Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Spirooxindole-Based Phenylsulfones 4a–n
2.2. Biological Studies
2.3. Combination Protocol
2.4. Molecular Docking Study
2.4.1. Docking against SARSCoV-2 against RNA Polymerase (PDB:ID: 6m71)
- 1.
- Compounds 4n, 4b, 4e, 4m, 4f, 4j, and 4i have the same binding mode and these compounds were originated from secondary amino acids L-proline 3a, and L-thioproline 3b and were docked with complete overlay and with the detection of hydrogen bond (HB) with Arg: 116A through the carbonyl of oxoindoline moiety, Figure 3a (left domain of receptor);
- 2.
- Compounds 4a, 4g, and 4k were prepared from secondary amino acid L-proline 3a. These compounds connected with same amino acids cleft with complete overlay and similarity without detection of any hydrogen bonds (HBs), Figure 3a (right domain of receptor);
- 3.
- Compounds 4d, 4l, 4h, and 4c exhibited the same binding mode and pose with formation of HB with Arg: 33A through the hydroxyl functionality of pyrrolidine ring, Figure 3b. These compounds were synthesized from the secondary amino acids L-proline 3a and 2R,4R)-4-hydroxypyrrolidine-2-carboxylic acid (3c). Compound 4h formed HB with Thr:120A through NH of oxoindoline moiety, Figure S28. Compound 4l illustrated specific binding pose through hydrophobic–hydrophobic interaction, Figure S29.
2.4.2. Docking Study with MERS-CoV Viral Proteins nsp5 (PDB:ID: 4ylu)
2.5. ADMET Analysis
2.6. Molecular Dynamics Simulation
3. Methodology/Experimental Section
3.1. General
3.1.1. (1’R,3R,7a’R)-1’-(Phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4a
3.1.2. (3R,7’R,7a’R)-5-Chloro-7’-(phenylsulfonyl)-1’,6’,7’,7a’-tetrahydro-3’H-spiro[indoline-3,5’-pyrrolo [1,2-c]thiazole]-2-one 4b
3.1.3. (1’R,3R,6’S,7a’R)-6’-Hydroxy-5-nitro-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4c
3.1.4. (1’R,3R,6’S,7a’R)-5-Bromo-6’-hydroxy-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4d
3.1.5. (3R,7’R,7a’R)-5-Nitro-7’-(phenylsulfonyl)-1’,6’,7’,7a’-tetrahydro-3’H-spiro[indoline-3,5’-pyrrolo [1,2-c]thiazole]-2-one 4e
3.1.6. (3R,7’R,7a’R)-5-Methoxy-7’-(phenylsulfonyl)-1’,6’,7’,7a’-tetrahydro-3’H-spiro[indoline-3,5’-pyrrolo [1,2-c]thiazole]-2-one 4f
3.1.7. (1’R,3R,7a’R)-5-Chloro-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4g
3.1.8. (1’R,3R,7a’R)-5-Methoxy-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4h
3.1.9. (3R,7’R,7a’R)-7’-(Phenylsulfonyl)-1’,6’,7’,7a’-tetrahydro-3’H-spiro[indoline-3,5’-pyrrolo [1,2-c]thiazole]-2-one 4i
3.1.10. (1’R,3R,7a’R)-5-Bromo-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4j
3.1.11. (1’R,3R,7a’R)-1-Methyl-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4k
3.1.12. (1’R,3R,7a’R)-1-(2-Bromoethyl)-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4l
3.1.13. ((1’R,3R,7a’R)-6-Chloro-1’-(phenylsulfonyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 4m
3.1.14. (3R,7’R,7a’R)-6-Chloro-7’-(phenylsulfonyl)-1’,6’,7’,7a’-tetrahydro-3’H-spiro[indoline-3,5’-pyrrolo [1,2-c]thiazole]-2-one 4n
3.2. Biological Activity Assays
3.3. Molecular Docking
3.4. ADMET Analysis
3.5. Molecular Dynamic Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mostafa, A.; Kandeil, A.; Shehata, M.; El Shesheny, R.; Samy, A.M.; Kayali, G.; Ali, M.A. Middle east respiratory syndrome coronavirus (mers-cov): State of the science. Microorganisms 2020, 8, 991. [Google Scholar] [CrossRef] [PubMed]
- Al-Karmalawy, A.A.; Soltane, R.; Abo Elmaaty, A.; Tantawy, M.A.; Antar, S.A.; Yahya, G.; Chrouda, A.; Pashameah, R.A.; Mustafa, M.; Abu Mraheil, M.; et al. Coronavirus disease (COVID-19) control between drug repurposing and vaccination: A comprehensive overview. Vaccines 2021, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Phelan, A.L.; Katz, R.; Gostin, L.O. The Novel Coronavirus Originating in Wuhan, China: Challenges for Global Health Governance. JAMA 2020, 323, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koslap-Petraco, M. Vaccine hesitancy: Not a new phenomenon, but a new threat. J. Am. Assoc. Nurse Pract. 2019, 31, 624–626. [Google Scholar] [CrossRef]
- Silveira, M.F.; Buffarini, R.; Bertoldi, A.D.; Santos, I.S.; Barros, A.J.D.; Matijasevich, A.; Menezes, A.M.B.; Gonçalves, H.; Horta, B.L.; Barros, F.C.; et al. The emergence of vaccine hesitancy among upper-class brazilians: Results from four birth cohorts, 1982–2015. Vaccine 2020, 38, 482–488. [Google Scholar] [CrossRef]
- The Lancet Child Adolescent Health. Vaccine hesitancy: A generation at risk. Lancet Child Adolesc. Health 2019, 3, 281. [Google Scholar] [CrossRef]
- Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep. 2020, 72, 1479–1508. [Google Scholar] [CrossRef]
- Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Sars-cov-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem. 2020, 27, 4536–4541. [Google Scholar] [CrossRef]
- Pourkarim, F.; Pourtaghi-Anvarian, S.; Rezaee, H. Molnupiravir: A new candidate for COVID-19 treatment. Pharm. Res. Perspect. 2022, 10, e00909. [Google Scholar] [CrossRef]
- Zhang, M.-Z.; Chen, Q.; Yang, G.-F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem. 2015, 89, 421–441. [Google Scholar] [CrossRef]
- Rudrangi, S.R.S.; Bontha, V.K.; Manda, V.R.; Bethi, S. Oxindoles and their pharmaceutical significance-an overview. Asian J. Res. Chem. 2011, 4, 335–338. [Google Scholar]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Zhang, B.; Jin, Z.; Yang, H.; Rao, Z. The crystal structure of COVID-19 main protease in complex with an inhibitor n3. Protein DataBank 2020, 10. [Google Scholar]
- Shah, V.R.; Bhaliya, J.D.; Patel, G.M. In Silico approach: Docking study of oxindole derivatives against the main protease of COVID-19 and its comparison with existing therapeutic agents. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; Islam, M.S.; Ghawas, H.M.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.M.M.; Ghabbour, H.A. Substituted spirooxindole derivatives as potent anticancer agents through inhibition of phosphodiesterase 1. RSC Adv. 2018, 8, 14335–14346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-R.; Wang, Y.-C.; Lin, Y.W.; Chou, S.-Y.; Chen, S.-F.; Liu, L.T.; Wu, Y.-T.; Kuo, C.-J.; Chen, T.S.-S.; Juang, S.-H. Synthesis and evaluation of isatin derivatives as effective sars coronavirus 3cl protease inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 3058–3062. [Google Scholar] [CrossRef]
- Elsaman, T.; Mohamed, M.S.; Eltayib, E.M.; Abdel-Aziz, H.A.; Abdalla, A.E.; Munir, M.U.; Mohamed, M.A. Isatin derivatives as broad-spectrum antiviral agents: The current landscape. Med. Chem. Res. 2022, 31, 244–273. [Google Scholar] [CrossRef]
- Badavath, V.N.; Kumar, A.; Samanta, P.K.; Maji, S.; Das, A.; Blum, G.; Jha, A.; Sen, A. Determination of potential inhibitors based on isatin derivatives against sars-cov-2 main protease (mpro): A molecular docking, molecular dynamics and structure-activity relationship studies. J. Biomol. Struct. Dyn. 2022, 40, 3110–3128. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Zhang, W.; Wei, P.; Huang, C.; Pei, J.; Yuan, Y.; Lai, L. Isatin compounds as noncovalent sars coronavirus 3c-like protease inhibitors. J. Med. Chem. 2006, 49, 3440–3443. [Google Scholar] [CrossRef]
- El-Kalyoubi, S.A.; Ragab, A.; Abu Ali, O.A.; Ammar, Y.A.; Seadawy, M.G.; Ahmed, A.; Fayed, E.A. One-pot synthesis and molecular modeling studies of new bioactive spiro-oxindoles based on uracil derivatives as sars-cov-2 inhibitors targeting rna polymerase and spike glycoprotein. Pharmaceuticals 2022, 15, 376. [Google Scholar] [CrossRef]
- Liu, P.; Liu, H.; Sun, Q.; Liang, H.; Li, C.; Deng, X.; Liu, Y.; Lai, L. Potent inhibitors of sars-cov-2 3c-like protease derived from n-substituted isatin compounds. Eur. J. Med. Chem. 2020, 206, 112702. [Google Scholar] [CrossRef] [PubMed]
- Boriskin, Y.; Leneva, I.; Pecheur, E.I.; Polyak, S. Arbidol: A broad-spectrum antiviral compound that blocks viral fusion. Curr. Med. Chem. 2008, 15, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Chiummiento, L.; Funicello, M.; Lupattelli, P.; Tramutola, F.; Campaner, P. New indolic non-peptidic HIV protease inhibitors from (s)-glycidol: Synthesis and preliminary biological activity. Tetrahedron 2009, 65, 5984–5989. [Google Scholar] [CrossRef]
- Ciccarone, T.; Saari, W.; Wai, J.; Greenlee, W.; Balani, S.; Goldman, M.; Theohrides, A. Indoles as Inhibitors of HIV Reverse Transcriptase. European Patent 530,907, 907.
- Williams, T.M.; Ciccarone, T.M.; MacTough, S.C.; Rooney, C.S.; Balani, S.K.; Condra, J.H.; Emini, E.A.; Goldman, M.E.; Greenlee, W.J. 5-chloro-3-(phenylsulfonyl)indole-2-carboxamide: A novel, non-nucleoside inhibitor of HIV-1 reverse transcriptase. J. Med. Chem. 1993, 36, 1291–1294. [Google Scholar] [CrossRef]
- Silvestri, R.; Artico, M.; De Martino, G.; La Regina, G.; Loddo, R.; La Colla, M.; La Colla, P. Simple, short peptide derivatives of a sulfonylindolecarboxamide (l-737,126) active in vitro against HIV-1 wild type and variants carrying non-nucleoside reverse transcriptase inhibitor resistance mutations. J. Med. Chem. 2004, 47, 3892–3896. [Google Scholar] [CrossRef] [PubMed]
- La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Famiglini, V.; Cosconati, S.; Maga, G.; Samuele, A.; Gonzalez, E.; Clotet, B.; et al. New nitrogen containing substituents at the indole-2-carboxamide yield high potent and broad spectrum indolylarylsulfone HIV-1 non-nucleoside reverse transcriptase inhibitors. J. Med. Chem. 2012, 55, 6634–6638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Wolkenberg, S.E.; Lu, M.; Munshi, V.; Moyer, G.; Feng, M.; Carella, A.V.; Ecto, L.T.; Gabryelski, L.J.; Lai, M.-T.; et al. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (nnrtis). Bioorg. Med. Chem. Lett. 2008, 18, 554–559. [Google Scholar] [CrossRef]
- Ragno, R.; Artico, M.; De Martino, G.; La Regina, G.; Coluccia, A.; Di Pasquali, A.; Silvestri, R. Docking and 3-d qsar studies on indolyl aryl sulfones. Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active n-2-hydroxyethyl)carboxamide and n-(2-hydroxyethyl)carbohydrazide derivatives. J. Med. Chem. 2004, 48, 213–223. [Google Scholar] [CrossRef]
- La Regina, G.; Coluccia, A.; Brancale, A.; Piscitelli, F.; Gatti, V.; Maga, G.; Samuele, A.; Pannecouque, C.; Schols, D.; Balzarini, J.; et al. Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: New cyclic substituents at indole-2-carboxamide. J. Med. Chem. 2011, 54, 1587–1598. [Google Scholar] [CrossRef]
- Famiglini, V.; La Regina, G.; Coluccia, A.; Pelliccia, S.; Brancale, A.; Maga, G.; Crespan, E.; Badia, R.; Clotet, B.; Esté, J.A.; et al. New indolylarylsulfones as highly potent and broad spectrum HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur. J. Med. Chem. 2014, 80, 101–111. [Google Scholar] [CrossRef]
- Storer, R.; Alexandre, F.-R.; Dousson, C.; Moussa, A.M.; Bridges, E. Enantiomerically pure phosphoindoles as HIV inhibitors. Google Patents 2008. [Google Scholar]
- Piscitelli, F.; Coluccia, A.; Brancale, A.; La Regina, G.; Sansone, A.; Giordano, C.; Balzarini, J.; Maga, G.; Zanoli, S.; Samuele, A.; et al. Indolylarylsulfones bearing natural and unnatural amino acids. Discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie b4 virus. J. Med. Chem. 2009, 52, 1922–1934. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K.-Y. Coronaviruses—Drug discovery and therapeutic options. Nat. Rev. Drug Discov. 2016, 15, 327–347. [Google Scholar] [CrossRef]
- Hung, I.F.-N.; Lung, K.-C.; Tso, E.Y.-K.; Liu, R.; Chung, T.W.-H.; Chu, M.-Y.; Ng, Y.-Y.; Lo, J.; Chan, J.; Tam, A.R.; et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020, 395, 1695–1704. [Google Scholar] [CrossRef]
- Kupferschmidt, K.; Cohen, J. Race to find COVID-19 treatments accelerates. Science 2020, 367, 1412–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choy, K.-T.; Wong, A.Y.-L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.-H.; Huang, X.; et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit sars-cov-2 replication in vitro. Antivir. Res 2020, 178, 104786. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chan, J.F.-W.; Wang, S.; Li, H.; Zhao, J.; Ip, T.K.-Y.; Zuo, Z.; Yuen, K.-Y.; Yuan, S.; Sun, H. Orally administered bismuth drug together with n-acetyl cysteine as a broad-spectrum anti-coronavirus cocktail therapy. Chem. Sci. 2022, 13, 2238–2248. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, G.; Said, M.M.; El Sayed, H.; El Tamany, E.S.H.; Al-Dhfyan, A.; Aziz, Y.M.A.; Barakat, A. Synthesis of new spirooxindole-pyrrolothiazole derivatives: Anti-cancer activity and molecular docking. Bioorg. Med. Chem. 2017, 25, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ghawas, H.M.; Elsenduny, F.; Al-Majid, A.M.; Elshaier, Y.A.; Badria, F.A.; Barakat, A. Synthesis of new thiazolo-pyrrolidine–(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019, 82, 423–430. [Google Scholar] [CrossRef]
- Barakat, A.; Islam, M.S.; Ghawas, H.M.; Al-Majid, A.M.; El-Senduny, F.F.; Badria, F.A.; Elshaier, Y.A.; Ghabbour, H.A. Design and synthesis of new substituted spirooxindoles as potential inhibitors of the mdm2–p53 interaction. Bioorg. Chem. 2019, 86, 598–608. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Atef, S.; Al-Agamy, M.H.; Soliman, S.M.; Ali, M.; Shaik, M.R.; Choudhary, M.I.; Ghabbour, H.A.; Barakat, A. Synthesis and characterization of a spiroindolone pyrothiazole analog via X-ray, biological, and computational studies. J. Mol. Struct. 2019, 1186, 384–392. [Google Scholar] [CrossRef]
- Barakat, A.; Al-Majid, A.M.; Lotfy, G.; Ali, M.; Mostafa, A.; Elshaier, Y.A. Drug repurposing of lactoferrin combination in a nanodrug delivery system to combat severe acute respiratory syndrome coronavirus-2 infection. Dr. Sulaiman Al Habib Med. J. 2021, 3, 104–112. [Google Scholar] [CrossRef]
- Lotfy, G.; Aziz, Y.M.A.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Abu-Serie, M.M.; Teleb, M.; Dömling, A.; Barakat, A. Molecular hybridization design and synthesis of novel spirooxindole-based mdm2 inhibitors endowed with bcl2 signaling attenuation; a step towards the next generation p53 activators. Bioorg. Chem. 2021, 117, 105427. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Y.M.A.; Lotfy, G.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Soliman, S.M.; Abu-Serie, M.M.; Teleb, M.; Yousuf, S.; Dömling, A.; et al. Design, synthesis, chemical and biochemical insights into novel hybrid spirooxindole-based p53-mdm2 inhibitors with potential bcl2 signaling attenuation. Front Chem. 2021, 9, 735236. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Al-Majid, A.M.; Azam, M.; Verma, V.P.; Barakat, A.; Haukka, M.; Domingo, L.R.; Elgazar, A.A.; Mira, A.; Badria, F.A. Synthesis of Spirooxindole Analogs Tethered Pyrazole Scaffold as Acetylcholinesterase Inhibitors. ChemistrySelect 2021, 6, 14039–14053. [Google Scholar] [CrossRef]
- Ríos-Gutiérrez, M.; Barakat, A.; Domingo, L.R. A Molecular electron density theory study of the [3+2] cycloaddition reaction of pseudo(mono)radical azomethine ylides with phenyl vinyl sulphone. Organics 2022, 3, 10. [Google Scholar] [CrossRef]
- Al-Majid, A.M.; Soliman, S.M.; Haukka, M.; Ali, M.; Islam, M.S.; Shaik, M.R.; Barakat, A. Design, construction, and characterization of a new regioisomer and diastereomer material based on the spirooxindole scaffold incorporating a sulphone function. Symmetry 2020, 12, 1337. [Google Scholar] [CrossRef]
- Purwati; Miatmoko, A.; Nasronudin; Hendrianto, E.; Karsari, D.; Dinaryanti, A.; Ertanti, N.; Ihsan, I.S.; Purnama, D.S.; Asmarawati, T.P.; et al. An in vitro study of dual drug combinations of anti-viral agents, antibiotics, and/or hydroxychloroquine against the sars-cov-2 virus isolated from hospitalized patients in Surabaya, Indonesia. PLoS ONE 2021, 16, e0252302. [Google Scholar]
- Shyr, Z.A.; Cheng, Y.S.; Lo, D.C.; Zheng, W. Drug combination therapy for emerging viral diseases. Drug Discov. Today 2021, 26, 2367–2376. [Google Scholar] [CrossRef]
- Ianevski, A.; Zusinaite, E.; Tenson, T.; Oksenych, V.; Wang, W.; Afset, J.E.; Bjørås, M.; Kainov, D.E. Novel Synergistic Anti-Enteroviral Drug Combinations. Viruses 2022, 14, 1866. [Google Scholar] [CrossRef]
- Mostafa, A.; Kandeil, A.; Elshaier, Y.A.M.M.; Kutkat, O.; Moatasim, Y.; Rashad, A.A.; Shehata, M.; Gomaa, M.R.; Mahrous, N.; Mahmoud, S.H.; et al. Fda-approved drugs with potent in vitro antiviral activity against severe acute respiratory syndrome coronavirus 2. Pharmaceuticals 2020, 13, 443. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the rna-dependent rna polymerase from COVID-19 virus. Science 2020, 368, 779–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomar, S.; Johnston, M.L.; St John, S.E.; Osswald, H.L.; Nyalapatla, P.R.; Paul, L.N.; Ghosh, A.K.; Denison, M.R.; Mesecar, A.D. Ligand-induced dimerization of middle east respiratory syndrome (mers) coronavirus nsp5 protease (3clpro): Implications for nsp5 regulation and the development of antivirals. J. Biol. Chem. 2015, 290, 19403–19422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic. Acids Res. 2021, 49, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z. Identification of Chymotrypsin-like Protease Inhibitors of SARS-CoV-2 via Integrated Computational Approach. J. Biomol. Struct. Dyn. 2021, 39, 2607–2616. [Google Scholar] [CrossRef]
Cpd | Chemical Structure | Cytotoxicity (CC50, µM) | Antiviral Activities | |||
---|---|---|---|---|---|---|
SARS-CoV-2 | MERS-CoV | |||||
IC50 (µM) | SI | IC50 (µM) | SI | |||
4a | 326 | 29 | 11.24 | 62 | 5.25 | |
4b | 1045 | 194 | 5.38 | 105 | 9.95 | |
4c | 1095 | 18 | 60.83 | 65 | 16.84 | |
4d | 206 | 24 | 8.58 | 23 | 8.95 | |
4e | 289 | 17 | 17 | 74 | 3.90 | |
4f | 345 | 2251 | <1 | 88 | 3.92 | |
4g | 405 | 405 | 1 | 101 | 3.97 | |
4h | 571 | 37 | 15.43 | 15 | 38.06 | |
4i | 1989 | 34 | 58.5 | 11 | 180.81 | |
4j | 200 | 197 | 1.01 | 376 | <1 | |
4k | 883 | 27 | 32.70 | 66 | 13.37 | |
4l | 206 | 107 | 1.92 | 146 | 1.41 | |
4m | 225 | 305 | <1 | 191 | 1.17 | |
4n | 222 | 667 | <1 | 15 | 14.8 | |
Remdesivir | 473.10 | 6.72 | 70.40 | 2.74 | 172.66 |
Compounds | Mol. Weight g/mol | nHA | nHD | TPSA | LogP | Lipinski Rule | Acute Toxicity Rule | HIA | PAINS |
---|---|---|---|---|---|---|---|---|---|
4c | 429.100 | 9 | 2 | 129.8 | 1.80 | Accepted | 0 alerts | Yes | 0 alerts |
4i | 386.080 | 5 | 1 | 66.4 | 2.38 | Accepted | 0 alerts | Yes | 0 alerts |
4k | 382.140 | 5 | 0 | 57.6 | 2.35 | Accepted | 0 alerts | Yes | 0 alerts |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, A.; Mostafa, A.; Ali, M.; Al-Majid, A.M.; Domingo, L.R.; Kutkat, O.; Moatasim, Y.; Zia, K.; Ul-Haq, Z.; Elshaier, Y.A.M.M. Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies. Int. J. Mol. Sci. 2022, 23, 11861. https://doi.org/10.3390/ijms231911861
Barakat A, Mostafa A, Ali M, Al-Majid AM, Domingo LR, Kutkat O, Moatasim Y, Zia K, Ul-Haq Z, Elshaier YAMM. Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies. International Journal of Molecular Sciences. 2022; 23(19):11861. https://doi.org/10.3390/ijms231911861
Chicago/Turabian StyleBarakat, Assem, Ahmed Mostafa, M. Ali, Abdullah Mohammed Al-Majid, Luis R. Domingo, Omnia Kutkat, Yassmin Moatasim, Komal Zia, Zaheer Ul-Haq, and Yaseen A. M. M. Elshaier. 2022. "Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies" International Journal of Molecular Sciences 23, no. 19: 11861. https://doi.org/10.3390/ijms231911861
APA StyleBarakat, A., Mostafa, A., Ali, M., Al-Majid, A. M., Domingo, L. R., Kutkat, O., Moatasim, Y., Zia, K., Ul-Haq, Z., & Elshaier, Y. A. M. M. (2022). Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies. International Journal of Molecular Sciences, 23(19), 11861. https://doi.org/10.3390/ijms231911861