Selective Ligands for Non-Canonical DNA Structures: Do They Have a Future in Medicinal Chemistry?
1. G4 Targeting Opportunities and Challenges
2. Base-Modified Nucleotides
3. Selective G-Quadruplex Ligands
4. RNA-Based G4s
5. Fluorescence Measurements
6. NMR Studies
7. Conclusions
- Design ligands with higher selectivity for a given G4 arrangement taking advantage of the local environment and the nature (sequence, orientation, and length) of the connecting loops. The charged nature of these molecules might not afford the best conditions for selectivity, considering that cationic binders will exhibit non-negligible electrostatic binding affinity for the canonical double helical form too.
- Find a rationale for discriminating among the various non-canonical nucleic acid conformations by test ligands.
- Quantitate canonical vs. non-canonical binding distribution within a cell, considering the large prevalence of B-DNA at pharmacologically relevant conditions
- Make sure that the experimental setting in vitro does not create artifacts by stabilizing species not occurring in vivo.
- Define standard protocols of investigation to properly compare results from different labs, with a particular focus on identifying a few reference nucleic acid sequences to be used.
- Develop artificial intelligence algorithms to unveil particular ligand features conferring high specificity and selectivity.
- Make sure to fulfil ADMET requirements prior to implement costly and time-consuming synthetic efforts.
- Consider the possibility of simultaneous recognition by the binder of two or more G4 arrangements close in space, conferring a higher degree of selectivity.
- Do not neglect the kinetic aspects of the binding, which might discriminate fast-forming species from slowly assembling structures.
Funding
Conflicts of Interest
References
- Dixit, R.; David, F.S. Trends in pharmaceutical company R&D spending: 2005–2015. Nat. Rev. Drug Discov. 2017, 16, 376. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.; Mergny, J.-L.; Salgado, G.F.; Queiroz, J.A.; Cruz, C. G-quadruplex, Friend or Foe: The Role of the G-quartet in Anticancer Strategies. Trends Mol. Med. 2020, 26, 848–861. [Google Scholar] [CrossRef] [PubMed]
- Lejault, P.; Mitteaux, J.; Sperti, F.R.; Monchaud, D. How to untie G-quadruplex knots and why? Cell Chem. Biol. 2021, 28, 436–455. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, I.; Recagni, M.; Zaffaroni, N.; Folini, M. On the Road to Fight Cancer: The Potential of G-Quadruplex Ligands as Novel Therapeutic Agents. Int. J. Mol. Sci. 2021, 22, 5947. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, E.; Zanin, I.; Terreri, M.; Richter, S.N. G-Quadruplex Targeting in the Fight against Viruses: An Update. Int. J. Mol. Sci. 2021, 22, 10984. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniyam, T.; Oh, K.-I.; Jin, H.-S.; Ahn, H.-B.; Kim, B.-S.; Lee, J.-H. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int. J. Mol. Sci. 2021, 22, 9552. [Google Scholar] [CrossRef]
- Di Porzio, A.; Galli, U.; Amato, J.; Zizza, P.; Iachettini, S.; Iaccarino, N.; Marzano, S.; Santoro, F.; Brancaccio, D.; Carotenuto, A.; et al. Synthesis and Characterization of Bis-Triazolyl-Pyridine Derivatives as Noncanonical DNA-Interacting Compounds. Int. J. Mol. Sci. 2021, 22, 11959. [Google Scholar] [CrossRef] [PubMed]
- Marzano, S.; Pagano, B.; Iaccarino, N.; Di Porzio, A.; De Tito, S.; Vertecchi, E.; Salvati, E.; Randazzo, A.; Amato, J. Targeting of Telomeric Repeat-Containing RNA G-Quadruplexes: From Screening to Biophysical and Biological Characterization of a New Hit Compound. Int. J. Mol. Sci. 2021, 22, 10315. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Karnowska, J.; Głuszyńska, A.; Kosman, J.; Neunert, G.; Dembska, A. Interaction of 9-Methoxyluminarine with Different G-Quadruplex Topologies: Fluorescence and Circular Dichroism Studies. Int. J. Mol. Sci. 2021, 22, 10399. [Google Scholar] [CrossRef]
- Dallavalle, S.; Mattio, L.; Artali, R.; Musso, L.; Aviñó, A.; Fàbrega, C.; Eritja, R.; Gargallo, R.; Mazzini, S. Exploring the Interaction of Curaxin CBL0137 with G-Quadruplex DNA Oligomers. Int. J. Mol. Sci. 2021, 22, 6476. [Google Scholar] [CrossRef] [PubMed]
- Krafčík, D.; Ištvánková, E.; Džatko, Š.; Víšková, P.; Foldynová-Trantírková, S.; Trantírek, L. Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy. Int. J. Mol. Sci. 2021, 22, 6042. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, M.; Sissi, C. Selective Ligands for Non-Canonical DNA Structures: Do They Have a Future in Medicinal Chemistry? Int. J. Mol. Sci. 2022, 23, 11984. https://doi.org/10.3390/ijms231911984
Palumbo M, Sissi C. Selective Ligands for Non-Canonical DNA Structures: Do They Have a Future in Medicinal Chemistry? International Journal of Molecular Sciences. 2022; 23(19):11984. https://doi.org/10.3390/ijms231911984
Chicago/Turabian StylePalumbo, Manlio, and Claudia Sissi. 2022. "Selective Ligands for Non-Canonical DNA Structures: Do They Have a Future in Medicinal Chemistry?" International Journal of Molecular Sciences 23, no. 19: 11984. https://doi.org/10.3390/ijms231911984
APA StylePalumbo, M., & Sissi, C. (2022). Selective Ligands for Non-Canonical DNA Structures: Do They Have a Future in Medicinal Chemistry? International Journal of Molecular Sciences, 23(19), 11984. https://doi.org/10.3390/ijms231911984