Osteonecrosis of the Jaws in Patients with Hereditary Thrombophilia/Hypofibrinolysis—From Pathophysiology to Therapeutic Implications
Abstract
:1. Introduction
2. Etiology of the Osteonecrosis of the Jaws
3. Hereditary Thrombophilia in Patients with ONJ
3.1. Factor V Leiden
Author, Year | No. of Patients | Type of Defects | Hereditary Thrombophilia/Hypofibrinolysis Traits–No. of Patients | Acquired Thrombophilia | Comments | ||
---|---|---|---|---|---|---|---|
Thrombophilia (Only) | Hypofibrinolysis (Only) | Thrombophilia + Hypofibrinolysis (Mixed) | |||||
Gruppo et al., 1996 [106] | 55 | Single Hereditary Defect (13 patients) | APCR–2 ↓Prot C–1 | ↑Lp(a)–5 ↓tPA–4 ↑PAI-1–1 | 12 patients were normal 8 patients had only ACLA | ||
Multiple Hereditary Defects (12 patients) | ↑Lp(a) + ↓tPA–2 ↑Lp(a) + ↑PAI-1–2 ↑Lp(a) + ↓tPA + ↑PAI-1–1 | APCR + ↓tPA–1 APCR + ↑PAI-1–2 APCR + ↑Lp(a)–1 ↓Prot C + ↑Lp(a)–1 ↓Prot S + ↑Lp(a) + ↓tPA–1 ↓Prot S + ↑Lp(a) + ↑PAI-1–1 | |||||
Combined Hereditary + Acquired Defects (10 patients) | APCR–2 | ↓tPA–1 ↑Lp(a) + ↑PAI-1–1 ↑Lp(a) + ↓tPA + ↑PAI-1–1 ↓tPA + ↑PAI-1–1 ↑Lp(a)–3 | ACPR + ↑Lp(a)–1 | ACLA | |||
Glueck et al., 1996 [7] | 49 | Single Hereditary Defect (25 patients) | APCR–7 ↓Prot C–3 | ↑Lp(a)–8 ↓tPA–7 | 14 patients were normal | ||
Multiple Hereditary Defects (10 patients) | APCR + ↓Prot C–2 | ↑Lp(a) + ↓tPA–1 | APCR + ↓tPA–2 APCR + ↑Lp(a)–2 APCR + ↓tPA + ↑Lp(a)–1 ↓Prot C + ↑Lp(a)–1 ↓Prot C + ↓Prot S + ↑Lp(a)–1 | ||||
Glueck et al., 1997 [107] | 89 | Single Hereditary Defect (21 patients) | heterozygosity for the FV Leiden 16/76 women 5/13 men | Not assessed | Exogenous estrogen therapy increases the risk of ONJ | ||
Glueck et al., 1998 [108] | 1 | Single Hereditary Defect | heterozygosity for the FV Leiden | Exogenous estrogen therapy increases the risk of ONJ | |||
Vairaktaris et al., 2009 [109] | 1 | Single Hereditary Defects | prothrombin G20210A | BPs treatment for 5 years for osteolytic lesions related to cancer ONJ occurred 3 years after cessation of BPs therapy, after dental extraction | |||
Pandit et al., 2014 [104] | 1 | Combined Hereditary + Acquired Defects | FV Leiden heterozygosity MTHFR C677T homozygosity 4G4G PAI-1 homozygosity | beta 2 glycoprotein IgM, ACLA IgM | Therapy with anastrozole and testosterone | ||
Jarman et al., 2017 [105] | 1 | Combined Hereditary + Acquired Defects | heterozygosity for the FVL mutation homozygosity for the PAI-1 4G/4G mutation | lupus anticoagulant | Exogenous testosterone therapy increase the risk of ONJ |
3.2. Protein C and Protein S Deficiencies and Activated Protein C Resistance
3.3. G20210A Polymorphism in the Prothrombin Gene
3.4. MTHFR C677T Gene Polymorphism
4. Hypofibrinolysis Associated with ONJ
4.1. Tissue Plasminogen Activator and Plasminogen Activator Inhibitor 1
4.2. Lipoprotein (a)
5. Treatment of Hereditary Thrombophilia/Hypofibrinolysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Assouline-Dayan, Y.; Chang, C.; Greenspan, A.; Shoenfeld, Y.; Gershwin, M.E. Pathogenesis and natural history of osteonecrosis. Semin. Arthritis Rheum. 2002, 32, 94–124. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.C.; Mont, M.A.; Le, T.B.; Petri, M.; Hungerford, D.S.; Wang, P.; Glueck, C.J. Procoagulants and osteonecrosis. J. Rheumatol. 2003, 30, 783–791. [Google Scholar]
- Phemister, D.B. Fractures of the neck of the femur, dislocation of hip, and obscure vascular disturbances producing aseptic necrosis of the head of the femur. Surg. Gynec. Obstet. 1934, 59, 415–440. [Google Scholar]
- Jones, J.P., Jr. Intravascular coagulation and osteonecrosis. Clin. Orthop. Relat. Res. 1992, 277, 41–53. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.; Tracy, T.; Stroop, D.; Wang, P. Thrombophilia and hypofibrinolysis: Pathophysiologies of osteonecrosis. Clin. Orthop. Relat. Res. 1997, 334, 43–56. [Google Scholar] [CrossRef]
- Bouquot, J.E.; Roberts, A.M.; Person, P.; Christian, J. Neuralgia-inducing cavitational osteonecrosis (NICO). Osteomyelitis in 224 jawbone samples from patients with facial neuralgia. Oral Surg. Oral Med. Oral Pathol. 1992, 73, 307–319. [Google Scholar] [CrossRef]
- Glueck, C.J.; McMahon, R.E.; Bouquot, J.; Stroop, D.; Tracy, T.; Wang, P.; Rabinovich, B. Thrombophilia, hypofibrinolysis, and alveolar osteonecrosis of the jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1996, 81, 557–566. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.; Glueck, H.I.; Henderson, C.; Welch, M.; Tracy, T.; Stroop, D.; Hamer, T.; Sosa, F.; Levy, M. Hypofibrinolysis: A common, major cause of osteonecrosis. Am. J. Hematol. 1994, 45, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.; Antonelli, A.; Muraca, D.; Fortunato, L. Usefulness of advanced-platelet rich fibrin (A-PRF) and injectable-platelet rich fibrin (i-PRF) in the management of a massive medication-related osteonecrosis of the jaw (MRONJ): A 5-years follow-up case report. Indian J. Dent. Res. 2020, 31, 813–818. [Google Scholar] [CrossRef]
- Fortunato, L.; Amato, M.; Simeone, M.; Bennardo, F.; Barone, S.; Giudice, A. Numb chin syndrome: A reflection of malignancy or a harbinger of MRONJ? A multicenter experience. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 389–394. [Google Scholar] [CrossRef]
- Advisory Task Force on Bisphosphonate-Related Ostenonecrosis of the Jaws. American Association of Oral and Maxillofacial Surgeons position paper on bisphosphonate-related osteonecrosis of the jaws. J. Oral Maxillofac. Surg. 2007, 65, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L.; Dodson, T.B.; Fantasia, J.; Goodday, R.; Aghaloo, T.; Mehrotra, B.; O’Ryan, F. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw-2014 update. J. Oral Maxillofac. Surg. 2014, 72, 1938–1956. [Google Scholar] [CrossRef] [PubMed]
- Schiodt, M.; Otto, S.; Fedele, S.; Bedogni, A.; Nicolatou-Galitis, O.; Guggenberger, R.; Herlofson, B.B.; Ristow, O.; Kofod, T. Workshop of European task force on medication-related osteonecrosis of the jaw-Current challenges. Oral Dis. 2019, 25, 1815–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedele, S.; Bedogni, G.; Scoletta, M.; Favia, G.; Colella, G.; Agrillo, A.; Bettini, G.; Di Fede, O.; Oteri, G.; Fusco, V.; et al. Up to a quarter of patients with osteonecrosis of the jaw associated with antiresorptive agents remain undiagnosed. Br. J. Oral Maxillofac. Surg. 2015, 53, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Morrison, A.; Hanley, D.A.; Felsenberg, D.; McCauley, L.K.; O’Ryan, F.; Reid, I.R.; Ruggiero, S.L.; Taguchi, A.; Tetradis, S.; et al. Diagnosis and management of osteonecrosis of the jaw: A systematic review and international consensus. J. Bone Miner. Res. 2015, 30, 3–23. [Google Scholar] [CrossRef] [PubMed]
- McMahon, R.E.; Bouquot, J.E.; Glueck, C.J.; Spolnik, K.J.; Adams, W.R. Osteonecrosis: A multifactorial etiology. J. Oral Maxillofac. Surg. 2004, 62, 904–905. [Google Scholar] [CrossRef]
- Adams, W.R.; Spolnik, K.J.; Bouquot, J.E. Maxillofacial osteonecrosis in a patient with multiple “idiopathic” facial pains. J. Oral Pathol. Med. 1999, 28, 423–432. [Google Scholar] [CrossRef]
- Weldon, D. The effects of corticosteroids on bone: Osteonecrosis (avascular necrosis of the bone). Ann. Allergy Asthma Immunol. 2009, 103, 91–97. [Google Scholar] [CrossRef]
- Fellows, J.L.; Rindal, D.B.; Barasch, A.; Gullion, C.M.; Rush, W.; Pihlstrom, D.J.; Richman, J.; Group, D.C. ONJ in two dental practice-based research network regions. J. Dent. Res. 2011, 90, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Lo, J.C.; O’Ryan, F.S.; Gordon, N.P.; Yang, J.; Hui, R.L.; Martin, D.; Hutchinson, M.; Lathon, P.V.; Sanchez, G.; Silver, P.; et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J. Oral Maxillofac. Surg. 2010, 68, 243–253. [Google Scholar] [CrossRef]
- Mavrokokki, T.; Cheng, A.; Stein, B.; Goss, A. Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J. Oral Maxillofac. Surg. 2007, 65, 415–423. [Google Scholar] [CrossRef]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestris, F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J. Bone Oncol. 2019, 15, 100205. [Google Scholar] [CrossRef]
- Khan, A.A.; Rios, L.P.; Sandor, G.K.; Khan, N.; Peters, E.; Rahman, M.O.; Clokie, C.M.; Dore, E.; Dubois, S. Bisphosphonate-associated osteonecrosis of the jaw in Ontario: A survey of oral and maxillofacial surgeons. J. Rheumatol. 2011, 38, 1396–1402. [Google Scholar] [CrossRef]
- Santini, D.; Vincenzi, B.; Dicuonzo, G.; Avvisati, G.; Massacesi, C.; Battistoni, F.; Gavasci, M.; Rocci, L.; Tirindelli, M.C.; Altomare, V.; et al. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin. Cancer Res. 2003, 9, 2893–2897. [Google Scholar] [PubMed]
- Khosla, S.; Burr, D.; Cauley, J.; Dempster, D.W.; Ebeling, P.R.; Felsenberg, D.; Gagel, R.F.; Gilsanz, V.; Guise, T.; Koka, S.; et al. Bisphosphonate-associated osteonecrosis of the jaw: Report of a task force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 2007, 22, 1479–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhl, S.; Walter, C.; Acham, S.; Pfeffer, R.; Lambrecht, J.T. Bisphosphonate-related osteonecrosis of the jaws—A review. Oral Oncol. 2012, 48, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, Z.K.; Yu, Y.; Zhuo, Z.; Zhang, G.; Zhang, B.T. Pros and cons of denosumab treatment for osteoporosis and implication for RANKL aptamer therapy. Front. Cell Dev. Biol. 2020, 8, 325. [Google Scholar] [CrossRef]
- Boquete-Castro, A.; Gomez-Moreno, G.; Calvo-Guirado, J.L.; Aguilar-Salvatierra, A.; Delgado-Ruiz, R.A. Denosumab and osteonecrosis of the jaw. A systematic analysis of events reported in clinical trials. Clin. Oral Implants Res. 2016, 27, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Hirsh, V.; Siena, S.; Henry, D.H.; Woll, P.J.; Manegold, C.; Solal-Celigny, P.; Rodriguez, G.; Krzakowski, M.; Mehta, N.D.; et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: Subgroup analysis from a randomized phase 3 study. J. Thorac. Oncol. 2012, 7, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Vermeer, J.A.; Renders, G.A.; Everts, V. Osteonecrosis of the jaw-a bone site-specific effect of bisphosphonates. Curr. Osteoporos Rep. 2016, 14, 219–225. [Google Scholar] [CrossRef]
- Chang, J.; Hakam, A.E.; McCauley, L.K. Current understanding of the pathophysiology of osteonecrosis of the jaw. Curr. Osteoporos Rep. 2018, 16, 584–595. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Lieu, S.; Hu, D.; Miclau, T.; Colnot, C. Site specific effects of zoledronic acid during tibial and mandibular fracture repair. PLoS ONE 2012, 7, e31771. [Google Scholar] [CrossRef]
- Di Vito, A.; Chiarella, E.; Baudi, F.; Scardamaglia, P.; Antonelli, A.; Giudice, D.; Barni, T.; Fortunato, L.; Giudice, A. Dose-dependent effects of zoledronic acid on human periodontal ligament stem cells: An in vitro pilot study. Cell Transplant. 2020, 29, 963689720948497. [Google Scholar] [CrossRef]
- de Sousa, F.R.N.; de Sousa Ferreira, V.C.; da Silva Martins, C.; Dantas, H.V.; de Sousa, F.B.; Girao-Carmona, V.C.C.; Goes, P.; de Castro Brito, G.A.; de Carvalho Leitao, R.F. The effect of high concentration of zoledronic acid on tooth induced movement and its repercussion on root, periodontal ligament and alveolar bone tissues in rats. Sci. Rep. 2021, 11, 7672. [Google Scholar] [CrossRef] [PubMed]
- Hanley, D.A.; Adachi, J.D.; Bell, A.; Brown, V. Denosumab: Mechanism of action and clinical outcomes. Int. J. Clin. Pract. 2012, 66, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.Y.; Suh, H.S.; Park, J.W.; Kwon, J.W. Drug holiday patterns and bisphosphonate-related osteonecrosis of the jaw. Oral Dis. 2019, 25, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Abed, H.H.; Al-Sahafi, E.N. The role of dental care providers in the management of patients prescribed bisphosphonates: Brief clinical guidance. Gen. Dent. 2018, 66, 18–24. [Google Scholar]
- Otto, S.; Pautke, C.; Arens, D.; Poxleitner, P.; Eberli, U.; Nehrbass, D.; Zeiter, S.; Stoddart, M.J. A drug holiday reduces the frequency and severity of medication-related osteonecrosis of the jaw in a minipig Model. J. Bone Miner. Res. 2020, 35, 2179–2192. [Google Scholar] [CrossRef]
- King, R.; Tanna, N.; Patel, V. Medication-related osteonecrosis of the jaw unrelated to bisphosphonates and denosumab-a review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 289–299. [Google Scholar] [CrossRef]
- Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance mechanisms to anti-angiogenic therapies in cancer. Front. Oncol. 2020, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Fleisher, K.E.; Janal, M.N.; Albstein, N.; Young, J.; Bikhazi, V.; Schwalb, S.; Wolff, M.; Glickman, R.S. Comorbid conditions are a risk for osteonecrosis of the jaw unrelated to antiresorptive therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 140–150. [Google Scholar] [CrossRef]
- Antonuzzo, L.; Lunghi, A.; Petreni, P.; Brugia, M.; Laffi, A.; Giommoni, E.; Mela, M.M.; Mazzoni, F.; Balestri, V.; Costanzo, F.D. Osteonecrosis of the jaw and angiogenesis inhibitors: A revival of a rare but serous side effect. Curr. Med. Chem. 2017, 24, 3068–3076. [Google Scholar] [CrossRef]
- Patel, V.; Sproat, C.; Kwok, J.; Tanna, N. Axitinib-related osteonecrosis of the jaw. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 124, e257–e260. [Google Scholar] [CrossRef]
- Marino, R.; Orlandi, F.; Arecco, F.; Gandolfo, S.; Pentenero, M. Osteonecrosis of the jaw in a patient receiving cabozantinib. Aust. Dent. J. 2015, 60, 528–531. [Google Scholar] [CrossRef]
- Abel Mahedi Mohamed, H.; Nielsen, C.E.N.; Schiodt, M. Medication related osteonecrosis of the jaws associated with targeted therapy as monotherapy and in combination with antiresorptives. A report of 7 cases from the Copenhagen Cohort. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Viviano, M.; Rossi, M.; Cocca, S. A rare case of osteonecrosis of the jaw related to imatinib. J. Korean Assoc. Oral Maxillofac. Surg. 2017, 43, 120–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolatou-Galitis, O.; Razis, E.; Galiti, D.; Vardas, E.; Tzerbos, F.; Labropoulos, S. Osteonecrosis of the jaw in a patient with chronic myelogenous leukemia receiving imatinib-a case report with clinical implications. Forum Clin. Oncol. 2013, 4, 29–33. [Google Scholar]
- Jung, T. Osteonecrosis of jaw after antiangiogenic agent administration in a renal cell carcinoma patient. Oral Maxillofac. Surg. Cases 2017, 3, 27–33. [Google Scholar] [CrossRef]
- Antonuzzo, L.; Lunghi, A.; Giommoni, E.; Brugia, M.; Di Costanzo, F. Regorafenib also can cause osteonecrosis of the jaw. J. Natl. Cancer Inst. 2016, 108, djw002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahara, T.; Shimada, K.; Ishida, S.; Ishida, N.; Yoshimura, S.; Takeuchi, S.; Saito, T.; Miyamoto, I.; Baba, T.; Saito, K.; et al. Osteonecrosis of the jaw associated with receiving sunitinib monotherapy: A rare case. J. Oral Maxillofac. Surg. Med. Pathol. 2021, 33, 66–70. [Google Scholar] [CrossRef]
- Koch, F.P.; Walter, C.; Hansen, T.; Jager, E.; Wagner, W. Osteonecrosis of the jaw related to sunitinib. Oral Maxillofac. Surg. 2011, 15, 63–66. [Google Scholar] [CrossRef]
- Fleissig, Y.; Regev, E.; Lehman, H. Sunitinib related osteonecrosis of jaw: A case report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, e1–e3. [Google Scholar] [CrossRef] [PubMed]
- Garuti, F.; Camelli, V.; Spinardi, L.; Bucci, L.; Trevisani, F. Osteonecrosis of the jaw during sorafenib therapy for hepatocellular carcinoma. Tumori 2016, 102 (Suppl. 2), S69–S70. [Google Scholar] [CrossRef] [PubMed]
- Cassoni, A.; Romeo, U.; Terenzi, V.; Della Monaca, M.; Rajabtork Zadeh, O.; Raponi, I.; Fadda, M.T.; Polimeni, A.; Valentini, V. Adalimumab: Another medication related to osteonecrosis of the jaws? Case Rep. Dent. 2016, 2016, 2856926. [Google Scholar] [CrossRef] [Green Version]
- Preidl, R.H.; Ebker, T.; Raithel, M.; Wehrhan, F.; Neukam, F.W.; Stockmann, P. Osteonecrosis of the jaw in a Crohn’s disease patient following a course of bisphosphonate and adalimumab therapy: A case report. BMC Gastroenterol. 2014, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Kashiwagi, T.; Takayama, S.; Nishimoto, A.; Imai, T.; Uzawa, N. Is bevacizumab a direct cause of osteonecrosis of the jaw like bisphosphonate? Am. J. Biomed. Sci. Res. 2020, 9, 71–72. [Google Scholar] [CrossRef]
- Erovigni, F.; Gambino, A.; Cabras, M.; Fasciolo, A.; Bianchi, S.D.; Bellini, E.; Fusco, V. Delayed diagnosis of osteonecrosis of the jaw (ONJ) associated with bevacizumab therapy in colorectal cancer patients: Report of two cases. Dent. J. 2016, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Favia, G.; Tempesta, A.; Limongelli, L.; Crincoli, V.; Iannone, F.; Lapadula, G.; Maiorano, E. A Case of osteonecrosis of the jaw in a patient with Crohn’s disease treated with infliximab. Am. J. Case Rep. 2017, 18, 1351–1356. [Google Scholar] [CrossRef] [Green Version]
- Kerbin, P.; Guerrot, D.; Jardin, F.; Moizan, H. Osteonecrosis of the jaw in a patient presenting with post-transplantation lymphoproliferative disorder treated with rituximab: A case report. J. Oral Maxillofac. Surg. 2017, 75, 2599–2605. [Google Scholar] [CrossRef] [PubMed]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owosho, A.A.; Scordo, M.; Yom, S.K.; Randazzo, J.; Chapman, P.B.; Huryn, J.M.; Estilo, C.L. Osteonecrosis of the jaw a new complication related to ipilimumab. Oral Oncol. 2015, 51, e100–e101. [Google Scholar] [CrossRef] [Green Version]
- Bennardo, F.; Buffone, C.; Giudice, A. New therapeutic opportunities for COVID-19 patients with tocilizumab: Possible correlation of interleukin-6 receptor inhibitors with osteonecrosis of the jaws. Oral Oncol. 2020, 106, 104659. [Google Scholar] [CrossRef] [PubMed]
- Henien, M.; Carey, B.; Hullah, E.; Sproat, C.; Patel, V. Methotrexate-associated osteonecrosis of the jaw: A report of two cases. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 124, e283–e287. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.H.; Wang, X.L.; Yang, H.L.; Zhao, D.W.; Qin, L. Steroid-associated osteonecrosis: Epidemiology, pathophysiology, animal model, prevention, and potential treatments (an overview). J. Orthop. Translat. 2015, 3, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, L.S.; Tay, K.K.; Chieng, Y.L. Osteonecrosis of mandible: A rare complication of long-term steroid use. J. Oral Maxillofac. Surg. Med. Pathol. 2015, 27, 255–257. [Google Scholar] [CrossRef]
- Mergoni, G.; Manfredi, M.; Merigo, E.; Meleti, M.; Vescovi, P. Osteonecrosis of the jaws related to corticosteroids therapy: A case report. Ann. Stomatol. 2014, 5, 29–30. [Google Scholar]
- Nadella, K.R.; Kodali, R.M.; Guttikonda, L.K.; Jonnalagadda, A. Osteoradionecrosis of the jaws: Clinico-therapeutic management: A literature review and update. J. Maxillofac. Oral Surg. 2015, 14, 891–901. [Google Scholar] [CrossRef] [Green Version]
- Delanian, S.; Lefaix, J.L. The radiation-induced fibroatrophic process: Therapeutic perspective via the antioxidant pathway. Radiother Oncol 2004, 73, 119–131. [Google Scholar] [CrossRef]
- Rivero, J.A.; Shamji, O.; Kolokythas, A. Osteoradionecrosis: A review of pathophysiology, prevention and pharmacologic management using pentoxifylline, alpha-tocopherol, and clodronate. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 124, 464–471. [Google Scholar] [CrossRef]
- Gadiwalla, Y.; Patel, V. Osteonecrosis of the jaw unrelated to medication or radiotherapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 446–453. [Google Scholar] [CrossRef]
- Peer, A.; Khamaisi, M. Diabetes as a risk factor for medication-related osteonecrosis of the jaw. J. Dent. Res. 2015, 94, 252–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, J.T.; Sheeley, D.M.; Somerman, M.J.; Lee, J.S. Mitigating osteonecrosis of the jaw (ONJ) through preventive dental care and understanding of risk factors. Bone Res. 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barasch, A.; Cunha-Cruz, J.; Curro, F.A.; Hujoel, P.; Sung, A.H.; Vena, D.; Voinea-Griffin, A.E.; Group, C.C.; Beadnell, S.; Craig, R.G.; et al. Risk factors for osteonecrosis of the jaws: A case-control study from the CONDOR dental PBRN. J. Dent. Res. 2011, 90, 439–444. [Google Scholar] [CrossRef]
- Fung, P.; Bedogni, G.; Bedogni, A.; Petrie, A.; Porter, S.; Campisi, G.; Bagan, J.; Fusco, V.; Saia, G.; Acham, S.; et al. Time to onset of bisphosphonate-related osteonecrosis of the jaws: A multicentre retrospective cohort study. Oral Dis. 2017, 23, 477–483. [Google Scholar] [CrossRef]
- Mouraret, A.; Gérard, E.; Le Gall, J.; Curien, R. Avascular osteonecrosis of the premaxilla secondary to disseminated intravascular coagulation: A case report. J. Oral Med. Oral Surg. 2018, 24, 173–177. [Google Scholar] [CrossRef]
- Roland-Billecart, T.; Maes, J.M.; Vieillard, M.H.; Ferri, J.; Nicot, R. Avascular necrosis of the jaw resulting from sickle cell disease. J. Oral Med. Oral Surg. 2021, 27, 3. [Google Scholar] [CrossRef]
- Tkacz, K.; Gill, J.; McLernon, M. Necrotising periodontal diseases and alcohol misuse—A cause of osteonecrosis? Br. Dent. J. 2021, 231, 225–231. [Google Scholar] [CrossRef]
- Kumar, N.S.; John, R.R.; Rethish, E. Relatively rare entity of avascular necrosis of maxillary bone caused by Gaucher’s disease—A case report. J. Oral Maxillofac. Surg. 2012, 70, 2590–2595. [Google Scholar] [CrossRef]
- Smalberg, J.H.; Kruip, M.J.; Janssen, H.L.; Rijken, D.C.; Leebeek, F.W.; de Maat, M.P. Hypercoagulability and hypofibrinolysis and risk of deep vein thrombosis and splanchnic vein thrombosis: Similarities and differences. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.Y.; Andreotti, F.; Becker, R.C. Hypercoagulable states in cardiovascular disease. Circulation 2008, 118, 2286–2297. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Ayyub, M.; Khan, S.A. High prevalence of protein C, protein S, antithrombin deficiency, and Factor V Leiden mutation as a cause of hereditary thrombophilia in patients of venous thromboembolism and cerebrovascular accident. Pak. J. Med. Sci. 2014, 30, 1323–1326. [Google Scholar] [CrossRef]
- Liu, F.; Silva, D.; Malone, M.V.; Seetharaman, K. MTHFR A1298C and C677T polymorphisms are associated with increased risk of venous thromboembolism: A retrospective chart review study. Acta Haematol. 2017, 138, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.S.; Miletich, J.P.; Goldhaber, S.Z.; Hennekens, C.H.; Ridker, P.M. G20210A mutation in the prothrombin gene and the risk of recurrent venous thromboembolism. J. Am. Coll. Cardiol. 2001, 37, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Weingarz, L.; Schwonberg, J.; Schindewolf, M.; Hecking, C.; Wolf, Z.; Erbe, M.; Weber, A.; Lindhoff-Last, E.; Linnemann, B. Prevalence of thrombophilia according to age at the first manifestation of venous thromboembolism: Results from the MAISTHRO registry. Br. J. Haematol. 2013, 163, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Obaid, M.; El-Menyar, A.; Asim, M.; Al-Thani, H. Prevalence and outcomes of thrombophilia in patients with acute pulmonary embolism. Vasc. Health Risk Manag. 2020, 16, 75–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tregouet, D.A.; Morange, P.E. What is currently known about the genetics of venous thromboembolism at the dawn of next generation sequencing technologies. Br. J. Haematol. 2018, 180, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Lian, T.Y.; Lu, D.; Yan, X.X.; Tan, J.S.; Peng, F.H.; Zhu, Y.J.; Wei, Y.P.; Wu, T.; Sun, K.; Jiang, X.; et al. Association between congenital thrombophilia and outcomes in pulmonary embolism patients. Blood Adv. 2020, 4, 5958–5965. [Google Scholar] [CrossRef]
- Chiasakul, T.; De Jesus, E.; Tong, J.; Chen, Y.; Crowther, M.; Garcia, D.; Chai-Adisaksopha, C.; Messe, S.R.; Cuker, A. Inherited thrombophilia and the risk of arterial ischemic stroke: A systematic review and meta-analysis. J. Am. Heart Assoc. 2019, 8, e012877. [Google Scholar] [CrossRef]
- Algahtani, F.H.; Stuckey, R. High factor VIII levels and arterial thrombosis: Illustrative case and literature review. Ther. Adv. Hematol. 2019, 10, 2040620719886685. [Google Scholar] [CrossRef]
- Siegler, J.E.; Samai, A.; Albright, K.C.; Boehme, A.K.; Martin-Schild, S. Factoring in factor VIII with acute ischemic stroke. Clin. Appl. Thromb. Hemost. 2015, 21, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, P.V.; Rawley, O.; Smith, O.P.; O’Donnell, J.S. Elevated factor VIII levels and risk of venous thrombosis. Br. J. Haematol. 2012, 157, 653–663. [Google Scholar] [CrossRef]
- Denorme, F.; Vanhoorelbeke, K.; De Meyer, S.F. Von Willebrand factor and platelet glycoprotein Ib: A thromboinflammatory axis in stroke. Front. Immunol. 2019, 10, 2884. [Google Scholar] [CrossRef]
- Edvardsen, M.S.; Hindberg, K.; Hansen, E.S.; Morelli, V.M.; Ueland, T.; Aukrust, P.; Braekkan, S.K.; Evensen, L.H.; Hansen, J.B. Plasma levels of von Willebrand factor and future risk of incident venous thromboembolism. Blood Adv. 2021, 5, 224–232. [Google Scholar] [CrossRef]
- Schreuder, M.; Reitsma, P.H.; Bos, M.H.A. Blood coagulation factor Va’s key interactive residues and regions for prothrombinase assembly and prothrombin binding. J. Thromb. Haemost. 2019, 17, 1229–1239. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, E.; Brugge, J.M.; Nicolaes, G.A.; Girelli, D.; Tans, G.; Rosing, J. Impaired APC cofactor activity of factor V plays a major role in the APC resistance associated with the factor V Leiden (R506Q) and R2 (H1299R) mutations. Blood 2004, 103, 4173–4179. [Google Scholar] [CrossRef]
- Rees, D.C.; Cox, M.; Clegg, J.B. World distribution of factor V Leiden. Lancet 1995, 346, 1133–1134. [Google Scholar] [CrossRef]
- Ridker, P.M.; Miletich, J.P.; Hennekens, C.H.; Buring, J.E. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA 1997, 277, 1305–1307. [Google Scholar] [CrossRef] [PubMed]
- Gregg, J.P.; Yamane, A.J.; Grody, W.W. Prevalence of the factor V-Leiden mutation in four distinct American ethnic populations. Am. J. Med. Genet. 1997, 73, 334–336. [Google Scholar] [CrossRef]
- Jadaon, M.M. Epidemiology of activated protein C resistance and factor V Leiden mutation in the mediterranean region. Mediterr. J. Hematol. Infect. Dis. 2011, 3, e2011037. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Boriel, G.; Khan, Z.; Brar, A.; Padda, J.; Wang, P. The role of the factor V Leiden mutation in osteonecrosis of the hip. Clin. Appl. Thromb. Hemost. 2013, 19, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, A.; Svensson, P.J.; Hillarp, A.; Burtscher, I.M.; Runow, A.; Benoni, G. Factor V Leiden and prothrombin gene mutation: Risk factors for osteonecrosis of the femoral head in adults. Clin. Orthop. Relat. Res. 2004, 425, 168–172. [Google Scholar] [CrossRef]
- Zalavras, C.G.; Vartholomatos, G.; Dokou, E.; Malizos, K.N. Genetic background of osteonecrosis: Associated with thrombophilic mutations? Clin. Orthop. Relat. Res. 2004, 422, 251–255. [Google Scholar] [CrossRef]
- Bjorkman, A.; Burtscher, I.M.; Svensson, P.J.; Hillarp, A.; Besjakov, J.; Benoni, G. Factor V Leiden and the prothrombin 20210A gene mutation and osteonecrosis of the knee. Arch. Orthop. Trauma Surg. 2005, 125, 51–55. [Google Scholar] [CrossRef]
- Pandit, R.S.; Glueck, C.J. Testosterone, anastrozole, factor V Leiden heterozygosity and osteonecrosis of the jaws. Blood Coagul. Fibrinolysis 2014, 25, 286–288. [Google Scholar] [CrossRef]
- Jarman, M.I.; Lee, K.; Kanevsky, A.; Min, S.; Schlam, I.; Mahida, C.; Huda, A.; Milgrom, A.; Goldenberg, N.; Glueck, C.J.; et al. Case report: Primary osteonecrosis associated with thrombophilia-hypofibrinolysis and worsened by testosterone therapy. BMC Hematol. 2017, 17, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruppo, R.; Glueck, C.J.; McMahon, R.E.; Bouquot, J.; Rabinovich, B.A.; Becker, A.; Tracy, T.; Wang, P. The pathophysiology of alveolar osteonecrosis of the jaw: Anticardiolipin antibodies, thrombophilia, and hypofibrinolysis. J. Lab. Clin. Med. 1996, 127, 481–488. [Google Scholar] [CrossRef]
- Glueck, C.J.; McMahon, R.E.; Bouquot, J.E.; Triplett, D.; Gruppo, R.; Wang, P. Heterozygosity for the Leiden mutation of the factor V gene, a common pathoetiology for osteonecrosis of the jaw, with thrombophilia augmented by exogenous estrogens. J. Lab. Clin. Med. 1997, 130, 540–543. [Google Scholar] [CrossRef]
- Glueck, C.J.; McMahon, R.E.; Bouquot, J.E.; Triplett, D. Exogenous estrogen may exacerbate thrombophilia, impair bone healing and contribute to development of chronic facial pain. Cranio 1998, 16, 143–153. [Google Scholar] [CrossRef]
- Vairaktaris, E.; Vassiliou, S.; Avgoustidis, D.; Stathopoulos, P.; Toyoshima, T.; Yapijakis, C. Bisphosphonate-induced avascular osteonecrosis of the mandible associated with a common thrombophilic mutation in the prothrombin gene. J. Oral Maxillofac. Surg. 2009, 67, 2009–2012. [Google Scholar] [CrossRef]
- Bouwens, E.A.; Stavenuiter, F.; Mosnier, L.O. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J. Thromb. Haemost. 2013, 11 (Suppl. 1), 242–253. [Google Scholar] [CrossRef] [Green Version]
- Tait, R.C.; Walker, I.D.; Reitsma, P.H.; Islam, S.I.; McCall, F.; Poort, S.R.; Conkie, J.A.; Bertina, R.M. Prevalence of protein C deficiency in the healthy population. Thromb. Haemost. 1995, 73, 87–93. [Google Scholar] [CrossRef]
- Dykes, A.C.; Walker, I.D.; McMahon, A.D.; Islam, S.I.; Tait, R.C. A study of protein S antigen levels in 3788 healthy volunteers: Influence of age, sex and hormone use, and estimate for prevalence of deficiency state. Br. J. Haematol. 2001, 113, 636–641. [Google Scholar] [CrossRef]
- Urbanus, R.T.; de Laat, B. Antiphospholipid antibodies and the protein C pathway. Lupus 2010, 19, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Zalavras, C.; Dailiana, Z.; Elisaf, M.; Bairaktari, E.; Vlachogiannopoulos, P.; Katsaraki, A.; Malizos, K.N. Potential aetiological factors concerning the development of osteonecrosis of the femoral head. Eur. J. Clin. Investig. 2000, 30, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.L.; Ramalli, E.L.; Picado, C.H. Coagulation disorders in patients with femoral head osteonecrosis. Acta Ortop. Bras. 2013, 21, 43–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glueck, C.J.; Freiberg, R.A.; Wissman, R.; Wang, P. Long term anticoagulation (4–16 years) stops progression of idiopathic hip osteonecrosis associated with familial thrombophilia. Adv Orthop. 2015, 2015, 138382. [Google Scholar] [CrossRef]
- Korompilias, A.V.; Ortel, T.L.; Urbaniak, J.R. Coagulation abnormalities in patients with hip osteonecrosis. Orthop. Clin. N. Am. 2004, 35, 265–271. [Google Scholar] [CrossRef]
- Glueck, C.J.; McMahon, R.E.; Bouquot, J.E.; Tracy, T.; Sieve-Smith, L.; Wang, P. A preliminary pilot study of treatment of thrombophilia and hypofibrinolysis and amelioration of the pain of osteonecrosis of the jaws. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998, 85, 64–73. [Google Scholar] [CrossRef]
- Gagala, J.; Buraczynska, M.; Mazurkiewicz, T.; Ksiazek, A. Prevalence of genetic risk factors related with thrombophilia and hypofibrinolysis in patients with osteonecrosis of the femoral head in Poland. BMC Musculoskelet. Disord. 2013, 14, 264. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.D.; Hur, M.; Lee, S.S.; Yoo, J.H.; Lee, K.M. Genetic background of nontraumatic osteonecrosis of the femoral head in the Korean population. Clin. Orthop. Relat. Res. 2008, 466, 1041–1046. [Google Scholar] [CrossRef] [Green Version]
- Ekim, M.; Ekim, H.; Yilmaz, Y.K.; Kulah, B.; Polat, M.F.; Gocmen, A.Y. Study on relationships among deep vein thrombosis, homocysteine & related B group vitamins. Pak. J. Med. Sci. 2015, 31, 398–402. [Google Scholar] [CrossRef]
- Herrmann, M.; Whiting, M.J.; Veillard, A.S.; Ehnholm, C.; Sullivan, D.R.; Keech, A.C. Plasma homocysteine and the risk of venous thromboembolism: Insights from the FIELD study. Clin. Chem. Lab. Med. 2012, 50, 2213–2219. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, K.; Zhou, W. Relationship between genetic polymorphism of MTHFR C677T and lower extremities deep venous thrombosis. Hematology 2019, 24, 108–111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Ye, S.; Chen, Z.; Ma, Y. Association between MTHFR C677T polymorphism and non-traumatic osteonecrosis of the femoral head: An update meta-analysis. Pteridines 2020, 31, 38–45. [Google Scholar] [CrossRef]
- Kim, T.H.; Hong, J.M.; Kim, H.J.; Park, E.K.; Kim, S.Y. Lack of association of MTHFR gene polymorphisms with the risk of osteonecrosis of the femoral head in a Korean population. Mol. Cells 2010, 29, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Fontaine, R.N.; Gruppo, R.; Stroop, D.; Sieve-Smith, L.; Tracy, T.; Wang, P. The plasminogen activator inhibitor-1 gene, hypofibrinolysis, and osteonecrosis. Clin. Orthop. Relat. Res. 1999, 366, 133–146. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Medical treatment of osteonecrosis of the knee associated with thrombophilia-hypofibrinolysis. Orthopedics 2014, 37, e911–e916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, M.; Yui, H.; Kikugawa, S.; Tokida, R.; Sakai, N.; Kondo, N.; Endo, N.; Haro, H.; Shimodaira, H.; Suzuki, T.; et al. Associations of LRP5 and MTHFR gene variants with osteoarthritis prevalence in elderly women: A Japanese cohort survey randomly sampled from a basic resident registry. Ther. Clin. Risk Manag. 2021, 17, 1065–1073. [Google Scholar] [CrossRef]
- Bouquot, J.E.; LaMarche, M.G. Ischemic osteonecrosis under fixed partial denture pontics: Radiographicand microscopic features in 38 patients with chronic pain. J. Prosthet. Dent. 1999, 81, 148–158. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, Y.; Li, X.; Peng, X.; Peng, N.; Song, J.; Xu, M. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism—A meta-analysis and systematic review. Vasa 2020, 49, 141–146. [Google Scholar] [CrossRef]
- Thogersen, A.M.; Jansson, J.H.; Boman, K.; Nilsson, T.K.; Weinehall, L.; Huhtasaari, F.; Hallmans, G. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: Evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998, 98, 2241–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacoviello, L.; Agnoli, C.; De Curtis, A.; di Castelnuovo, A.; Giurdanella, M.C.; Krogh, V.; Mattiello, A.; Matullo, G.; Sacerdote, C.; Tumino, R.; et al. Type 1 plasminogen activator inhibitor as a common risk factor for cancer and ischaemic vascular disease: The EPICOR study. BMJ Open 2013, 3, e003725. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Fless, G.M.; Levin, E.G.; Scanu, A.M.; Plow, E.F. A potential basis for the thrombotic risks associated with lipoprotein (a). Nature 1989, 339, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Scanu, A.M.; Fless, G.M. Lipoprotein (a). Heterogeneity and biological relevance. J. Clin. Investig. 1990, 85, 1709–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danesh, J.; Collins, R.; Peto, R. Lipoprotein (a) and coronary heart disease. Meta-analysis of prospective studies. Circulation 2000, 102, 1082–1085. [Google Scholar] [CrossRef] [Green Version]
- Smolders, B.; Lemmens, R.; Thijs, V. Lipoprotein (a) and stroke: A meta-analysis of observational studies. Stroke 2007, 38, 1959–1966. [Google Scholar] [CrossRef]
- Cai, G.; Huang, Z.; Zhang, B.; Yu, L.; Li, L. Elevated lipoprotein (a) levels are associated with the acute myocardial infarction in patients with normal low-density lipoprotein cholesterol levels. BioSci. Rep. 2019, 39, BSR20182096. [Google Scholar] [CrossRef]
- Enas, E.A.; Varkey, B.; Dharmarajan, T.S.; Pare, G.; Bahl, V.K. Lipoprotein (a): An independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. Indian Heart J. 2019, 71, 99–112. [Google Scholar] [CrossRef]
- Nguyen, S.; Ilano, L.; Oluoha, N.; Pakbaz, Z. Lipoprotein (a) a risk factor for venous thrombosis and pulmonary embolism in patients younger than 50 years of age. Blood 2018, 132, 5055. [Google Scholar] [CrossRef]
- Sofi, F.; Marcucci, R.; Abbate, R.; Gensini, G.F.; Prisco, D. Lipoprotein (a) and venous thromboembolism in adults: A meta-analysis. Am. J. Med. 2007, 120, 728–733. [Google Scholar] [CrossRef]
- Wang, C.W.; Su, L.L.; Tao, S.B.; Ma, P.J.; Chang, H.G.; Ji, S.B. An increased serum level of lipoprotein (a) is a predictor for deep vein thrombosis in patients with spinal cord injuries. World Neurosurg. 2016, 87, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Dentali, F.; Gessi, V.; Marcucci, R.; Gianni, M.; Grandi, A.M.; Franchini, M. Lipoprotein (a) as a risk factor for venous thromboembolism: A systematic review and meta-analysis of the literature. Semin. Thromb. Hemost. 2017, 43, 614–620. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Makikallio, T.H.; Kauhanen, J.; Voutilainen, A.; Laukkanen, J.A. Lipoprotein (a) is not associated with venous thromboembolism risk. Scand. Cardiovasc. J. 2019, 53, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Genetic evidence that lipoprotein (a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1732–1741. [Google Scholar] [CrossRef] [Green Version]
- Danik, J.S.; Buring, J.E.; Chasman, D.I.; Zee, R.Y.; Ridker, P.M.; Glynn, R.J. Lipoprotein (a), polymorphisms in the LPA gene, and incident venous thromboembolism among 21483 women. J. Thromb. Haemost. 2013, 11, 205–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westrick, R.J.; Eitzman, D.T. Plasminogen activator inhibitor-1 in vascular thrombosis. Curr. Drug Targets 2007, 8, 966–1002. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.S.; Biswas, A.; Abdullah, S.M.; Behari, M.; Saxena, R. The role of PAI-1 4G/5G promoter polymorphism and its levels in the development of ischemic stroke in young Indian population. Clin. Appl. Thromb. Hemost. 2017, 23, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.N.; Xie, L.; Cheng, J.W.; Tan, Z.; Yao, J.; Liu, Q.; Su, W.; Qin, X.; Zhao, J.M. Association between PAI-1 4G/5G polymorphisms and osteonecrosis of femoral head: A meta-analysis. Thromb. Res. 2013, 132, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Wang, B.; Pan, H. Relation between osteonecrosis of the femoral head and PAI-1 4G/5G gene polymorphism: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 20337–20342. [Google Scholar]
- Sobhan, M.R.; Mahdinezhad-Yazdi, M.; Moghimi, M.; Aghili, K.; Jafari, M.; Zare-Shehneh, M.; Neamatzadeh, H. Plasminogen activator inhibitor-1 4G/5G polymorphism contributes to osteonecrosis of the femoral head susceptibility: Evidence from a systematic review and meta-analysis. Arch. Bone Jt. Surg. 2018, 6, 468–477. [Google Scholar]
- Lykissas, M.G.; Gelalis, I.D.; Kostas-Agnantis, I.P.; Vozonelos, G.; Korompilias, A.V. The role of hypercoagulability in the development of osteonecrosis of the femoral head. Orthop. Rev. 2012, 4, e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glueck, C.J.; Riaz, R.; Prince, M.; Freiberg, R.A.; Wang, P. Testosterone therapy can interact with thrombophilia, leading to osteonecrosis. Orthopedics 2015, 38, e1073–e1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mont, M.A.; Glueck, C.J.; Pacheco, I.H.; Wang, P.; Hungerford, D.S.; Petri, M. Risk factors for osteonecrosis in systemic lupus erythematosus. J. Rheumatol. 1997, 24, 654–662. [Google Scholar] [PubMed]
- Milgrom, A.; Lee, K.; Makadia, F.; Prince, M.; Wang, P.; Glueck, C.J. Multifocal osteonecrosis secondary to familial thrombophilia requiring anticoagulation during pregnancy. J. Investig. Med. 2017, 65, 834–835. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Long-term anticoagulation prevents progression of stages I and II primary osteonecrosis of the hip in patients with familial thrombophilia. Orthopedics 2020, 43, e208–e214. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Freiberg, R.A.; Fontaine, R.N.; Sieve-Smith, L.; Wang, P. Anticoagulant therapy for osteonecrosis associated with heritable hypofibrinolysis and thrombophilia. Expert Opin. Investig. Drugs 2001, 10, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Freiberg, R.A.; Sieve, L.; Wang, P. Enoxaparin prevents progression of stages I and II osteonecrosis of the hip. Clin. Orthop. Relat. Res. 2005, 435, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Chotanaphuti, T.; Thongprasert, S.; Laoruengthana, A. Low molecular weight heparin prevents the progression of precollapse osteonecrosis of the hip. J. Med. Assoc. Thai. 2013, 96, 1326–1330. [Google Scholar]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Treatment of Osteonecrosis of the Hip and Knee with Enoxaparin; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Haydock, M.M.; Elhamdani, S.; Alsharedi, M. Long-term direct oral anticoagulation in primary osteonecrosis with elevated plasminogen activation inhibitor. SAGE Open Med. Case Rep. 2019, 7, 2050313X19827747. [Google Scholar] [CrossRef]
- Korompilias, A.V.; Gilkeson, G.S.; Ortel, T.L.; Seaber, A.V.; Urbaniak, J.R. Anticardiolipin antibodies and osteonecrosis of the femoral head. Clin. Orthop. Relat. Res. 1997, 345, 174–180. [Google Scholar] [CrossRef]
- Seguin, C.; Kassis, J.; Busque, L.; Bestawros, A.; Theodoropoulos, J.; Alonso, M.L.; Harvey, E.J. Non-traumatic necrosis of bone (osteonecrosis) is associated with endothelial cell activation but not thrombophilia. Rheumatology 2008, 47, 1151–1155. [Google Scholar] [CrossRef] [Green Version]
- Glueck, C.J.; Freiberg, R.A.; Wang, P. Heritable thrombophilia-hypofibrinolysis and osteonecrosis of the femoral head. Clin. Orthop. Relat. Res. 2008, 466, 1034–1040. [Google Scholar] [CrossRef]
- Glueck, C.J.; Freiberg, R.A.; Boppana, S.; Wang, P. Thrombophilia, hypofibrinolysis, the eNOS T-786C polymorphism, and multifocal osteonecrosis. J. Bone Jt. Surg. Am. 2008, 90, 2220–2229. [Google Scholar] [CrossRef]
- Gomez-Puerta, J.A.; Peris, P.; Reverter, J.C.; Espinosa, G.; Martinez-Ferrer, A.; Monegal, A.; Monteagudo, J.; Tassies, D.; Guanabens, N. High prevalence of prothrombotic abnormalities in multifocal osteonecrosis: Description of a series and review of the literature. Medicine 2013, 92, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Lidegaard, O.; Lokkegaard, E.; Jensen, A.; Skovlund, C.W.; Keiding, N. Thrombotic stroke and myocardial infarction with hormonal contraception. N. Engl. J. Med. 2012, 366, 2257–2266. [Google Scholar] [CrossRef] [Green Version]
- Roach, R.E.; Helmerhorst, F.M.; Lijfering, W.M.; Stijnen, T.; Algra, A.; Dekkers, O.M. Combined oral contraceptives: The risk of myocardial infarction and ischemic stroke. Cochrane Database Syst. Rev. 2015, CD011054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinogradova, Y.; Coupland, C.; Hippisley-Cox, J. Use of hormone replacement therapy and risk of venous thromboembolism: Nested case-control studies using the QResearch and CPRD Databases. BMJ 2019, 364, k4810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Ismail, M.Y.; Citla Sridhar, D.; Nayak, L. Estrogen and thrombosis: A bench to bedside review. Thromb. Res. 2020, 192, 40–51. [Google Scholar] [CrossRef]
- Cushman, M. Effects of hormone replacement therapy and estrogen receptor modulators on markers of inflammation and coagulation. Am. J. Cardiol. 2002, 90, 7F–10F. [Google Scholar] [CrossRef]
- Dentali, F.; Crowther, M.; Ageno, W. Thrombophilic abnormalities, oral contraceptives, and risk of cerebral vein thrombosis: A meta-analysis. Blood 2006, 107, 2766–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoozegar, F.; Ronksley, P.E.; Sauve, R.; Menon, B.K. Hormonal contraceptives and cerebral venous thrombosis risk: A systematic review and meta-analysis. Front. Neurol. 2015, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.A. Oral contraceptive-induced mesenteric venous thrombosis with resultant intestinal ischemia. J. Clin. Gastroenterol. 1999, 29, 90–95. [Google Scholar] [CrossRef]
- Sridhar, D.C.; Gollamudi, J.; Cao, S.; Fu, P.; Nayak, L. Incidence of retinal vein occlusion in women of reproductive age on estrogen therapy. Haemophilia 2019, 25, 19–20. [Google Scholar] [CrossRef]
- Ureten, K.; Ozturk, M.A.; Bostanci, A.; Ceneli, O.; Ozbek, M.; Haznedaroglu, I.C. Atraumatic osteonecrosis after estrogen replacement therapy associated with low protein S level in a patient with Turner syndrome. Clin. Appl. Thromb. Hemost. 2010, 16, 599–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glueck, C.J.; Phillips, H.G.; Cameron, D.; Wang, P. Estrogen replacement in a protein S deficient patient leads to diarrhea, hyperglucagonemia, and osteonecrosis. JOP 2001, 2, 323–329. [Google Scholar] [PubMed]
- Glueck, C.J.; Richardson-Royer, C.; Schultz, R.; Burger, T.; Labitue, F.; Riaz, M.K.; Padda, J.; Bowe, D.; Goldenberg, N.; Wang, P. Testosterone, thrombophilia, and thrombosis. Clin. Appl. Thromb. Hemost. 2014, 20, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Glueck, C.J.; Prince, M.; Patel, N.; Patel, J.; Shah, P.; Mehta, N.; Wang, P. Thrombophilia in 67 patients with thrombotic events after starting testosterone therapy. Clin. Appl. Thromb. Hemost. 2016, 22, 548–553. [Google Scholar] [CrossRef]
- Fernandez-Balsells, M.M.; Murad, M.H.; Lane, M.; Lampropulos, J.F.; Albuquerque, F.; Mullan, R.J.; Agrwal, N.; Elamin, M.B.; Gallegos-Orozco, J.F.; Wang, A.T.; et al. Clinical review 1: Adverse effects of testosterone therapy in adult men: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2010, 95, 2560–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulster, M.; Bernie, A.M.; Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 2016, 18, 435–440. [Google Scholar] [CrossRef]
- Glueck, C.J.; Goldenberg, N.; Budhani, S.; Lotner, D.; Abuchaibe, C.; Gowda, M.; Nayar, T.; Khan, N.; Wang, P. Thrombotic events after starting exogenous testosterone in men with previously undiagnosed familial thrombophilia. Transl. Res. 2011, 158, 225–234. [Google Scholar] [CrossRef]
- Chotanaphuti, T.; Heebthamai, D.; Chuwong, M.; Kanchanaroek, K. The prevalence of thrombophilia in idiopathic osteonecrosis of the hip. J. Med. Assoc. Thai. 2009, 92 (Suppl. 6), S141–S146. [Google Scholar] [PubMed]
- Pipe, S.W.; Montgomery, R.R.; Pratt, K.P.; Lenting, P.J.; Lillicrap, D. Life in the shadow of a dominant partner: The FVIII-VWF association and its clinical implications for hemophilia A. Blood 2016, 128, 2007–2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, D.; Erkan, D. Diagnosis and management of the antiphospholipid syndrome. N. Engl. J. Med. 2018, 378, 2010–2021. [Google Scholar] [CrossRef] [PubMed]
- Haque, W.; Kadikoy, H.; Pacha, O.; Maliakkal, J.; Hoang, V.; Abdellatif, A. Osteonecrosis secondary to antiphospholipid syndrome: A case report, review of the literature, and treatment strategy. Rheumatol. Int. 2010, 30, 719–723. [Google Scholar] [CrossRef]
- Farmer-Boatwright, M.K.; Roubey, R.A. Venous thrombosis in the antiphospholipid syndrome. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dorner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef]
- Salehi Omran, S.; Hartman, A.; Zakai, N.A.; Navi, B.B. Thrombophilia testing after ischemic stroke: Why, when, and what? Stroke 2021, 52, 1874–1884. [Google Scholar] [CrossRef]
- Boekholdt, S.M.; Kramer, M.H. Arterial thrombosis and the role of thrombophilia. Semin. Thromb. Hemost. 2007, 33, 588–596. [Google Scholar] [CrossRef]
- Bouquot, J.E.; McMahon, R.E. Neuropathic pain in maxillofacial osteonecrosis. J. Oral Maxillofac. Surg. 2000, 58, 1003–1020. [Google Scholar] [CrossRef]
- Yarom, N.; Shapiro, C.L.; Peterson, D.E.; Van Poznak, C.H.; Bohlke, K.; Ruggiero, S.L.; Migliorati, C.A.; Khan, A.; Morrison, A.; Anderson, H.; et al. Medication-related osteonecrosis of the jaw: MASCC/ISOO/ASCO clinical practice guideline. J. Clin. Oncol. 2019, 37, 2270–2290. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, L.; Bennardo, F.; Buffone, C.; Giudice, A. Is the application of platelet concentrates effective in the prevention and treatment of medication-related osteonecrosis of the jaw? A systematic review. J. Craniomaxillofac. Surg. 2020, 48, 268–285. [Google Scholar] [CrossRef] [PubMed]
- Giudice, A.; Antonelli, A.; Chiarella, E.; Baudi, F.; Barni, T.; Di Vito, A. The case of medication-related osteonecrosis of the jaw addressed from a pathogenic point of view. Innovative therapeutic strategies: Focus on the most recent discoveries on oral mesenchymal stem cell-derived exosomes. Pharmaceuticals 2020, 13, 423. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badescu, M.C.; Rezus, E.; Ciocoiu, M.; Badulescu, O.V.; Butnariu, L.I.; Popescu, D.; Bratoiu, I.; Rezus, C. Osteonecrosis of the Jaws in Patients with Hereditary Thrombophilia/Hypofibrinolysis—From Pathophysiology to Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 640. https://doi.org/10.3390/ijms23020640
Badescu MC, Rezus E, Ciocoiu M, Badulescu OV, Butnariu LI, Popescu D, Bratoiu I, Rezus C. Osteonecrosis of the Jaws in Patients with Hereditary Thrombophilia/Hypofibrinolysis—From Pathophysiology to Therapeutic Implications. International Journal of Molecular Sciences. 2022; 23(2):640. https://doi.org/10.3390/ijms23020640
Chicago/Turabian StyleBadescu, Minerva Codruta, Elena Rezus, Manuela Ciocoiu, Oana Viola Badulescu, Lacramioara Ionela Butnariu, Diana Popescu, Ioana Bratoiu, and Ciprian Rezus. 2022. "Osteonecrosis of the Jaws in Patients with Hereditary Thrombophilia/Hypofibrinolysis—From Pathophysiology to Therapeutic Implications" International Journal of Molecular Sciences 23, no. 2: 640. https://doi.org/10.3390/ijms23020640
APA StyleBadescu, M. C., Rezus, E., Ciocoiu, M., Badulescu, O. V., Butnariu, L. I., Popescu, D., Bratoiu, I., & Rezus, C. (2022). Osteonecrosis of the Jaws in Patients with Hereditary Thrombophilia/Hypofibrinolysis—From Pathophysiology to Therapeutic Implications. International Journal of Molecular Sciences, 23(2), 640. https://doi.org/10.3390/ijms23020640