Exfoliation and Reassembly Routes to a Ge/RuO2 Nanocomposite as an Anode for Advanced Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Material
3.2. Preparation of Ge/GeO2 NPs
3.3. Synthesis of the Exfoliated RuO2 NSs
3.4. Synthesis of Ge/RuO2 Nanocomposites
3.5. Structural Characterization
3.6. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef]
- Croguennec, L.; Palacin, M.R. Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 3140–3156. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Miao, L.; Duan, H.; Ruhlmann, L.; Lv, Y.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Anionic Co-insertion Charge Storage in Dinitrobenzene Cathodes for High-Performance Aqueous Zinc–Organic Batteries. Angew. Chem. 2022, 134, e202208821. [Google Scholar] [CrossRef]
- Duan, H.; Song, Z.; Miao, L.; Li, L.; Zhu, D.; Gan, L.; Liu, M. Unraveling the Role of Solvent-Precursor Interaction in Fabricating Heteroatomic Carbon Cathode for High-Energy-Density Zn-Ion Storage. J. Mater. Chem. A 2022, 10, 9837–9847. [Google Scholar] [CrossRef]
- Lee, M.; Hong, J.; Lopez, J.; Sun, Y.; Feng, D.; Lim, K.; Chueh, W.C.; Toney, M.F.; Cui, Y.; Bao, Z. High-Performance Sodium-Organic Battery by Realizing Four-Sodium Storage in Disodium Rhodizonate. Nat. Energy 2017, 2, 861–868. [Google Scholar] [CrossRef]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The Success Story of Graphite as a Lithium-Ion Anode Material-Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Li, W.; Sun, X.; Yu, Y. Si-, Ge-, Sn-Based Anode Materials for Lithium-Ion Batteries: From Structure Design to Electrochemical Performance. Small Methods 2017, 1, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Cheng, Y.J.; Zhu, J.; Xia, Y.; Müller-Buschbaum, P. A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes. Small Methods 2020, 4, 2000218. [Google Scholar] [CrossRef]
- Xiao, X.; Li, X.; Zheng, S.; Shao, J.; Xue, H.; Pang, H. Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries. Adv. Mater. Interfaces 2017, 4, 1600798. [Google Scholar] [CrossRef]
- Yan, S.; Song, H.; Lin, S.; Wu, H.; Shi, Y.; Yao, J. GeO2 Encapsulated Ge Nanostructure with Enhanced Lithium-Storage Properties. Adv. Funct. Mater. 2019, 29, 1807946. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, J.S.; Yoon, Y.S. Fabrication and Characterization of SnO2-RuO2 Composite Anode Thin Film for Lithium Ion Batteries. Electrochim. Acta 2004, 50, 547–552. [Google Scholar] [CrossRef]
- Pender, J.P.; Jha, G.; Youn, D.H.; Ziegler, J.M.; Andoni, I.; Choi, E.J.; Heller, A.; Dunn, B.S.; Weiss, P.S.; Penner, R.M.; et al. Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14, 1243–1295. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Jung, S.H.; Jung, K.N.; Woo, S.G.; Cho, W.; Jo, Y.N.; Cho, K.Y. Preparation of Nanostructured Ge/GeO2 Composite in Carbon Matrix as an Anode Material for Lithium-Ion Batteries. Electrochim. Acta 2016, 188, 120–125. [Google Scholar] [CrossRef]
- Gregorczyk, K.E.; Liu, Y.; Sullivan, J.P.; Rubloff, G.W. In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO2. ACS Nano 2013, 7, 6354–6360. [Google Scholar] [CrossRef]
- Liu, B.; Abouimrane, A.; Balasubramanian, M.; Ren, Y.; Amine, K. GeO2-SnCoC Composite Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2014, 118, 3960–3967. [Google Scholar] [CrossRef]
- Wei, W.; Tian, A.; Jia, F.; Wang, K.; Qu, P.; Xu, M. Green Synthesis of GeO2/Graphene Composites as Anode Material for Lithium-Ion Batteries with High Capacity. RSC Adv. 2016, 6, 87440–87445. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.I.; Yoon, W.S. Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium-and Sodium-Ion Batteries. J. Electrochem. Sci. Technol. 2022, 13, 32–53. [Google Scholar] [CrossRef]
- Choi, S.H.; Lee, S.J.; Kim, H.J.; Park, S.B.; Choi, J.W. Li2O-B2O3-GeO2 Glass as a High Performance Anode Material for Rechargeable Lithium-Ion Batteries. J. Mater. Chem. A 2018, 6, 6860–6866. [Google Scholar] [CrossRef]
- Nhung Thi Nguyen, H.; Nguyen Ngoc, P.; Tran Huu, H.; Thuy Trang Phan, T.; Nhan Nguyen, D.; Huong Thi Nguyen, T.; Nguyen Van, T.; Nguyen Thi, L.; Kha Le, M.; Man Tran, V.; et al. A Novel Synthesis of GeO2/Ge Composite as an Anode Material for Lithium-Ion Batteries. Chem. Phys. Lett. 2022, 801, 139747. [Google Scholar] [CrossRef]
- Li, D.; Seng, K.H.; Shi, D.; Chen, Z.; Liu, H.K.; Guo, Z. A Unique Sandwich-Structured C/Ge/Graphene Nanocomposite as an Anode Material for High Power Lithium Ion Batteries. J. Mater. Chem. A 2013, 1, 14115–14121. [Google Scholar] [CrossRef]
- Chen, J.S.; Lou, X.W. SnO2 and TiO2 Nanosheets for Lithium-Ion Batteries. Mater. Today 2012, 15, 246–254. [Google Scholar] [CrossRef]
- Lee, W.J.; Chun, Y.G.; Jang, S.J.; Paek, S.M.; Oh, J.M. Hierarchical Nanostructure of RuO2 Hollow Spheres with Enhanced Lithium Ion Storage and Cyclic Performance. J. Alloys Compd. 2017, 711, 611–616. [Google Scholar] [CrossRef]
- Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity. Adv. Funct. Mater. 2003, 13, 621–625. [Google Scholar] [CrossRef]
- Wang, W.; Peng, J.; Zhang, Z. Recovery Methods of Germanium. Adv. Mater. Res. 2011, 295–297, 2267–2271. [Google Scholar] [CrossRef]
- Ookawaa, M.; Hiraoa, Y.; Watanabea, M.; Maekawaa, T.; Inukaib, K.; Miyamotob, S.; Yamaguc, T. Synthesis of Aluminum Germanate Tubular Material Using Germanium Oxide As the Source of Germanium. Clay Sci. 2006, 13, 69–73. [Google Scholar]
- Sugimoto, W.; Terabayashi, O.; Murakami, Y.; Takasu, Y. Electrophoretic Deposition of Negatively Charged Tetratitanate Nanosheets and Transformation into Preferentially Oriented TiO2(B) Film. J. Mater. Chem. 2002, 12, 3814–3818. [Google Scholar] [CrossRef]
- Christensen, C.K.; Mamakhel, M.A.H.; Balakrishna, A.R.; Iversen, B.B.; Chiang, Y.M.; Ravnsbæk, D.B. Order-Disorder Transition in Nano-Rutile TiO2 Anodes: A High Capacity Low-Volume Change Li-Ion Battery Material. Nanoscale 2019, 11, 12347–12357. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.H.; Paek, S.M. Microwave-Assisted Synthesis of Ge/GeO2-Reduced Graphene Oxide Nanocomposite with Enhanced Discharge Capacity for Lithium-Ion Batteries. Nanomaterials 2021, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Thompson, C.V. Mechanisms of the Cyclic (de)Lithiation of RuO2. J. Mater. Chem. A 2020, 8, 21872–21881. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z.X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv. Sci. 2018, 5, 1700322. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Fang, X.; Mao, Y.; Wang, Z.; Wu, F.; Chen, L. Capacitive Energy Storage on Fe/Li3PO4 Grain Boundaries. J. Phys. Chem. C 2011, 115, 3803–3808. [Google Scholar] [CrossRef]
- Li, X.P.; Mao, J. A Li4Ti5O12-Rutile TiO2 Nanocomposite with an Excellent High Rate Cycling Stability for Lithium Ion Batteries. New J. Chem. 2015, 39, 4430–4436. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Lou, S.; Qu, Y.; Zuo, P.; Ma, Y.; Cheng, X.; Du, C.; Gao, Y.; Yin, G. Pseudocapacitive Li+ Intercalation in ZnO/ZnO@C Composites Enables High-Rate Lithium-Ion Storage and Stable Cyclability. Ceram. Int. 2017, 43, 11998–12004. [Google Scholar] [CrossRef]
- Deng, X.; Wei, Z.; Cui, C.; Liu, Q.; Wang, C.; Ma, J. Oxygen-Deficient Anatase TiO2@C Nanospindles with Pseudocapacitive Contribution for Enhancing Lithium Storage. J. Mater. Chem. A 2018, 6, 4013–4022. [Google Scholar] [CrossRef]
- Newville, M. IFEFFIT: Interactive XAFS Analysis and FEFF Fitting. J. Synchrotron Radiat. 2001, 8, 322–324. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.-H.; Lee, M.; Koo, J.-H.; Paek, S.-M. Exfoliation and Reassembly Routes to a Ge/RuO2 Nanocomposite as an Anode for Advanced Lithium-Ion Batteries. Int. J. Mol. Sci. 2022, 23, 11766. https://doi.org/10.3390/ijms231911766
Jang J-H, Lee M, Koo J-H, Paek S-M. Exfoliation and Reassembly Routes to a Ge/RuO2 Nanocomposite as an Anode for Advanced Lithium-Ion Batteries. International Journal of Molecular Sciences. 2022; 23(19):11766. https://doi.org/10.3390/ijms231911766
Chicago/Turabian StyleJang, Jeong-Hun, Minseop Lee, Ji-Hye Koo, and Seung-Min Paek. 2022. "Exfoliation and Reassembly Routes to a Ge/RuO2 Nanocomposite as an Anode for Advanced Lithium-Ion Batteries" International Journal of Molecular Sciences 23, no. 19: 11766. https://doi.org/10.3390/ijms231911766
APA StyleJang, J. -H., Lee, M., Koo, J. -H., & Paek, S. -M. (2022). Exfoliation and Reassembly Routes to a Ge/RuO2 Nanocomposite as an Anode for Advanced Lithium-Ion Batteries. International Journal of Molecular Sciences, 23(19), 11766. https://doi.org/10.3390/ijms231911766