27, 67–70. [Google Scholar] [CrossRef]
- Cirrito, J.R.; Wallace, C.E.; Yan, P.; Davis, T.A.; Gardiner, W.D.; Doherty, B.M.; King, D.; Yuede, C.M.; Lee, J.-M.; Sheline, Y.I. Effect of escitalopram on Aβ levels and plaque load in an Alzheimer mouse model. Neurology 2020, 95, e2666–e2674. [Google Scholar] [CrossRef]
- Wingen, M.; Ramaekers, J.G. Selective verbal and spatial memory impairment after 5-HT 1A and 5-HT 2A receptor blockade in healthy volunteers pre-treated with an SSRI. J. Psychopharmacol. 2007, 21, 477–485. [Google Scholar] [CrossRef]
- Kotagal, V.; Spino, C.; Bohnen, N.I.; Koeppe, R.; Albin, R.L. Serotonin, β-amyloid, and cognition in Parkinson disease. Ann. Neurol. 2018, 83, 994–1002. [Google Scholar] [CrossRef]
- Kherada, N.; Heimowitz, T.; Rosendorff, C. Antihypertensive Therapies and Cognitive Function: A Review. Curr. Hypertens. Rep. 2015, 17, 79. [Google Scholar] [CrossRef]
- Wright, J.M.; Musini, V.M.; Gill, R. First-line drugs for hypertension. Cochrane Database Syst. Rev. 2018, 2018, CD001841. [Google Scholar] [CrossRef] [Green Version]
- Holm, H.; Ricci, F.; Di Martino, G.; Bachus, E.; Nilsson, E.D.; Ballerini, P.; Melander, O.; Hansson, O.; Nägga, K.; Magnusson, M.; et al. Beta-blocker therapy and risk of vascular dementia: A population-based prospective study. Vascul. Pharmacol. 2020, 125–126, 106649. [Google Scholar] [CrossRef]
- Fares, A. Use of Beta-Blockers and Risk of Dementia in Elderly Patients. J. Neuropsychiatry Clin. Neurosci. 2012, 24, E20–E21. [Google Scholar] [CrossRef]
- Gliebus, G.; Lippa, C.F. The Influence of β-Blockers on Delayed Memory Function in People with Cognitive Impairment. Am. J. Alzheimers Dis. Other Dementiasr 2007, 22, 57–61. [Google Scholar] [CrossRef]
- Beaman, E.E.; Bonde, A.N.; Ulv Larsen, S.M.; Ozenne, B.; Lohela, T.J.; Nedergaard, M.; Gíslason, G.H.; Knudsen, G.M.; Holst, S.C. Blood–brain barrier permeable β-blockers linked to lower risk of Alzheimer’s disease in hypertension. Brain 2022, awac076. [Google Scholar] [CrossRef]
- Al-Majed, A.A.; Bakheit, A.H.H.; Abdel Aziz, H.A.; Alajmi, F.M.; AlRabiah, H. Propranolol. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 42, pp. 287–338. [Google Scholar] [CrossRef]
- Soeter, M.; Kindt, M. Stimulation of the Noradrenergic System during Memory Formation Impairs Extinction Learning but not the Disruption of Reconsolidation. Neuropsychopharmacology 2012, 37, 1204–1215. [Google Scholar] [CrossRef]
- Craigie, J. Propranolol, Cognitive Biases, and Practical Decision-Making. Am. J. Bioeth. 2007, 7, 31–32. [Google Scholar] [CrossRef]
- Müller, U.; Mottweiler, E.; Bublak, P. Noradrenergic blockade and numeric working memory in humans. J. Psychopharmacol. 2005, 19, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Palac, D.M.; Cornish, R.D.; McDonald, W.J.; Middaugh, A.; Howieson, D.; Bagby, S.P. Cognitive function in hypertensives treated with atenolol or propranolol. J. Gen. Intern. Med. 1990, 5, 310–318. [Google Scholar] [CrossRef]
- Madden, D.J.; Blumenthal, J.A.; Ekelund, L.G. Effects of beta-blockade and exercise on cardiovascular and cognitive functioning. Hypertension 1988, 11, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Stable, E.J.; Halliday, R.; Gardiner, P.S.; Baron, R.B.; Hauck, W.W.; Acree, M.; Coates, T.J. The effects of propranolol on cognitive function and quality of life: A randomized trial among patients with diastolic hypertension. Am. J. Med. 2000, 108, 359–365. [Google Scholar] [CrossRef]
- Igbavboa, U.; Johnson-Anuna, L.N.; Rossello, X.; Butterick, T.A.; Sun, G.Y.; Wood, W.G. Amyloid beta-protein1-42 increases cAMP and apolipoprotein E levels which are inhibited by β1 and β2-adrenergic receptor antagonists in mouse primary astrocytes. Neuroscience 2006, 142, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Kouremenos, E.; Arvaniti, C.; Constantinidis, T.S.; Giannouli, E.; Fakas, N.; Kalamatas, T.; Kararizou, E.; Naoumis, D.; Mitsikostas, D.D. Consensus of the Hellenic Headache Society on the diagnosis and treatment of migraine. J. Headache Pain 2019, 20, 113. [Google Scholar] [CrossRef]
- Wikstrand, J.; Warnold, I.; Olsson, G.; Tuomilehto, J.; Elmfeldt, D.; Berglund, G. Primary prevention with metoprolol in patients with hypertension. Mortality results from the MAPHY study. JAMA 1988, 259, 1976–1982. [Google Scholar] [CrossRef]
- Streufert, S.; DePadova, A.; McGlynn, T.; Pogash, R.; Piasecki, M. Impact of β-blockade on complex cognitive functioning. Am. Heart J. 1988, 116, 311–315. [Google Scholar] [CrossRef]
- Evans, A.K.; Ardestani, P.M.; Yi, B.; Park, H.H.; Lam, R.K.; Shamloo, M. Beta-adrenergic receptor antagonism is proinflammatory and exacerbates neuroinflammation in a mouse model of Alzheimer’s Disease. Neurobiol. Dis. 2020, 146, 105089. [Google Scholar] [CrossRef]
- Wadworth, A.N.; Murdoch, D.; Brogden, R.N. Atenolol. Drugs 1991, 42, 468–510. [Google Scholar] [CrossRef]
- Dimsdale, J.E.; Newton, R.P. Cognitive effects of beta blockers. J. Psychosom. Res. 1992, 36, 229–236. [Google Scholar] [CrossRef]
- Fogari, R.; Mugellini, A.; Zoppi, A.; Derosa, G.; Pasotti, C.; Fogari, E.; Preti, P. Influence of losartan and atenolol on memory function in very elderly hypertensive patients. J. Hum. Hypertens. 2003, 17, 781–785. [Google Scholar] [CrossRef]
- Rogers, T.K.; Bowman, C.E. Cognitive impairment associated with beta-blockade in the elderly. Postgrad. Med. J. 1990, 66, 1050–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muldoon, M.F.; Waldstein, S.R.; Ryan, C.M.; Jennings, J.R.; Polefrone, J.M.; Shapiro, A.P.; Manuck, S.B. Effects of six anti-hypertensive medications on cognitive performance. J. Hypertens. 2002, 20, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Bazroon, A.A.; Alrashidi, N.F. Bisoprolol. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Charles, A. Migraine. N. Engl. J. Med. 2017, 377, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Teive, H.A.G.; Troiano, A.R.; Germiniani, F.M.B.; Werneck, L.C. Flunarizine and cinnarizine-induced parkinsonism: A historical and clinical analysis. Park. Relat. Disord. 2004, 10, 243–245. [Google Scholar] [CrossRef]
- Lin, W.; Lin, C.-L.; Hsu, C.Y.; Wei, C.-Y. Flunarizine Induced Parkinsonism in Migraine Group: A Nationwide Population-Based Study. Front. Pharmacol. 2019, 10, 1495. [Google Scholar] [CrossRef]
- Brücke, T.; Wöber, C.; Podreka, I.; Wöber-Bingöl, C.; Asenbaum, S.; Aull, S.; Wenger, S.; Ilieva, D.; van der Meer, C.H.; Wessely, P.; et al. D 2 Receptor Blockade by Flunarizine and Cinnarizine Explains Extrapyramidal Side Effects. A SPECT Study. J. Cereb. Blood Flow Metab. 1995, 15, 513–518. [Google Scholar] [CrossRef]
- Giorgi, C.; Marchi, S.; Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 2018, 19, 713–730. [Google Scholar] [CrossRef]
- Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Granzotto, A.; Canzoniero, L.M.T.; Sensi, S.L. A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front. Mol. Neurosci. 2020, 13, 600089. [Google Scholar] [CrossRef]
- Choi, D.W. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front. Neurosci. 2020, 14, 579953. [Google Scholar] [CrossRef]
- Caudle, W.M.; Zhang, J. Glutamate, excitotoxicity, and programmed cell death in parkinson disease. Exp. Neurol. 2009, 220, 230–233. [Google Scholar] [CrossRef]
- Zündorf, G.; Reiser, G. Calcium Dysregulation and Homeostasis of Neural Calcium in the Molecular Mechanisms of Neurodegenerative Diseases Provide Multiple Targets for Neuroprotection. Antioxid. Redox Signal. 2011, 14, 1275–1288. [Google Scholar] [CrossRef]
- Kirtane, M.V.; Bhandari, A.; Narang, P.; Santani, R. Cinnarizine: A Contemporary Review. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 1060–1068. [Google Scholar] [CrossRef]
- Hindmarch, I.; Shamsi, Z. Antihistamines: Models to assess sedative properties, assessment of sedation, safety and other side-effects. Clin. Exp. Allergy 1999, 29, 133–142. [Google Scholar] [CrossRef]
- Naef, M.; Müller, U.; Linssen, A.; Clark, L.; Robbins, T.W.; Eisenegger, C. Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory. Transl. Psychiatry 2017, 7, e1107. [Google Scholar] [CrossRef]
- Cools, R.; Gibbs, S.E.; Miyakawa, A.; Jagust, W.; D’Esposito, M. Working Memory Capacity Predicts Dopamine Synthesis Capacity in the Human Striatum. J. Neurosci. 2008, 28, 1208–1212. [Google Scholar] [CrossRef]
- Berry, A.S.; Shah, V.D.; Baker, S.L.; Vogel, J.W.; O’Neil, J.P.; Janabi, M.; Schwimmer, H.D.; Marks, S.M.; Jagust, W.J. Aging Affects Dopaminergic Neural Mechanisms of Cognitive Flexibility. J. Neurosci. 2016, 36, 12559–12569. [Google Scholar] [CrossRef]
- Turner, D.; Lurie, Y.; Finkelstein, Y.; Schmid, T.; Gopher, A.; Kleid, D.; Bentur, Y. Pediatric Cinnarizine Overdose and Toxicokinetics. Pediatrics 2006, 117, e1067–e1069. [Google Scholar] [CrossRef]
- Parrott, A.C.; Wesnes, K. Promethazine, scopolamine and cinnarizine: Comparative time course of psychological performance effects. Psychopharmacology 1987, 92, 513–519. [Google Scholar] [CrossRef]
- Gordon, C.R.; Gonen, A.; Nachum, Z.; Doweck, I.; Spitzer, O.; Shupak, A. The effects of dimenhydrinate, cinnarizine and transdermal scopolamine on performance. J. Psychopharmacol. 2001, 15, 167–172. [Google Scholar] [CrossRef]
- Ashrafi, M.R.; Salehi, S.; Malamiri, R.A.; Heidari, M.; Hosseini, S.A.; Samiei, M.; Tavasoli, A.R.; Togha, M. Efficacy and Safety of Cinnarizine in the Prophylaxis of Migraine in Children: A Double-Blind Placebo-Controlled Randomized Trial. Pediatr. Neurol. 2014, 51, 503–508. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.E.; El-Sayed El-Shamarka, M.; Salem, N.A.; El-Mosallamy, A.E.M.K.; Sleem, A.A. Amelioration of the haloperidol-induced memory impairment and brain oxidative stress by cinnarizine. EXCLI J. 2012, 11, 517–530. [Google Scholar]
- Holmes, B.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Flunarizine A Review of Its Pharmacodynamic and Pharmacokinetic Properties and Therapeutic Use. Drugs 1984, 27, 6–44. [Google Scholar] [CrossRef]
- Ciancarelli, I.; Tozzi-Ciancarelli, M.; Di Massimo, C.; Marini, C.; Carolei, A. Flunarizine Effects on Oxidative Stress in Migraine Patients. Cephalalgia 2004, 24, 528–532. [Google Scholar] [CrossRef]
- Bostanci, M.Ö.; Bağirici, F.; Canan, S. A calcium channel blocker flunarizine attenuates the neurotoxic effects of iron. Cell Biol. Toxicol. 2006, 22, 119–125. [Google Scholar] [CrossRef]
- Goncalves, T.; Carvalho, A.P.; Oliveira, C.R. Antioxidant effect of calcium antagonists on microsomai membranes isolated from different brain areas. Eur. J. Pharmacol. 1991, 204, 315–322. [Google Scholar] [CrossRef]
- Serra, M.; Dazzi, L.; Caddeo, M.; Floris, C.; Biggio, G. Reversal by flunarizine of the decrease in hippocampal acetylcholine release in pentylenetetrazole-kindled rats. Biochem. Pharmacol. 1999, 58, 145–149. [Google Scholar] [CrossRef]
- Popova, J.; Staneva-Stoytcheva, D.; Mutafova, V. Effects of the Ca2+-antagonists nifedipine, verapamil, flunarizine and of the calmodulin antagonist trifluoperazine on muscarinic cholinergic receptors in rat cerebral cortex. Gen. Pharmacol. Vasc. Syst. 1990, 21, 317–319. [Google Scholar] [CrossRef]
- Gulati, P.; Muthuraman, A.; Kaur, P. Investigation of the role of non-selective calcium channel blocker (flunarizine) on cerebral ischemic–reperfusion associated cognitive dysfunction in aged mice. Pharmacol. Biochem. Behav. 2015, 131, 26–32. [Google Scholar] [CrossRef]
- Schmidt, R.; Oestreich, W. Flunarizine in migraine prophylaxis: The clinical experience. J. Cardiovasc. Pharmacol. 1991, 18 (Suppl. S8), S21–S26. [Google Scholar] [CrossRef] [PubMed]
- Bitton, J.Y.; Sauerwein, H.C.; Weiss, S.K.; Donner, E.J.; Whiting, S.; Dooley, J.M.; Snead, C.; Farrell, K.; Wirrell, E.C.; Mohamed, I.S.; et al. A randomized controlled trial of flunarizine as add-on therapy and effect on cognitive outcome in children with infantile spasms. Epilepsia 2012, 53, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Davisson, R.L. Physiological genomic analysis of the brain renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R498–R511. [Google Scholar] [CrossRef] [PubMed]
- Torika, N.; Asraf, K.; Apte, R.N.; Fleisher-Berkovich, S. Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci. Ther. 2018, 24, 231–242. [Google Scholar] [CrossRef]
- Saavedra, J.M. Evidence to Consider Angiotensin II Receptor Blockers for the Treatment of Early Alzheimer’s Disease. Cell. Mol. Neurobiol. 2016, 36, 259–279. [Google Scholar] [CrossRef]
- Wharton, W.; Goldstein, F.C.; Zhao, L.; Steenland, K.; Levey, A.I.; Hajjar, I. Modulation of Renin-Angiotensin System May Slow Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. J. Am. Geriatr. Soc. 2015, 63, 1749–1756. [Google Scholar] [CrossRef]
- Barthold, D.; Joyce, G.; Wharton, W.; Kehoe, P.; Zissimopoulos, J. The association of multiple anti-hypertensive medication classes with Alzheimer’s disease incidence across sex, race, and ethnicity. PLoS ONE 2018, 13, e0206705. [Google Scholar] [CrossRef]
- Tronvik, E.; Stovner, L.J.; Schrader, H.; Bovim, G. Involvement of the renin–angiotensin system in migraine. J. Hypertens. 2006, 24, S139–S143. [Google Scholar] [CrossRef]
- Schupp, M.; Janke, J.; Clasen, R.; Unger, T.; Kintscher, U. Angiotensin Type 1 Receptor Blockers Induce Peroxisome Proliferator–Activated Receptor-γ Activity. Circulation 2004, 109, 2054–2057. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Ishrat, T.; Pillai, B.; Fouda, A.Y.; Sayed, M.A.; Eldahshan, W.; Waller, J.L.; Ergul, A.; Fagan, S.C. RAS modulation prevents progressive cognitive impairment after experimental stroke: A randomized, blinded preclinical trial. J. Neuroinflamm. 2018, 15, 229. [Google Scholar] [CrossRef]
- Trigiani, L.J.; Royea, J.; Lacalle-Aurioles, M.; Tong, X.-K.; Hamel, E. Pleiotropic Benefits of the Angiotensin Receptor Blocker Candesartan in a Mouse Model of Alzheimer Disease. Hypertension 2018, 72, 1217–1226. [Google Scholar] [CrossRef]
- Lithell, H.; Hansson, L.; Skoog, I.; Elmfeldt, D.; Hofman, A.; Olofsson, B.; Trenkwalder, P.; Zanchetti, A. The Study on Cognition and Prognosis in the Elderly (SCOPE). J. Hypertens. 2003, 21, 875–886. [Google Scholar] [CrossRef]
- Saxby, B.K.; Harrington, F.; Wesnes, K.A.; McKeith, I.G.; Ford, G.A. Candesartan and cognitive decline in older patients with hypertension: A substudy of the SCOPE trial. Neurology 2008, 70, 1858–1866. [Google Scholar] [CrossRef]
- Bosch, J.; O’Donnell, M.; Swaminathan, B.; Lonn, E.M.; Sharma, M.; Dagenais, G.; Diaz, R.; Khunti, K.; Lewis, B.S.; Avezum, A.; et al. Effects of blood pressure and lipid lowering on cognition. Neurology 2019, 92, e1435–e1446. [Google Scholar] [CrossRef]
- Hajjar, I.; Hart, M.; Chen, Y.-L.; Mack, W.; Novak, V.; Chui, H.C.; Lipsitz, L. Antihypertensive Therapy and Cerebral Hemodynamics in Executive Mild Cognitive Impairment: Results of a Pilot Randomized Clinical Trial. J. Am. Geriatr. Soc. 2013, 61, 194–201. [Google Scholar] [CrossRef]
- Hajjar, I.; Okafor, M.; McDaniel, D.; Obideen, M.; Dee, E.; Shokouhi, M.; Quyyumi, A.A.; Levey, A.; Goldstein, F. Effects of Candesartan vs Lisinopril on Neurocognitive Function in Older Adults with Executive Mild Cognitive Impairment. JAMA Netw. Open 2020, 3, e2012252. [Google Scholar] [CrossRef]
- Candesartan’s Effects on Alzheimer’s Disease and Related Biomarkers (CEDAR). Available online: https://clinicaltrials.gov/ct2/show/results/NCT02646982 (accessed on 15 June 2022).
- Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiol. Rev. 2014, 94, 1099–1142. [Google Scholar] [CrossRef]
- Iyengar, S.; Ossipov, M.H.; Johnson, K.W. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017, 158, 543–559. [Google Scholar] [CrossRef]
- Storer, R.J.; Akerman, S.; Goadsby, P.J. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br. J. Pharmacol. 2004, 142, 1171–1181. [Google Scholar] [CrossRef]
- Schou, W.S.; Ashina, S.; Amin, F.M.; Goadsby, P.J.; Ashina, M. Calcitonin gene-related peptide and pain: A systematic review. J. Headache Pain 2017, 18, 34. [Google Scholar] [CrossRef]
- Vandervorst, F.; Van Deun, L.; Van Dycke, A.; Paemeleire, K.; Reuter, U.; Schoenen, J.; Versijpt, J. CGRP monoclonal antibodies in migraine: An efficacy and tolerability comparison with standard prophylactic drugs. J. Headache Pain 2021, 22, 128. [Google Scholar] [CrossRef]
- Papiri, G.; Vignini, A.; Capriotti, L.; Verdenelli, P.; Alia, S.; Di Paolo, A.; Fiori, C.; Baldinelli, S.; Silvestrini, M.; Luzzi, S. Cerebrospinal Fluid α-Calcitonin Gene-Related Peptide: A Comparison between Alzheimer’s Disease and Multiple Sclerosis. Biomolecules 2022, 12, 199. [Google Scholar] [CrossRef]
- Mathé, A.A.; Hertel, P.; Nomikos, G.G.; Gruber, S.; Mathé, J.M.; Svensson, T.H. The psychotomimetic drugs D-amphetamine and phencyclidine release calcitonin gene-related peptide in the limbic forebrain of the rat. J. Neurosci. Res. 1996, 46, 316–323. [Google Scholar] [CrossRef]
- Kovács, A.; Telegdy, G. Effects of CGRP on active avoidance behavior in rats. Physiol. Behav. 1995, 58, 429–435. [Google Scholar] [CrossRef]
- Harada, N.; Zhao, J.; Kurihara, H.; Nakagata, N.; Okajima, K. Resveratrol improves cognitive function in mice by increasing production of insulin-like growth factor-I in the hippocampus. J. Nutr. Biochem. 2011, 22, 1150–1159. [Google Scholar] [CrossRef]
- Zhao, J.; Harada, N.; Kurihara, H.; Nakagata, N.; Okajima, K. Cilostazol improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus. Neuropharmacology 2010, 58, 774–783. [Google Scholar] [CrossRef]
- Harada, N.; Narimatsu, N.; Kurihara, H.; Nakagata, N.; Okajima, K. Stimulation of sensory neurons improves cognitive function by promoting the hippocampal production of insulin-like growth factor-I in mice. Transl. Res. 2009, 154, 90–102. [Google Scholar] [CrossRef]
- Narimatsu, N.; Harada, N.; Kurihara, H.; Nakagata, N.; Sobue, K.; Okajima, K. Donepezil Improves Cognitive Function in Mice by Increasing the Production of Insulin-Like Growth Factor-I in the Hippocampus. J. Pharmacol. Exp. Ther. 2009, 330, 2–12. [Google Scholar] [CrossRef]
- Rossetti, I.; Zambusi, L.; Finardi, A.; Bodini, A.; Provini, L.; Furlan, R.; Morara, S. Calcitonin gene-related peptide decreases IL-1beta, IL-6 as well as Ym1, Arg1, CD163 expression in a brain tissue context-dependent manner while ameliorating experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2018, 323, 94–104. [Google Scholar] [CrossRef]
- Zhai, L.; Sakurai, T.; Kamiyoshi, A.; Ichikawa-Shindo, Y.; Kawate, H.; Tanaka, M.; Xian, X.; Hirabayashi, K.; Dai, K.; Cui, N.; et al. Endogenous calcitonin gene-related peptide suppresses ischemic brain injuries and progression of cognitive decline. J. Hypertens. 2018, 36, 876–891. [Google Scholar] [CrossRef]
- Hay, D.L.; Garelja, M.L.; Poyner, D.R.; Walker, C.S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol. 2018, 175, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Zhu, H.; Wang, X.; Gower, A.C.; Wallack, M.; Blusztajn, J.K.; Kowall, N.; Qiu, W.Q. Amylin Treatment Reduces Neuroinflammation and Ameliorates Abnormal Patterns of Gene Expression in the Cerebral Cortex of an Alzheimer’s Disease Mouse Model. J. Alzheimer’s Dis. 2017, 56, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Na, H.; Gan, Q.; Mcparland, L.; Yang, J.B.; Yao, H.; Tian, H.; Zhang, Z.; Qiu, W.Q. Characterization of the effects of calcitonin gene-related peptide receptor antagonist for Alzheimer’s disease. Neuropharmacology 2020, 168, 108017. [Google Scholar] [CrossRef] [PubMed]
- de Bartolomeis, A.; Fiore, G. Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: Implications for human behavior pathologies. Int. Rev. Neurobiol. 2004, 59, 221–254. [Google Scholar] [CrossRef]
- Borkum, J.M. CGRP and Brain Functioning: Cautions for Migraine Treatment. Headache 2019, 59, 1339–1357. [Google Scholar] [CrossRef]
- Angelucci, F.; Ellenbroek, B.A.; El Khoury, A.; Mathé, A.A. CGRP in a gene-environment interaction model for depression: Effects of antidepressant treatment. Acta Neuropsychiatr. 2019, 31, 93–99. [Google Scholar] [CrossRef]
- Cernuda-Morollón, E.; Larrosa, D.; Ramón, C.; Vega, J.; Martínez-Camblor, P.; Pascual, J. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology 2013, 81, 1191–1196. [Google Scholar] [CrossRef]
- Malhotra, R. Understanding migraine: Potential role of neurogenic inflammation. Ann. Indian Acad. Neurol. 2016, 19, 175–182. [Google Scholar] [CrossRef]
- Benemei, S.; Cortese, F.; Labastida-Ramírez, A.; Marchese, F.; Pellesi, L.; Romoli, M.; Vollesen, A.L.; Lampl, C.; Ashina, M. Triptans and CGRP blockade-impact on the cranial vasculature. J. Headache Pain 2017, 18, 103. [Google Scholar] [CrossRef]
- Edvinsson, L.; Warfvinge, K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia 2019, 39, 366–373. [Google Scholar] [CrossRef]
- Tepper, S.J.; Rapoport, A.M.; Sheftell, F.D. Mechanisms of Action of the 5-HT 1B/1D Receptor Agonists. Arch. Neurol. 2002, 59, 1084–1088. [Google Scholar] [CrossRef]
- Tfelt-Hansen, P.C. Does sumatriptan cross the blood–brain barrier in animals and man? J. Headache Pain 2010, 11, 5–12. [Google Scholar] [CrossRef]
- Deen, M.; Hougaard, A.; Hansen, H.D.; Schain, M.; Dyssegaard, A.; Knudsen, G.M.; Ashina, M. Association between Sumatriptan Treatment during a Migraine Attack and Central 5-HT 1B Receptor Binding. JAMA Neurol. 2019, 76, 834. [Google Scholar] [CrossRef]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, aay5947. [Google Scholar] [CrossRef]
- Monconduit, L.; Bourgeais, L.; Bernard, J.-F.; Le Bars, D.; Villanueva, L. Ventromedial Thalamic Neurons Convey Nociceptive Signals from the Whole Body Surface to the Dorsolateral Neocortex. J. Neurosci. 1999, 19, 9063–9072. [Google Scholar] [CrossRef]
- Honjoh, S.; Sasai, S.; Schiereck, S.S.; Nagai, H.; Tononi, G.; Cirelli, C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat. Commun. 2018, 9, 2100. [Google Scholar] [CrossRef]
- Sieveritz, B.; García-Muñoz, M.; Arbuthnott, G.W. Thalamic afferents to prefrontal cortices from ventral motor nuclei in decision-making. Eur. J. Neurosci. 2019, 49, 646–657. [Google Scholar] [CrossRef]
- Garcia-Alloza, M.; Hirst, W.D.; Chen, C.P.L.-H.; Lasheras, B.; Francis, P.T.; Ramírez, M.J. Differential Involvement of 5-HT1B/1D and 5-HT6 Receptors in Cognitive and Non-cognitive Symptoms in Alzheimer’s Disease. Neuropsychopharmacology 2004, 29, 410–416. [Google Scholar] [CrossRef]
- Lepage, M.; Ghaffar, O.; Nyberg, L.; Tulving, E. Prefrontal cortex and episodic memory retrieval mode. Proc. Natl. Acad. Sci. USA 2000, 97, 506–511. [Google Scholar] [CrossRef]
- Maura, G.; Raiteri, M. Cholinergic terminals in rat hippocampus possess 5-HT1B receptors mediating inhibition of acetylcholine release. Eur. J. Pharmacol. 1986, 129, 333–337. [Google Scholar] [CrossRef]
- Ramirez, M.; Aisa, B.; Gil-Bea, F.; Marcos, B. Involvement of the Serotonergic System in Cognitive and Behavioral Symptoms of Alzheimers Disease. Curr. Psychiatry Rev. 2005, 1, 337–343. [Google Scholar] [CrossRef]
- Virk, M.S.; Sagi, Y.; Medrihan, L.; Leung, J.; Kaplitt, M.G.; Greengard, P. Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proc. Natl. Acad. Sci. USA 2016, 113, 734–739. [Google Scholar] [CrossRef]
- Meneses, A.; Terrón, J.A.; Hong, E. Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning. Behav. Brain Res. 1997, 89, 217–223. [Google Scholar] [CrossRef]
- Slassi, A. Recent advances in 5-HT1B/1D receptor antagonists and agonists and their potential therapeutic applications. Curr. Top. Med. Chem. 2002, 2, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Nasehi, M.; Ghadimi, F.; Khakpai, F.; Zarrindast, M.-R. Interaction between harmane, a class of β-carboline alkaloids, and the CA1 serotonergic system in modulation of memory acquisition. Neurosci. Res. 2017, 122, 17–24. [Google Scholar] [CrossRef]
- Nasehi, M.; Jamshidi-Mehr, M.; Khakpai, F.; Zarrindast, M.-R. Possible involvement of CA1 5-HT1B/1D and 5-HT2A/2B/2C receptors in harmaline-induced amnesia. Pharmacol. Biochem. Behav. 2014, 125, 70–77. [Google Scholar] [CrossRef]
- Åhlander-Lüttgen, M.; Madjid, N.; Schött, P.A.; Sandin, J.; Ögren, S.O. Analysis of the Role of the 5-HT1B Receptor in Spatial and Aversive Learning in the Rat. Neuropsychopharmacology 2003, 28, 1642–1655. [Google Scholar] [CrossRef]
- FDA. Access.Data.FDA.gov Rizatriptan 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020864s011s016s017s018s019,020865s012s016s018s020s021lbl.pdf (accessed on 7 August 2022).
- Werner, R.; Woehrle, J.C. Prevalence of Mimics and Severe Comorbidity in Patients with Clinically Suspected Transient Global Amnesia. Cerebrovasc. Dis. 2021, 50, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Pradalier, A.; Lutz, G.; Vincent, D. Transient Global Amnesia, Migraine, Thalamic Infarct, Dihydroergotamine, and Sumatriptan. Headache J. Head Face Pain 2000, 40, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Meneses, A. Could the 5-HT1B receptor inverse agonism affect learning consolidation? Neurosci. Biobehav. Rev. 2001, 25, 193–201. [Google Scholar] [CrossRef]
- Mørk, A.; Montezinho, L.P.; Miller, S.; Trippodi-Murphy, C.; Plath, N.; Li, Y.; Gulinello, M.; Sanchez, C. Vortioxetine (Lu AA21004), a novel multimodal antidepressant, enhances memory in rats. Pharmacol. Biochem. Behav. 2013, 105, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Farmer, K.; Cady, R.; Bleiberg, J.; Reeves, D.; Putnam, G.; O’Quinn, S.; Batenhorst, A. Sumatriptan Nasal Spray and Cognitive Function During Migraine: Results of an Open-Label Study. Headache J. Head Face Pain 2001, 41, 377–384. [Google Scholar] [CrossRef]
- Clemow, D.B.; Johnson, K.W.; Hochstetler, H.M.; Ossipov, M.H.; Hake, A.M.; Blumenfeld, A.M. Lasmiditan mechanism of action—Review of a selective 5-HT1F agonist. J. Headache Pain 2020, 21, 71. [Google Scholar] [CrossRef]
- Hou, M.; Xing, H.; Li, C.; Wang, X.; Deng, D.; Li, J.; Zhang, P.; Chen, J. Short-term efficacy and safety of lasmiditan, a novel 5-HT1F receptor agonist, for the acute treatment of migraine: A systematic review and meta-analysis. J. Headache Pain 2020, 21, 66. [Google Scholar] [CrossRef]
- Vila-Pueyo, M. Targeted 5-HT(1F) Therapies for Migraine. Neurotherapeutics 2018, 15, 291–303. [Google Scholar] [CrossRef]
- Tfelt-Hansen, P. Ergotamine in the acute treatment of migraine: A review and European consensus. Brain 2000, 123, 9–18. [Google Scholar] [CrossRef]
- Evers, S.; Rüschenschmidt, J.; Frese, A.; Rahmann, A.; Husstedt, I. Impact of Antimigraine Compounds on Cognitive Processing: A Placebo-Controlled Crossover Study. Headache J. Head Face Pain 2003, 43, 1102–1108. [Google Scholar] [CrossRef]
- Roon, K.; Bakker, D.; van Poelgeest, M.; van Buchem, M.; Ferrari, M.; Middelkoop, H. The Influence of Ergotamine Abuse on Psychological and Cognitive Functioning. Cephalalgia 2000, 20, 462–469. [Google Scholar] [CrossRef]
- Lei, X.; Yu, J.; Niu, Q.; Liu, J.; Fraering, P.C.; Wu, F. The FDA-approved natural product dihydroergocristine reduces the production of the Alzheimer’s disease amyloid-β peptides. Sci. Rep. 2015, 5, 16541. [Google Scholar] [CrossRef]
- Blasko, I.; Kemmler, G.; Krampla, W.; Jungwirth, S.; Wichart, I.; Jellinger, K.; Tragl, K.H.; Fischer, P. Plasma amyloid β protein 42 in non-demented persons aged 75 years: Effects of concomitant medication and medial temporal lobe atrophy. Neurobiol. Aging 2005, 26, 1135–1143. [Google Scholar] [CrossRef]
- Pardutz, A.; Schoenen, J. NSAIDs in the Acute Treatment of Migraine: A Review of Clinical and Experimental Data. Pharmaceuticals 2010, 3, 1966–1987. [Google Scholar] [CrossRef]
- Blalock, E.M.; Buechel, H.M.; Popovic, J.; Geddes, J.W.; Landfield, P.W. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease. J. Chem. Neuroanat. 2011, 42, 118–126. [Google Scholar] [CrossRef]
- Leandro, G.S.; Evangelista, A.F.; Lobo, R.R.; Xavier, D.J.; Moriguti, J.C.; Sakamoto-Hojo, E.T. Changes in Expression Profiles Revealed by Transcriptomic Analysis in Peripheral Blood Mononuclear Cells of Alzheimer’s Disease Patients. J. Alzheimers Dis. 2018, 66, 1483–1495. [Google Scholar] [CrossRef]
- Chang, C.-W.; Horng, J.-T.; Hsu, C.-C.; Chen, J.-M. Mean Daily Dosage of Aspirin and the Risk of Incident Alzheimer’s Dementia in Patients with Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study in Taiwan. J. Diabetes Res. 2016, 2016, 9027484. [Google Scholar] [CrossRef] [PubMed]
- Côté, S.; Carmichael, P.; Verreault, R.; Lindsay, J.; Lefebvre, J.; Laurin, D. Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer’s disease. Alzheimer’s Dement. 2012, 8, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Avramovich, Y.; Amit, T.; Youdim, M.B.H. Non-steroidal Anti-inflammatory Drugs Stimulate Secretion of Non-amyloidogenic Precursor Protein. J. Biol. Chem. 2002, 277, 31466–31473. [Google Scholar] [CrossRef]
- Eriksen, J.L.; Sagi, S.A.; Smith, T.E.; Weggen, S.; Das, P.; McLendon, D.C.; Ozols, V.V.; Jessing, K.W.; Zavitz, K.H.; Koo, E.H.; et al. NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo. J. Clin. Investig. 2003, 112, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Kukar, T.; Golde, T.E. Possible mechanisms of action of NSAIDs and related compounds that modulate gamma-secretase cleavage. Curr. Top. Med. Chem. 2008, 8, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, M.; Ono, K.; Naiki, H.; Yamada, M. Non-steroidal anti-inflammatory drugs have anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. Neuropharmacology 2005, 49, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, M.A.; Cruickshanks, K.J.; Carlsson, C.M.; Chappell, R.; Fischer, M.E.; Klein, B.E.K.; Klein, R.; Schubert, C.R. NSAID Use and Incident Cognitive Impairment in a Population-based Cohort. Alzheimer Dis. Assoc. Disord. 2016, 30, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ancelin, M.-L.; Carrière, I.; Helmer, C.; Rouaud, O.; Pasquier, F.; Berr, C.; Chaudieu, I.; Ritchie, K. Steroid and nonsteroidal anti-inflammatory drugs, cognitive decline, and dementia. Neurobiol. Aging 2012, 33, 2082–2090. [Google Scholar] [CrossRef] [Green Version]
- Breitner, J.C.S.; Haneuse, S.J.P.A.; Walker, R.; Dublin, S.; Crane, P.K.; Gray, S.L.; Larson, E.B. Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 2009, 72, 1899–1905. [Google Scholar] [CrossRef]
- Practical Neurology FDA Greenlights Phase 3 Study of Rofecoxib for Acute Treatment of Migraine. Available online: https://practicalneurology.com/news/fda-greenlights-phase-3-study-of-rofecoxib-for-acute-treatment-of-migraine (accessed on 7 September 2022).
- Roumie, C.L.; Mitchel, E.F.; Kaltenbach, L.; Arbogast, P.G.; Gideon, P.; Griffin, M.R. Nonaspirin NSAIDs, Cyclooxygenase 2 Inhibitors, and the Risk for Stroke. Stroke 2008, 39, 2037–2045. [Google Scholar] [CrossRef]
- Wiggers, A.; Ashina, H.; Hadjikhani, N.; Sagare, A.; Zlokovic, B.V.; Lauritzen, M.; Ashina, M. Brain barriers and their potential role in migraine pathophysiology. J. Headache Pain 2022, 23, 16. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef]
- Nedergaard, M.; Goldman, S.A. Glymphatic failure as a final common pathway to dementia. Science 2020, 370, 50–56. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.A.; Lee, H.; Park, B.S.; Ko, J.; Park, S.H.; Lee, Y.J.; Kim, I.H.; Park, J.H.; Park, K.M. Glymphatic system dysfunction in patients with cluster headache. Brain Behav. 2022, 12, e2631. [Google Scholar] [CrossRef]
- Toriello, M.; González-Quintanilla, V.; Pérez-Pereda, S.; Fontanillas, N.; Pascual, J. The Potential Role of the Glymphatic System in Headache Disorders. Pain Med. 2021, 22, 3098–3100. [Google Scholar] [CrossRef]
- Schain, A.J.; Melo-Carrillo, A.; Strassman, A.M.; Burstein, R. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache. J. Neurosci. 2017, 37, 2904–2915. [Google Scholar] [CrossRef]
- Ishida, K.; Yamada, K.; Nishiyama, R.; Hashimoto, T.; Nishida, I.; Abe, Y.; Yasui, M.; Iwatsubo, T. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J. Exp. Med. 2022, 219, e20211275. [Google Scholar] [CrossRef]
- Reeves, B.C.; Karimy, J.K.; Kundishora, A.J.; Mestre, H.; Cerci, H.M.; Matouk, C.; Alper, S.L.; Lundgaard, I.; Nedergaard, M.; Kahle, K.T. Glymphatic System Impairment in Alzheimer’s Disease and Idiopathic Normal Pressure Hydrocephalus. Trends Mol. Med. 2020, 26, 285–295. [Google Scholar] [CrossRef] [PubMed]
- das Neves, S.P.; Delivanoglou, N.; Da Mesquita, S. CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges. Front. Pharmacol. 2021, 12, 655052. [Google Scholar] [CrossRef] [PubMed]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, N.; Koroleva, K.; Abdollahzadeh, A.; Giniatullina, R.; Gafurov, O.; Malm, T.; Sierra, A.; Tohka, J.; Noe, F.; Giniatullin, R. The role of the meningeal lymphatic system in local inflammation and trigeminal nociception implicated in migraine pain. bioRxiv 2020. [Google Scholar] [CrossRef]
- Da Mesquita, S.; Fu, Z.; Kipnis, J. The Meningeal Lymphatic System: A New Player in Neurophysiology. Neuron 2018, 100, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lu, L.; Pember, E.; Li, X.; Zhang, B.; Zhu, Z. New Insights into Neuroinflammation Involved in Pathogenic Mechanism of Alzheimer’s Disease and Its Potential for Therapeutic Intervention. Cells 2022, 11, 1925. [Google Scholar] [CrossRef]
- Gomez-Nicola, D.; Suzzi, S.; Vargas-Caballero, M.; Fransen, N.L.; Al-Malki, H.; Cebrian-Silla, A.; Garcia-Verdugo, J.M.; Riecken, K.; Fehse, B.; Perry, V.H. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration. Brain 2014, 137, 2312–2328. [Google Scholar] [CrossRef]
Migraine Treatment | Indication | Biological Effect | Clinical Impact on Cognition | References |
---|---|---|---|---|
ASMs | ||||
TPM | Prophylaxis | - ↑ Akt/GSK-3β/CREB pathway [§] - ↓ inflammation mediators (IL-1β, TNF-α) [§] - ↓ oxidative stress [§] - ↑ BDNF [§] | - mild-to-moderate impairment in attention, psychomotor abilities, language, and comprehension, including verbal fluency, short-term episodic and working memory, processing speed. Abnormal thinking. TPM is the ASM with the heaviest impact on cognition. | [41,42,43,44,45,46,47,48,49,50,51,52,53,54,55] |
VPA | Prophylaxis | - ↑ taurine, glycine, serotonin, and dopamine in the hippocampus [§] - ↓ Aβ generation and tau hyperphosphorylation [#] | - mild attention, memory, and visuomotor deficits | [56,57,58,59,60,61] |
GBP | Prophylaxis | - antioxidative and anti-autophagy properties by activating the PI3K/Akt/mTOR pathway [§] | - overall good tolerability. Few reports indicated deficits in attention, verbal memory, and executive functions after chronic use. | [62,63,64,65,66,67,68] |
Antidepressants | ||||
Amitriptyline | Prophylaxis | - antimuscarinic (↓ cholinergic pathways from the basal forebrain to the hippocampus and cortex) [◊] - antihistaminic [◊] - neuroprotection through TrkA and TrkB receptor agonism [#] and increase in BDNF levels [§] | - sedation - promotes cognitive impairment with a non-amnestic phenotype - impairs attention, decision-making, and psychomotor speed - memory deficits at higher doses | [82,83,84,85,86,87,88,89,90,91] |
Venlafaxine | Prophylaxis | - enhances myelin integrity [#] | - improves working memory * | [92,94,95,96,97] |
Duloxetine | Prophylaxis | - antioxidative effects [#] - anti-glutamatergic effects [#] - pro-cholinergic effects [#] | - improvement in neurodegeneration-driven attention, memory, and behavioral symptoms | [83,92,93,99,100,101] |
Fluoxetine | Prophylaxis | - ↑BDNF levels and hippocampal neurogenesis [†] - ↓ amyloid neuronal toxicity through the expression of TGF-β1 and MMP-2 in the astroglia [§] | - improvement in global cognitive level (MMSE score), and immediate and delayed logical memory performances in MCI | [83,93,102,103,104,105,106,107,108] |
Escitalopram | Prophylaxis | - ↑ α-secretase (non-amyloidogenic processing of APP) [#] - ↓ amyloid load [#] | - mild short-term verbal memory exacerbated by add-on of pindolol | [109,110,111] |
Beta-blockers | ||||
Propranolol | Prophylaxis | - ↓ of Aβ-driven cAMP levels and ApoE expression [#] | - cognitive bias in decision-making - ↑ working memory manipulation costs - no long-term evident changes in cognition or behavior | [118,119,120,121,122,123,124,125] |
Metoprolol | Prophylaxis | - ↑ pro-inflammatory mediators [#] - ↓ anti-inflammatory mediators [#] - ↓ synaptic phagocytosis → synaptic degeneration [#] | - ↑ abilities in proofreading, visual–motor tasks, and complex management | [126,127,128,129] |
Atenolol | Prophylaxis | - unknown | - does not significantly affect global cognition - impairs visual–motor performances and complex management components | [130,131,132,133,134] |
Bisoprolol | Prophylaxis | - unknown | - Unknown | [135] |
Calcium-channel blockers | ||||
Cinnarizine | Prophylaxis | - anti-muscarinic, anti-histaminic, and anti-dopaminergic effects [◊] - antioxidant [#] | - sedation - conflicting results about the impact on psychomotor speed, attention, vigilance, and working memory | [147,148,149,150,151,152,153,154,155,156] |
Flunarizine | Prophylaxis | - antioxidant [◊†] - ↓ lipid peroxidation [†] - modulates Ach transmission: ↑ Ach release [§] ↓ M receptor expression [§] ↑ M receptor affinity (Kd) [§] | - sedation, increased risk of Parkinsonism | [157,158,159,160,161,162,163,164,165] |
ARB | ||||
Candesartan | Prophylaxis | - ↓ release of neuroinflammatory mediators by microglial cells [§#†] - ↑ cell-mediated Aβ clearance [§#] - ↑ BDNF-driven hippocampal neurogenesis [#] | - positive effect on episodic memory and attention in cognitively normal elderly subjects - positive effect on executive functions in MCI subjects | [166,167,168,169,170,171,172,173,174,175,176,177,178,179,180] |
Monoclonal antibodies | ||||
Erenumab, Fremanezumab, Galcanezumab | Prophylaxis | - inhibition of CGRP-related effects, which seem mainly neuroprotective [◊] | - unknown (low CSF levels of CGRP have been linked to impaired selective attention and visuo-perceptual functions). | [19,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204] |
Gepants | ||||
Rimegepant, Ubrogepant | Acute treatment | - inhibition of CGRP-related effects, which seem mainly neuroprotective [◊] - another receptor antagonist (BIBN) showed neuroprotective effects [#] | - unknown | [19,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204] |
Triptans | ||||
Almotriptan, Eletriptan, Frovatriptan, Naratriptan, Rizatriptan, Sumatriptan, Zolmitriptan | Acute treatment | - agonism on 5-HT1B/D may impair cholinergic transmission [◊] - S administration → Down-regulation of 5-HT1B [◊] | - on rare occasions, memory deficits have been reported after R use. | [20,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227] |
Ditans | ||||
Lasmiditan | Acute treatment | - via 5-HT1F: ↓Glu release [§] | - unknown | [19,228,229,230] |
NSAIDs | ||||
Aspirin, ibuprofen, diclofenac, indomethacin, and others | Acute treatment | - ↓ inflammation [◊] - ↑ α-secretase [†] - ↓ Aβ aggregation [†] - favorable modulation of γ-secretase [†] | - conflicting results in terms of protection/risk of AD. | [237,238,239,240,241,242,243,244,245,246,247] |
Ergots | ||||
Ergotamine, DHE | Acute treatment | - similar effects to triptans and ditans (modulation of 5-HT1B/1D, 5-HT1F) [◊] | - cognitive impairment at complex reaction time tasks, cognitive flexibility tests, and verbal memory in ergotamine abusers. | [19,20,21,231,232,233,234,235] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, M.; De Rosa, M.A.; Calisi, D.; Consoli, S.; Evangelista, G.; Dono, F.; Santilli, M.; Granzotto, A.; Onofrj, M.; Sensi, S.L. Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits. Int. J. Mol. Sci. 2022, 23, 11418. https://doi.org/10.3390/ijms231911418
Russo M, De Rosa MA, Calisi D, Consoli S, Evangelista G, Dono F, Santilli M, Granzotto A, Onofrj M, Sensi SL. Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits. International Journal of Molecular Sciences. 2022; 23(19):11418. https://doi.org/10.3390/ijms231911418
Chicago/Turabian StyleRusso, Mirella, Matteo A. De Rosa, Dario Calisi, Stefano Consoli, Giacomo Evangelista, Fedele Dono, Matteo Santilli, Alberto Granzotto, Marco Onofrj, and Stefano L. Sensi. 2022. "Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits" International Journal of Molecular Sciences 23, no. 19: 11418. https://doi.org/10.3390/ijms231911418
APA StyleRusso, M., De Rosa, M. A., Calisi, D., Consoli, S., Evangelista, G., Dono, F., Santilli, M., Granzotto, A., Onofrj, M., & Sensi, S. L. (2022). Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits. International Journal of Molecular Sciences, 23(19), 11418. https://doi.org/10.3390/ijms231911418