Adjusting Some Properties of Poly(methacrylic acid) (Nano)Composite Hydrogels by Means of Silicon-Containing Inorganic Fillers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrogel Structure
2.2. Hydrogel Swelling
2.3. Viscoelastic Properties
2.4. Absorption Properties of Cationic Dyes
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Hydrogels
3.3. Crosslinking Density and Average Molecular Weight between Crosslinks
3.4. Swelling Degree
3.5. Absorption Properties
3.6. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Egbo, M.K. A Fundamental Review on Composite Materials and Some of Their Applications in Biomedical Engineering. J. King Saud Univ. Eng. Sci. 2020, 33, 557–568. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Trukhanov, A.V. Thermal Stability of Nano-Crystalline Nickel Electrodeposited into Porous Alumina. Solid State Phenom. 2020, 299, 281–286. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Grabchikov, S.S.; Grabchikova, E.A.; Vasin, D.S.; Yakushevich, A.S.; Vinnik, D.A.; Zubar, T.I.; Kalagin, I.V.; Yakimchuk, D.V.; Trukhanov, A.V. Modeling of Paths and Energy Losses of High-Energy Ions in Single-Layered and Multilayered Materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 848, 012089. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Formation and Corrosion Behavior of Nickel/Alumina Nanocomposites. Solid State Phenom. 2020, 299, 100–106. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Zubar, T.I.; Zhaludkevich, A.L.; Razanau, I.U.; Vershinina, T.N.; Bondaruk, A.A.; Zheleznova, E.K.; Dong, M.; Hanfi, M.Y.; Sayyed, M.I.; et al. Isostatic Hot Pressed W–Cu Composites with Nanosized Grain Boundaries: Microstructure, Structure and Radiation Shielding Efficiency against Gamma Rays. Nanomaterials 2022, 12, 1642. [Google Scholar] [CrossRef]
- Schexnailder, P.; Schmidt, G. Nanocomposite Polymer Hydrogels. Colloid. Polym. Sci. 2009, 287, 1–11. [Google Scholar] [CrossRef]
- Gaharwar, A.K.; Peppas, N.A.; Khademhosseini, A. Nanocomposite Hydrogels for Biomedical Applications: Nanocomposite Hydrogels. Biotechnol. Bioeng. 2014, 111, 441–453. [Google Scholar] [CrossRef]
- Pavlyuchenko, V.N.; Ivanchev, S.S. Composite Polymer Hydrogels. Polym. Sci. Ser. A 2009, 51, 743–760. [Google Scholar] [CrossRef]
- Khan, M.; Shah, L.A.; Khan, M.A.; Khattak, N.S.; Zhao, H. Synthesis of an Un-Modified Gum Arabic and Acrylic Acid Based Physically Cross-Linked Hydrogels with High Mechanical, Self-Sustainable and Self-Healable Performance. Mater. Sci. Eng. C 2020, 116, 111278. [Google Scholar] [CrossRef]
- Subhan, H.; Alam, S.; Shah, L.A.; Khattak, N.S.; Zekker, I. Sodium Alginate Grafted Hydrogel for Adsorption of Methylene Green and Use of the Waste as an Adsorbent for the Separation of Emulsified Oil. J. Water Proc. Eng. 2022, 46, 102546. [Google Scholar] [CrossRef]
- Ianchis, R.; Ninciuleanu, C.; Gifu, I.; Alexandrescu, E.; Somoghi, R.; Gabor, A.; Preda, S.; Nistor, C.; Nitu, S.; Petcu, C.; et al. Novel Hydrogel-Advanced Modified Clay Nanocomposites as Possible Vehicles for Drug Delivery and Controlled Release. Nanomaterials 2017, 7, 443. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Choe, G.; Park, J.; Lee, J.Y. Graphene Oxide-Incorporated Hydrogels for Biomedical Applications. Polym J. 2020, 52, 823–837. [Google Scholar] [CrossRef]
- Zhao, Y.; Terai, W.; Hoshijima, Y.; Gotoh, K.; Matsuura, K.; Matsumura, K. Development and Characterization of a Poly(Vinyl Alcohol)/Graphene Oxide Composite Hydrogel as An Artificial Cartilage Material. Appl. Sci. 2018, 8, 2272. [Google Scholar] [CrossRef]
- Killion, J.A.; Kehoe, S.; Geever, L.M.; Devine, D.M.; Sheehan, E.; Boyd, D.; Higginbotham, C.L. Hydrogel/Bioactive Glass Composites for Bone Regeneration Applications: Synthesis and Characterisation. Mater. Sci. Eng. C 2013, 33, 4203–4212. [Google Scholar] [CrossRef]
- Tan, H.-L.; Teow, S.-Y.; Pushpamalar, J. Application of Metal Nanoparticle–Hydrogel Composites in Tissue Regeneration. Bioengineering 2019, 6, 17. [Google Scholar] [CrossRef]
- Dannert, C.; Stokke, B.T.; Dias, R.S. Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers 2019, 11, 275. [Google Scholar] [CrossRef]
- Terziyan, T.V.; Safronov, A.P.; Belous, Y.G. Interaction of Aerosil Nanoparticles with Networks of Polyacrylamide, Poly (Acrylic Acid), and Poly(Methacrylic Acid) Hydrogels. Polym. Sci. Ser. A 2015, 57, 200–208. [Google Scholar] [CrossRef]
- Schiraldi, C.; D’Agostino, A.; Oliva, A.; Flamma, F.; De Rosa, A.; Apicella, A.; Aversa, R.; De Rosa, M. Development of Hybrid Materials Based on Hydroxyethylmethacrylate as Supports for Improving Cell Adhesion and Proliferation. Biomaterials 2004, 25, 3645–3653. [Google Scholar] [CrossRef]
- Slisenko, O.V. Synthesis and Swelling Behaviour of Polyacrylamide/Modified Silica Hybrid Gels. In Proceedings of the 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP), Odessa, UKraine, 10–15 September 2017. [Google Scholar]
- Kertkal, N.; Jinawong, P.; Rithiyong, A.; Kusuktham, B. Hybrid Hydrogels for PH Indicator. Silicon 2021, 14, 2609–2624. [Google Scholar] [CrossRef]
- Bao, Y.; Ma, J.; Yang, Z. Preparation and Application of Poly (Methacrylic Acid)/Montmorillonite Nanocomposites. Mater. Manuf. Processes. 2011, 26, 604–608. [Google Scholar] [CrossRef]
- Zhao, L.Z.; Zhou, C.H.; Wang, J.; Tong, D.S.; Yu, W.H.; Wang, H. Recent Advances in Clay Mineral-Containing Nanocomposite Hydrogels. Soft. Matter. 2015, 11, 9229–9246. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Khan, T.A. Clay-Hydrogel Nanocomposites for Adsorptive Amputation of Environmental Contaminants from Aqueous Phase: A Review. J. Environ. Chem. Eng. 2021, 9, 105575. [Google Scholar] [CrossRef]
- Li, P.; Kim, N.H.; Hui, D.; Rhee, K.Y.; Lee, J.H. Improved Mechanical and Swelling Behavior of the Composite Hydrogels Prepared by Ionic Monomer and Acid-Activated Laponite. Appl. Clay Sci. 2009, 46, 414–417. [Google Scholar] [CrossRef]
- Uddin, F. Montmorillonite: An introduction to properties and utilization. In Current Topics in the Utilization of Clay in Industrial and Medical Applications; Zoveidavianpoor, M., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Zhou, C.; Tong, D.; Yu, W. 7—Smectite Nanomaterials: Preparation, Properties, and Functional Applications. In Nanomaterials from Clay Minerals; Wang, A., Wang, W., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 335–364. ISBN 978-0-12-814533-3. [Google Scholar]
- Tomás, H.; Alves, C.S.; Rodrigues, J. Laponite®: A Key Nanoplatform for Biomedical Applications? Nanomed Nanotechnol. Biol. Med. 2018, 14, 2407–2420. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, M.; Liu, X.; Zhang, W.; Sun, B.; Chen, Y.; Adler, H.-J.P. High Clay Content Nanocomposite Hydrogels with Surprising Mechanical Strength and Interesting Deswelling Kinetics. Polymer 2006, 47, 1–5. [Google Scholar] [CrossRef]
- Afghah, F.; Altunbek, M.; Dikyol, C.; Koc, B. Preparation and Characterization of Nanoclay-Hydrogel Composite Support-Bath for Bioprinting of Complex Structures. Sci. Rep. 2020, 10, 5257. [Google Scholar] [CrossRef]
- Vansant, E.F.; Voort, P.V.D.; Vrancken, K.C. Characterization and Chemical Modification of the Silica Surface; Elsevier: Amsterdam, The Netherlands, 1995; Volume 93, ISBN 978-0-08-052895-3. [Google Scholar]
- Whitby, C.P. Structuring Edible Oils With Fumed Silica Particles. Front. Sustain. Food Syst. 2020, 4, 201–209. [Google Scholar] [CrossRef]
- Yang, J.; Han, C.-R.; Duan, J.-F.; Xu, F.; Sun, R.-C. In Situ Grafting Silica Nanoparticles Reinforced Nanocomposite Hydrogels. Nanoscale 2013, 5, 10858–10863. [Google Scholar] [CrossRef]
- Güler, M.A.; Gök, M.K.; Figen, A.K.; Özgümüş, S. Swelling, Mechanical and Mucoadhesion Properties of Mt/Starch-g-PMAA Nanocomposite Hydrogels. Appl. Clay Sci. 2015, 112–113, 44–52. [Google Scholar] [CrossRef]
- Shabtai, I.A.; Lynch, L.M.; Mishael, Y.G. Designing Clay-Polymer Nanocomposite Sorbents for Water Treatment: A Review and Meta-Analysis of the Past Decade. Water Res. 2021, 188, 116571. [Google Scholar] [CrossRef]
- Peng, N.; Hu, D.; Zeng, J.; Li, Y.; Liang, L.; Chang, C. Superabsorbent Cellulose–Clay Nanocomposite Hydrogels for Highly Efficient Removal of Dye in Water. ACS Sustain. Chem. Eng. 2016, 4, 7217–7224. [Google Scholar] [CrossRef]
- Yi, J.-Z.; Zhan, L.-M. Removal of Methylene Blue Dye from Aqueous Solution by Adsorption onto Sodium Humate/Polyacrylamide/Clay Hybrid Hydrogels. Bioresour. Technol. 2008, 99, 2182–2186. [Google Scholar] [CrossRef]
- Serrano-Aroca, Á.; Deb, S. Acrylic-Based Hydrogels as Advanced Biomaterials. In Acrylate Polymers for Advanced Applications; Serrano-Aroca, Á., Deb, S., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-183-0. [Google Scholar]
- Pereira, A.G.B.; Rodrigues, F.H.A.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R. Recent Advances on Composite Hydrogels Designed for the Remediation of Dye-Contaminated Water and Wastewater: A Review. J. Cleaner. Prod. 2021, 284, 124703. [Google Scholar] [CrossRef]
- Panic, V.V.; Velickovic, S.J. Removal of Model Cationic Dye by Adsorption onto Poly(Methacrylic Acid)/Zeolite Hydrogel Composites: Kinetics, Equilibrium Study and Image Analysis. Sep. Purif. Technol. 2014, 122, 384–394. [Google Scholar] [CrossRef]
- Munteanu, T.; Ninciuleanu, C.M.; Gifu, I.C.; Trica, B.; Alexandrescu, E.; Gabor, A.R.; Preda, S.; Petcu, C.; Nistor, C.L.; Nitu, S.G.; et al. The Effect of Clay Type on the Physicochemical Properties of New Hydrogel Clay Nanocomposites. In Current Topics in the Utilization of Clay in Industrial and Medical Applications; Zoveidavianpoor, M., Ed.; InTech: London, UK, 2018; ISBN 978-1-78923-728-3. [Google Scholar]
- Zhumagaliyeva, S.N.; Iminova, R.S.; Kairalapova, G.Z.; Beysebekov, M.M.; Beysebekov, M.K.; Abilov, Z.A. Composite Polymer-Clay Hydrogels Based on Bentonite Clay and Acrylates: Synthesis, Characterization and Swelling Capacity. Eurasian Chem. Technol. J. 2017, 19, 279–288. [Google Scholar] [CrossRef]
- Junior, C.R.F.; de Moura, M.R.; Aouada, F.A. Synthesis and Characterization of Intercalated Nanocomposites Based on Poly(Methacrylic Acid) Hydrogel and Nanoclay Cloisite-Na + for Possible Application in Agriculture. J. Nanosci. Nanotechnol. 2017, 17, 5878–5883. [Google Scholar] [CrossRef]
- Ninciuleanu, C.M.; Ianchiş, R.; Alexandrescu, E.; Mihăescu, C.I.; Scomoroşcenco, C.; Nistor, C.L.; Preda, S.; Petcu, C.; Teodorescu, M. The Effects of Monomer, Crosslinking Agent, and Filler Concentrations on the Viscoelastic and Swelling Properties of Poly(Methacrylic Acid) Hydrogels: A Comparison. Materials 2021, 14, 2305. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Siddiqui, M.F.; Khan, T.A. Synthesis of Poly(Methacrylic Acid)/Montmorillonite Hydrogel Nanocomposite for Efficient Adsorption of Amoxicillin and Diclofenac from Aqueous Environment: Kinetic, Isotherm, Reusability, and Thermodynamic Investigations. ACS Omega 2020, 5, 2843–2855. [Google Scholar] [CrossRef] [PubMed]
- Ninciuleanu, C.; Ianchis, R.; Alexandrescu, E.; Mihaescu, C.; Trica, B.; Scomoroscenco, C.; Petcu, C.; Preda, S.; Teodorescu, M. Nanocomposite Hydrogels Based on Poly(Methacrylic Acid) and Laponite XLG. UPB Sci. Bull. Ser. B-Chem. Mater. Sci. 2021, 83, 43–58. [Google Scholar]
- Junior, C.R.F.; Fernandes, R.d.S.; de Moura, M.R.; Aouada, F.A. On the Preparation and Physicochemical Properties of PH-Responsive Hydrogel Nanocomposite Based on Poly(Acid Methacrylic)/Laponite RDS. Mater. Today Commun. 2020, 23, 100936. [Google Scholar] [CrossRef]
- Sadeghi, M. Synthesis and Swelling Behavior of Protein-g-poly Methacrylic Acid/Kaolin Superabsorbent Hydrogel Composites. AIP Conf. Proc. 2008, 1042, 318–320. [Google Scholar] [CrossRef]
- Mandal, B.; Rameshbabu, A.P.; Dhara, S.; Pal, S. Nanocomposite Hydrogel Derived from Poly (Methacrylic Acid)/Carboxymethyl Cellulose/AuNPs: A Potential Transdermal Drugs Carrier. Polymer 2017, 120, 9–19. [Google Scholar] [CrossRef]
- Sun, X.-F.; Ye, Q.; Jing, Z.; Li, Y. Preparation of Hemicellulose-g-Poly(Methacrylic Acid)/Carbon Nanotube Composite Hydrogel and Adsorption Properties. Polym. Compos. 2014, 35, 45–52. [Google Scholar] [CrossRef]
- Qi, X.; Wei, W.; Li, J.; Liu, Y.; Hu, X.; Zhang, J.; Bi, L.; Dong, W. Fabrication and Characterization of a Novel Anticancer Drug Delivery System: Salecan/Poly(Methacrylic Acid) Semi-Interpenetrating Polymer Network Hydrogel. ACS Biomater. Sci. Eng. 2015, 1, 1287–1299. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, H.; Wu, Z.; Chen, T.; Zhou, L.; Liang, Y.; Ke, B.; Huang, H.; Jiang, Z.; Xie, M.; et al. The Use of Poly(Methacrylic Acid) Nanogel to Control the Release of Amoxycillin with Lower Cytotoxicity. Mater. Sci. Eng. C. 2014, 43, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Panic, V.V.; Madzarevic, Z.P.; Volkov-Husovic, T.; Velickovic, S.J. Poly(Methacrylic Acid) Based Hydrogels as Sorbents for Removal of Cationic Dye Basic Yellow 28: Kinetics, Equilibrium Study and Image Analysis. Chem. Eng. J. 2013, 217, 192–204. [Google Scholar] [CrossRef]
- Infrared Spectroscopy. Available online: http://www.umsl.edu/~orglab/documents/IR/IR2.html (accessed on 17 August 2021).
- Ma, J.; Xu, Y.; Fan, B.; Liang, B. Preparation and Characterization of Sodium Carboxymethylcellulose/Poly(N-Isopropylacrylamide)/Clay Semi-IPN Nanocomposite Hydrogels. Eur. Polym. J. 2007, 43, 2221–2228. [Google Scholar] [CrossRef]
- Santos, J.; Barreto, Â.; Nogueira, J.; Daniel-da-Silva, A.L.; Trindade, T.; Amorim, M.J.B.; Maria, V.L. Effects of Amorphous Silica Nanopowders on the Avoidance Behavior of Five Soil Species—A Screening Study. Nanomaterials 2020, 10, 402. [Google Scholar] [CrossRef]
- Chang, C.-J.; Tzeng, H.-Y. Preparation and Properties of Waterborne Dual Curable Monomers and Cured Hybrid Polymers for Ink-Jet Applications. Polymer 2006, 47, 8536–8547. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chang, C.-J.; Chen, P.-J.; Ko, C.-J. Preparation and Characteristics of Poly(Amide–Imide)/Titania Nanocomposite Thin Films. Thin Solid Film. 2008, 516, 5654–5658. [Google Scholar] [CrossRef]
- Pacelli, S.; Paolicelli, P.; Moretti, G.; Petralito, S.; Di Giacomo, S.; Vitalone, A.; Casadei, M.A. Gellan Gum Methacrylate and Laponite as an Innovative Nanocomposite Hydrogel for Biomedical Applications. Eur. Polym. J. 2016, 77, 114–123. [Google Scholar] [CrossRef]
- PubChem Methacrylic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4093 (accessed on 16 July 2021).
- Teodorescu, M.; Cursaru, B.; Stanescu, P.; Draghici, C.; Stanciu, N.D.; Vuluga, D.M. Novel Hydrogels from Diepoxy-Terminated Poly(Ethylene Glycol)s and Aliphatic Primary Diamines: Synthesis and Equilibrium Swelling Studies. Polym. Adv. Technol. 2009, 20, 907–915. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Liu, W.-Q.; Chen, W.-X.; Sun, L.; Zhang, G.-B. Investigation of Swelling and Controlled-Release Behaviors of Hydrophobically Modified Poly(Methacrylic Acid) Hydrogels. Polymer 2007, 48, 2665–2671. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, Y.; Li, Z. Synthesis and Characterization of a PH- and Ionic Strength-Responsive Hydrogel. Soft Mater. 2007, 5, 183–195. [Google Scholar] [CrossRef]
- Mezger, T.G. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers; Vincentz Network GmbH & Co KG: Hanover, Germany, 2006; ISBN 978-3-87870-174-3. [Google Scholar]
- Richbourg, N.R.; Peppas, N.A. The Swollen Polymer Network Hypothesis: Quantitative Models of Hydrogel Swelling, Stiffness, and Solute Transport. Prog. Polym. Sci. 2020, 105, 101243. [Google Scholar] [CrossRef]
- Okay, O.; Oppermann, W. Polyacrylamide−Clay Nanocomposite Hydrogels: Rheological and Light Scattering Characterization. Macromolecules 2007, 40, 3378–3387. [Google Scholar] [CrossRef]
- Natarajan, S.; Bajaj, H.C.; Tayade, R.J. Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes from Waste Water Using Photocatalytic Process. J. Environ. Sci. 2018, 65, 201–222. [Google Scholar] [CrossRef]
- Tara, N.; Siddiqui, S.I.; Rathi, G.; Chaudhry, S.A.; Inamuddin; Asiri, A.M. Nano-Engineered Adsorbent for the Removal of Dyes from Water: A Review. CAC 2020, 16, 14–40. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.-C. Hydrogel Applications for Adsorption of Contaminants in Water and Wastewater Treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef]
- Sen, M.; Yakar, A.; Güven, O. Determination of Average Molecular Weight between Cross-Links (Mc) from Swelling Behaviours of Diprotic Acid-Containing Hydrogels. Polymer 1999, 40, 2969–2974. [Google Scholar] [CrossRef]
- Safronov, A.P.; Adamova, L.V.; Blokhina, A.S.; Kamalov, I.A.; Shabadrov, P.A. Flory-Huggins Parameters for Weakly Crosslinked Hydrogels of Poly(Acrylic Acid) and Poly(Methacrylic Acid) with Various Degrees of Ionization. Polym. Sci. Ser. A 2015, 57, 33–42. [Google Scholar] [CrossRef]
- Jerca, F.A.; Anghelache, A.M.; Ghibu, E.; Cecoltan, S.; Stancu, I.-C.; Trusca, R.; Vasile, E.; Teodorescu, M.; Vuluga, D.M.; Hoogenboom, R.; et al. Poly(2-Isopropenyl-2-Oxazoline) Hydrogels for Biomedical Applications. Chem. Mater. 2018, 30, 7938–7949. [Google Scholar] [CrossRef]
- Panic, V.; Adnadjevic, B.; Velickovic, S.; Jovanovic, J. The Effects of the Synthesis Parameters on the Xerogels Structures and on the Swelling Parameters of the Poly(Methacrylic Acid) Hydrogels. Chem. Eng. Process. 2010, 156, 206–214. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Z.; Yun, J.; Yang, H.; Xu, Z. Preparation of Laponite Hydrogel in Different Shapes for Selective Dye Adsorption and Filtration Separation. Appl. Clay Sci. 2021, 201, 105936. [Google Scholar] [CrossRef]
- Parisi, F. Adsorption and Separation of Crystal Violet, Cerium(III) and Lead(II) by Means of a Multi-Step Strategy Based on K10-Montmorillonite. Minerals 2020, 10, 466. [Google Scholar] [CrossRef]
Filler Code | Average Particle Size (nm) | Polydispersity Index | Zeta Potential (mV) | pH of Aqueous Dispersion |
---|---|---|---|---|
FS | 367 | 0.417 | −22.8 | 5.8 |
HDK | 570 | 0.481 | −17.5 | 5.9 |
Mt | 724.5 | 0.535 | −37.7 | 9.6 |
XLG | 45.8 | 0.591 | −41.9 | 9.6 |
XLS | 38.2 | 0.521 | −49.2 | 9.5 |
Hydrogel | Weight Loss (%) | Residue at 700 °C (%) | ||
---|---|---|---|---|
0–120 °C | 120–300 °C | 300–700 °C | ||
H | 0.90 | 17.38 | 73.78 | 7.92 |
HMt | 0.59 | 15.07 | 68.87 | 15.42 |
HXLG | 0.40 | 16.32 | 63.90 | 19.36 |
HXLS | 0.60 | 16.73 | 64.13 | 18.50 |
HHDK | 0.62 | 15.51 | 69.18 | 14.65 |
HFS | 0.66 | 15.65 | 68.59 | 15.08 |
Hydrogel | ||
---|---|---|
H | 643.0 | 20.0 |
HMt | 539.7 | 23.8 |
HXLG | 440.3 | 29.2 |
HXLS | 423.3 | 30.4 |
HHDK | 271.2 | 47.4 |
HFS | 266.2 | 48.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ninciuleanu, C.M.; Ianchiș, R.; Alexandrescu, E.; Mihăescu, C.I.; Burlacu, S.; Trică, B.; Nistor, C.L.; Preda, S.; Scomoroscenco, C.; Gîfu, C.; et al. Adjusting Some Properties of Poly(methacrylic acid) (Nano)Composite Hydrogels by Means of Silicon-Containing Inorganic Fillers. Int. J. Mol. Sci. 2022, 23, 10320. https://doi.org/10.3390/ijms231810320
Ninciuleanu CM, Ianchiș R, Alexandrescu E, Mihăescu CI, Burlacu S, Trică B, Nistor CL, Preda S, Scomoroscenco C, Gîfu C, et al. Adjusting Some Properties of Poly(methacrylic acid) (Nano)Composite Hydrogels by Means of Silicon-Containing Inorganic Fillers. International Journal of Molecular Sciences. 2022; 23(18):10320. https://doi.org/10.3390/ijms231810320
Chicago/Turabian StyleNinciuleanu, Claudia Mihaela, Raluca Ianchiș, Elvira Alexandrescu, Cătălin Ionuț Mihăescu, Sabina Burlacu, Bogdan Trică, Cristina Lavinia Nistor, Silviu Preda, Cristina Scomoroscenco, Cătălina Gîfu, and et al. 2022. "Adjusting Some Properties of Poly(methacrylic acid) (Nano)Composite Hydrogels by Means of Silicon-Containing Inorganic Fillers" International Journal of Molecular Sciences 23, no. 18: 10320. https://doi.org/10.3390/ijms231810320
APA StyleNinciuleanu, C. M., Ianchiș, R., Alexandrescu, E., Mihăescu, C. I., Burlacu, S., Trică, B., Nistor, C. L., Preda, S., Scomoroscenco, C., Gîfu, C., Petcu, C., & Teodorescu, M. (2022). Adjusting Some Properties of Poly(methacrylic acid) (Nano)Composite Hydrogels by Means of Silicon-Containing Inorganic Fillers. International Journal of Molecular Sciences, 23(18), 10320. https://doi.org/10.3390/ijms231810320