Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein
Abstract
:1. Introduction
2. Results and Discussion
2.1. Docking-Based Virtual Screening
2.2. Analysis of Binding Modes
2.3. DFT Studies
2.3.1. Molecular Orbital Analysis
2.3.2. Molecular Electrostatic Potential Map
2.4. MD Simulation
2.5. In Silico ADMET Analysis
3. Materials and Methods
3.1. Target Structure Preparation
3.2. Database Preparation
3.3. Docking-Based Virtual Screening
3.4. Density Functional Theory
3.5. Molecular Dynamics Simulation
3.6. In Silico ADMET Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Zowalaty, M.E.; Järhult, J.D. From SARS to COVID-19: A previously unknown SARS- related coronavirus (SARS-CoV-2) of pandemic potential infecting humans—Call for a One Health approach. One Health 2020, 9, 100124–100129. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Maity, P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci. Total Environ. 2020, 728, 138882. [Google Scholar] [CrossRef]
- Sheikh, A.; Sheikh, A.; Sheikh, Z.; Dhami, S.; Sridhar, D. What’s the way out? Potential exit strategies from the COVID-19 lockdown. J. Glob. Health 2020, 10, 010370. [Google Scholar] [CrossRef] [PubMed]
- Pawar, D.S.; Yadav, A.K.; Akolekar, N.; Velaga, N.R. Impact of physical distancing due to novel coronavirus (SARS-CoV-2) on daily travel for work during transition to lockdown. Transp. Res. Interdiscip. Perspect. 2020, 7, 100203. [Google Scholar] [CrossRef] [PubMed]
- Plümper, T.; Neumayer, E. Lockdown policies and the dynamics of the first wave of the Sars-CoV-2 pandemic in Europe. J. Eur. Public Policy 2022, 29, 321–341. [Google Scholar] [CrossRef]
- Guzzetta, G.; Riccardo, F.; Marziano, V.; Pletti, P.; Trentini, F.; Bella, A.; Anderianou, X.; Del Manso, M.; Fabiani, M.; Billeno, S.; et al. Impact of a Nationwide Lockdown on SARS-CoV-2 Transmissibility, Italy. Emerg. Infect. Dis. 2021, 27, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Vardoulakis, S.; Sheel, M.; Lal, A.; Gray, D. COVID-19 environmental transmission and preventive public health measures. Aust. N. Z. J. Public Health 2020, 44, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Wang, J.; Wang, J.J.; Ye, D.; Shen, J.; Li, L.; Liu, H.; Zhang, L.; Shi, X.; Wang, L. Prevention and control of coronavirus disease 2019 (COVID-19) in public places. Environ. Pollut. 2022, 292, 118273. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Parida, S.P.; Bhatia, V. Role of disinfection and hand hygiene: A COVID-19 perspective. Int. J. Community Med. Public Health 2020, 7, 2845–2849. [Google Scholar] [CrossRef]
- Dalton, C.; Corbett, S.; Katelaris, A. Pre-Emptive Low Cost Social Distancing and Enhanced Hygiene Implemented before Local COVID-19 Transmission Could Decrease the Number and Severity of Cases. Med. J. Aust. 2020, 212, 1. [Google Scholar] [CrossRef]
- Islam, S.; Islam, T.; Islam, M.R. New Coronavirus Variants are Creating More Challenges to Global Healthcare System: A Brief Report on the Current Knowledge. Clin. Med. Insights Pathol. 2022, 15, 2632010X221075584. [Google Scholar] [CrossRef]
- Khandia, R.; Singhal, S.; Alqahtani, T.; Kamal, M.A.; El-Shall, N.A.; Nainu, F.; Desingu, P.A.; Dhama, K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. Environ. Res. 2022, 209, 112816. [Google Scholar] [CrossRef]
- Goc, A.; Niedzwiecki, A.; Ivanov, V.; Ivanova, S.; Rath, M. Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. Eur. J. Microbiol. Immunol. 2022, 11, 87–94. [Google Scholar] [CrossRef]
- Walensky, R.P.; Walke, H.T.; Fauci, A.S. SARS-CoV-2 Variants of Concern in the United States—Challenges and Opportunities. JAMA 2021, 325, 1037–1038. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Rahman, S.A.; Ehtesham, N.Z.; Hira, S.; Hasnain, S.E. SARS-CoV-2 variants of concern are emerging in India. Nat. Med. 2021, 27, 1131–1133. [Google Scholar] [CrossRef] [PubMed]
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- Majumdar, S.; Sarkar, R. Mutational and phylogenetic analyses of the two lineages of the Omicron variant. J. Med. Virol. 2022, 94, 1777–1779. [Google Scholar] [CrossRef] [PubMed]
- Pulliam, J.R.C.; van Schalkwyk, C.; Govender, N.; Gottberg, A.; Cohen, C.; Groome, M.J.; Dushoff, J.; Milisana, K.; Moultrie, H. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science 2022, 376, 596. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Peng, P.; Cao, X.; Wu, K.; Chen, J.; Wang, K.; Tang, N.; Huang, A. Increased immune escape of the new SARS-CoV-2 variant of concern Omicron. Cell Mol. Immunol. 2022, 19, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Ao, D.; Lan, T.; He, X.; Liu, J.; Chen, L.; Bapista-Hon, D.; Zhang, K.; Wei, X. SARS-CoV-2 Omicron variant: Immune escape and vaccine development. MedComm 2022, 3, e126. [Google Scholar] [CrossRef]
- Ou, J.; Lan, W.; Wu, X.; Zhao, T.; Duan, B.; Yang, P.; Ren, Y.; Quan, L.; Zhao, W.; Seto, D.; et al. Tracking SARS-CoV-2 Omicron diverse spike gene mutations identifies multiple inter-variant recombination events. Signal Transduct. Target. Ther. 2022, 7, 138. [Google Scholar] [CrossRef]
- Ye, G.; Liu, B.; Li, F. Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain. Nat. Commun. 2022, 13, 1214. [Google Scholar] [CrossRef]
- Xia, X. Domains and Functions of Spike Protein in SARS-Cov-2 in the Context of Vaccine Design. Viruses 2021, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Sun, X.; Ye, J.; Ding, L.; Liu, M.; Yang, Z.; Lu, X.; Zhang, Y.; Ma, L.; Gu, W.; et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol. Immunol. 2020, 17, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Yan, R.; Zhang, J.; Zhang, G.; Zhang, Y.; Hao, M.; Zhang, Z.; Fan, P.; Dong, Y.; Yang, Y.; et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 2020, 369, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Parsi, K.M.; Somasundaran, M.; Vanderleeden, E.; Liu, P.; Cruz, J.; Cousineau, A.; Finberg, R.W.; Kur-Jones, E.A. A Newly Engineered A549 Cell Line Expressing ACE2 and TMPRSS2 Is Highly Permissive to SARS-CoV-2, Including the Delta and Omicron Variants. Viruses 2022, 14, 1369. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Zhang, X.; Pan, S.; Yu, Y.; Shi, Y.; Lin, T.; Duan, H.; Liu, X.; Chen, W.; Yang, X.; et al. An ultrapotent RBD-targeted biparatopic nanobody neutralizes broad SARS-CoV-2 variants. Signal Transduct. Target. Ther. 2022, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Su, P.; Pan, T.; Zhou, X.; Li, H.; Huang, H.; Wang, A.; Wang, F.; Huang, J.; Yan, H.; et al. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv. Mater. 2021, 33, 2103471. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.; Khan, S.A.; Ashraf, S.; Nur-e-Alam, M.; Ahmed, S.; Ul-Haq, Z. Probing CAS Database as Prospective Antiviral Agents against SARS-CoV-2 Main Protease. J. Mol. Struct. 2021, 1231, 129953. [Google Scholar] [CrossRef]
- Khan, S.A.; Zia, K.; Ashraf, S.; Uddin, R.; Ul-Haq, Z. Identification of Chymotrypsin-like Protease Inhibitors of SARS-CoV-2 via Integrated Computational Approach. J. Biomol. Struct. Dyn. 2021, 39, 2607–2616. [Google Scholar] [CrossRef] [PubMed]
- Wakchaure, P.D.; Ghosh, S.; Ganguly, B. Revealing the Inhibition Mechanism of RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2 by Remdesivir and Nucleotide Analogues: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2020, 124, 10641–10652. [Google Scholar] [CrossRef]
- Lebedeva, N.S.; Gubarev, Y.A.; Mamardashvili, G.M.; Zaitceva, S.V.; Zdanovich, S.A.; Malyasova, A.S.; Romanenko, J.V.; Koifman, M.O.; Koifman, O.I. Theoretical and Experimental Study of Interaction of Macroheterocyclic Compounds with ORF3a of SARS-CoV-2. Sci. Rep. 2021, 11, 19481. [Google Scholar] [CrossRef] [PubMed]
- Sadremomtaz, A.; Al-Dahmani, Z.M.; Ruiz-Moreno, A.J.; Monti, A.; Wang, C.; Azad, T.; Bell, J.C.; Doti, N.; Velasco-Velázquez, M.A.; de Jong, D.; et al. Synthetic Peptides That Antagonize the Angiotensin-Converting Enzyme-2 (ACE-2) Interaction with SARS-CoV-2 Receptor Binding Spike Protein. J. Med. Chem. 2022, 65, 2836–2847. [Google Scholar] [CrossRef] [PubMed]
- Takashita, E.; Kinoshita, N.; Yamayoshi, S.; Sakai-Tagawa, Y.; Fujisaki, S.; Ito, M.; Iwatsuki-Horimoto, K.; Chiba, S.; Halfmann, P.; Nagai, H.; et al. Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N. Engl. J. Med. 2022, 386, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, X.; Zhang, L.; Wan, S.; Zhang, L.; Zhou, F. SARS-CoV-2 Omicron variant: Recent progress and future perspectives. Signal Transduct. Target. Ther. 2022, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Bojkova, D.; Widera, M.; Ciesek, S.; Wass, M.N.; Michaelis, M.; Cinatl, J. Reduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta variant of SARS-CoV-2 isolates. Cell Res. 2022, 32, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.G.; Wanjari, U.R.; Murali, R.; Chaudhary, U.; Renu, K.; Madhyastha, H.; Iyer, M.; Vellingiri, B.; Gopalakrishnan, A.V. Omicron variant infection and the associated immunological scenario. Immunobiology 2022, 227, 152222. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.; et al. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 2022, 185, 630–640.e10. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.A.; Zia, K.; Altowyan, M.S.; Barakat, A.; Ul-Haq, Z. Deciphering the Impact of Mutations on the Binding Efficacy of SARS-CoV-2 Omicron and Delta Variants with Human ACE2 Receptor. Front. Chem. 2022, 10, 630–640. [Google Scholar] [CrossRef]
- Verma, S.; Patil, V.M.; Gupta, M.K. Mutation Informatics: SARS-CoV-2 Receptor-Binding Domain of the Spike Protein. Drug Discov. Today 2022, 27, 103312. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, Y.; Zhang, Y.; Liu, Z.; Mu, X.; Gu, C.; Liu, J.; Li, Y.; Li, G.; Chen, J. Ceftazidime Is a Potential Drug to Inhibit SARS-CoV-2 Infection in Vitro by Blocking Spike Protein–ACE2 Interaction. Signal Transduct. Target. Ther. 2021, 6, 198. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Eun, C. Virtual and Biochemical Screening to Identify the Inhibitors of Binding between SARS-CoV-2 Spike Protein and Human Angiotensin-Converting Enzyme 2. J. Mol. Graph. Model. 2022, 114, 108206. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.Y.; Shaaban, M.M.; Elwakil, B.H.; Hamed, M.T.; Rezki, N.; Aouad, M.R.; Zakaria, M.A.; Hagar, M. Anti-COVID-19 Activity of Some Benzofused 1,2,3-Triazolesulfonamide Hybrids Using in Silico and in Vitro Analyses. Chemom. Intell. Lab. Syst. 2021, 217, 104421. [Google Scholar] [CrossRef] [PubMed]
- Saddique, F.A.; Zaib, S.; Jalil, S.; Aslam, S.; Ahmad, M.; Sultan, S.; Naz, H.; Iqbal, M.; Iqbal, J. Synthesis, Monoamine Oxidase Inhibition Activity and Molecular Docking Studies of Novel 4-Hydroxy-N′-[Benzylidene or 1-Phenylethylidene]-2-H/Methyl/Benzyl-1,2-Benzothiazine-3-Carbohydrazide 1,1-Dioxides. Eur. J. Med. Chem. 2018, 143, 1373–1386. [Google Scholar] [CrossRef]
- Taha, M.; Ismail, N.H.; Lalani, S.; Fatmi, M.Q.; Atia-tul-Wahab; Siddiqui, S.; Khan, K.M.; Imran, S.; Choudhary, M.I. Synthesis of Novel Inhibitors of α-Glucosidase Based on the Benzothiazole Skeleton Containing Benzohydrazide Moiety and Their Molecular Docking Studies. Eur. J. Med. Chem. 2015, 92, 387–400. [Google Scholar] [CrossRef]
- Erickson, C.B.; Ankenman, B.E.; Sanchez, S.M. Comparison of Gaussian process modeling software. Eur. J. Oper. Res. 2018, 266, 179–192. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Sánchez, R.D.; Mendoza-Wilson, A.M.; Balandrán-Quintana, R.R.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Study of the molecular structure and chemical reactivity of pinocembrin by DFT calculations. Comput. Theor. Chem. 2015, 1058, 21–27. [Google Scholar] [CrossRef]
- Abdel-Halim, M.; Diesel, B.; Kiemer, A.K.; Abadi, A.H.; Hartmann, R.W.; Engel, M. Discovery and Optimization of 1,3,5-Trisubstituted Pyrazolines as Potent and Highly Selective Allosteric Inhibitors of Protein Kinase C-ζ. J. Med. Chem. 2014, 57, 6513–6530. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Goddard, T.D.; Huang, C.C.; Ferrin, T.E. Software Extensions to UCSF Chimera for Interactive Visualization of Large Molecular Assemblies. Structure 2005, 13, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
Name | Structures | Dock Score (kcal/mol) | Hydrogen Bonding Interactions | Van der Waals Interactions | |||
---|---|---|---|---|---|---|---|
Donor | Donor H | Acceptor | Distance (Å) | ||||
AKS-01 | −6.94 | Arg403:NH1 Arg403:NH2 Arg408:NH2 Lig:N1 Arg493:NH2 Ser496:H Tyr501:OH Lig:N1 Lig:N2 | Arg403:H11 Arg403:H21 Arg408:H21 Lig:H3 Arg493:H22 Ser496:H22 Tyr501:H Lig:H12 Lig:H13 | Lig:O4 Lig:O4 Lig:O Asn417:OD1 Lig:O1 Lig:O2 Lig:N2 His505:ND1 His505:ND1 | 2.1 2.6 3.4 3.7 3.8 2.6 3.1 2.4 2.2 | Arg403, Asn417, Tyr453, Tyr495 | |
AKS-02 | −6.46 | Arg493:NE Arg493:NH2 Ser496:N Gly502:N Lig:N3 | Arg493:HE Arg493:H22 Ser496:H Gly502:H Lig:H9 | Lig:O Lig:O Lig:O1 Lig:N5 His505:ND1 | 3.1 3.2 3.3 2.1 3.1 | Tyr453, Tyr495, Tyr501 | |
AKS-03 | −6.03 | Tyr501:OH | Tyr501:H | Lig:O4 | 2.5 | Arg403, Arg493, Tyr453, Tyr495, Tyr501, His505 | |
AKS-04 | −5.47 | Arg493:NH1 Arg493:NH2 Lig:N1 Lig:N3 | Arg493:H11 Arg493:H21 Lig:H4 Lig:H6 | Lig:O Lig:O Ser496:OG His505:ND1 | 2.9 3.1 3.0 2.1 | Arg403, Tyr449, Tyr450, Tyr495 | |
AKS-05 | −5.24 | Gly502:N Lig:N1 | Gly502:H Lig:H7 | Lig:N3 His505:ND1 | 2.1 2.9 | Arg403, Asn417, Tyr453, Leu455, Tyr501, His505 |
Name | HOMO (eV) | LUMO (eV) | Band Gap (eV) | Diploe Moment | Total Energy (eV) |
---|---|---|---|---|---|
AKS-01 | −6.911 | −1.442 | 5.442 | 4.95 | −62,638.5 |
AKS-02 | −6.312 | −2.367 | 3.918 | 3.59 | −63,688.1 |
AKS-03 | −5.823 | −1.469 | 4.326 | 8.73 | −60,226.9 |
AKS-04 | −6.585 | −3.210 | 3.346 | 5.52 | −38,090.5 |
AKS-05 | −6.639 | −2.639 | 3.972 | 4.37 | −52,322.4 |
Compound | Mol. Weight g/mol | nHA | nHD | TPSA | LogP | Lipinski Rule | BBB Penetration | Pg Substrate | Acute Toxicity Rule | AMES Toxicity | HIA | PAINS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AKS-01 | 493.140 | 8 | 3 | 113.6 | 3.824 | Accepted | Yes | No | 0 alerts | Non toxic | Yes | 0 alerts |
AKS-02 | 508.110 | 9 | 1 | 109.5 | 4.424 | Accepted | Yes | Yes | 0 alerts | Non toxic | Yes | 0 alerts |
AKS-03 | 549.180 | 12 | 0 | 137.1 | 2.523 | 2 alerts | Yes | Yes | 0 alerts | Non toxic | Yes | 0 alerts |
AKS-04 | 317.060 | 8 | 3 | 109.1 | 1.625 | Accepted | No | Yes | 0 alerts | Toxic | Yes | 0 alerts |
AKS-05 | 392.050 | 5 | 1 | 67.24 | 4.546 | Accepted | Yes | Yes | 0 alerts | Toxic | Yes | 0 alerts |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.A.; Khan, A.; Zia, K.; Shawish, I.; Barakat, A.; Ul-Haq, Z. Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein. Int. J. Mol. Sci. 2022, 23, 10315. https://doi.org/10.3390/ijms231810315
Khan SA, Khan A, Zia K, Shawish I, Barakat A, Ul-Haq Z. Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein. International Journal of Molecular Sciences. 2022; 23(18):10315. https://doi.org/10.3390/ijms231810315
Chicago/Turabian StyleKhan, Salman Ali, Alamgir Khan, Komal Zia, Ihab Shawish, Assem Barakat, and Zaheer Ul-Haq. 2022. "Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein" International Journal of Molecular Sciences 23, no. 18: 10315. https://doi.org/10.3390/ijms231810315
APA StyleKhan, S. A., Khan, A., Zia, K., Shawish, I., Barakat, A., & Ul-Haq, Z. (2022). Cheminformatics-Based Discovery of Potential Chemical Probe Inhibitors of Omicron Spike Protein. International Journal of Molecular Sciences, 23(18), 10315. https://doi.org/10.3390/ijms231810315