Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing
Abstract
:1. Introduction
2. The Role of HSPs in CVDs
2.1. Cardioprotection Mechanisms (UPR, ER Stress and Apoptosis)
2.2. Ischemia/Reperfusion (I/R) Injury
2.3. Myocardial Fibrosis, Hypertrophy and Heart Failure
2.4. Atherosclerosis
3. Heart Ageing
3.1. Stabilisation and Upregulation of Anti-Poptotic AKT Protein
3.2. Protein Kinase C Epsilon
3.3. AMP-Activated Protein Kinase
3.4. Hsf1-Mediated Senescence
3.5. Role of the Hsp90 Isoforms in Senescence
3.6. SASP Depletion
3.7. DNA Damage Response
3.8. TERT (Telomerase Reverse Transcriptase) Enzyme
3.9. Senescence Inducer p14ARF
3.10. Aggregation of Oxidised Proteins
3.11. RAF1 Proto-Oncogene
4. Cancer, CVDs and Ageing Treatment with HSP90 Inhibitors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end products |
AKT | Protein Kinase B |
AngII | Angiotensin-II |
ANXA2 | Annexin A2 |
APCS | Serum Amyloid P-Component |
Bcl-2 | BCL2 Apoptosis Regulator |
BMP2 | Bone morphogenic protein 2 |
C9 | Complement Component C9 or ARMD15 |
CAT | Catalase |
CDC37 | Cell division cycle 37 |
CDKN2A | Cyclin-Dependent Kinase 4 Inhibitor A |
CVDs | Cardiovascular diseases |
Cx43 | Connexin 43 |
CypD | Cyclophilin D |
DDR | DNA damage response |
galectin-1 | Beta-Galactoside-Binding Lectin L-14-I or GBP |
GLUT4 | Solute Carrier Family 2 Member 4 |
Grp94 | Glucose-regulated protein, 94 kDa |
GSR | Glutathione-disulfide reductase |
HSEs | Heat shock elements |
HSF1 | Heat shock factor 1 |
HSR | Heat shock response |
IpostC | Ischemic postconditioning |
IRE1α | Inositol-requiring enzyme 1 alpha |
JNK | C-Jun N-Terminal Kinase 1 |
LAMP2A | Lysosomal Associated Membrane Protein 2 |
MAPK1 | Mitogen-Activated Protein Kinase 1 |
MPTP | Mitochondrial permeability transition pore |
MRI | Myocardial reperfusion injury |
Nrf2 | Nuclear factor erythroid-derived 2-like 2 |
PCA | Percutaneous coronary angioplasty |
PDIA3 | Protein Disulfide Isomerase-Associated 3 |
PELI1 | Pellino E3 Ubiquitin Protein Ligase 1 |
PGC-1 | PPARG Coactivator 1 Alpha |
PKCe | Protein kinase C epsilon |
PKM2 | Pyruvate Kinase 2 |
PTK2 | Protein Tyrosine Kinase 2 |
RAF1 | Proto-Oncogene Serine/Threonine-Protein Kinase |
RUNX2 | Runt-Related Transcription Factor 2 |
SASP | Senescence-associated Secretory Phenotype |
SOD1 | Superoxide dismutase |
STAT-3 | Signal Transducer And Activator Of Transcription 3 |
TF | Transcription factor |
TGFβ | Transforming Growth Factor Beta 1 |
TNFα | Tumour Necrosis Factor-Alpha |
TOM70 | Translocase of Outer Mitochondrial Membrane 70 |
transgelin | TAGLN gene |
TRAP1 | TNF receptor-associated protein 1 or HSP90N |
UPR | Unfolded protein response) |
VEGF | Vascular Endothelial Growth Factor A |
XBP1 | X-Box Binding Protein 1 |
References
- WHO CVDs Fact Sheets. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 22 September 2021).
- Tian, R.; Colucci, W.S.; Arany, Z.; Bachschmid, M.M.; Ballinger, S.W.; Boudina, S.; Bruce, J.E.; Busija, D.W.; Dikalov, S.; Dorn, G.W.; et al. Unlocking the Secrets of Mitochondria in the Cardiovascular System: Path to a Cure in Heart Failure—A Report from the 2018 National Heart, Lung, and Blood Institute Workshop. Circulation 2019, 140, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Ranek, M.J.; Stachowski, M.J.; Kirk, J.A.; Willis, M.S. The Role of Heat Shock Proteins and Co-Chaperones in Heart Failure. Phil. Trans. R. Soc. B 2018, 373, 20160530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Der Sarkissian, S.; Aceros, H.; Williams, P.; Scalabrini, C.; Borie, M.; Noiseux, N. Heat Shock Protein 90 Inhibition and Multi-target Approach to Maximize Cardioprotection in Ischaemic Injury. Br. J. Pharmacol. 2020, 177, 3378–3388. [Google Scholar] [CrossRef]
- Carlisle, C.; Prill, K.; Pilgrim, D. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle. IJMS 2017, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Quiles, J.M.; Gustafsson, Å.B. Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Front. Physiol. 2020, 11, 515. [Google Scholar] [CrossRef]
- Ghosh, R.; Vinod, V.; Symons, J.D.; Boudina, S. Protein and Mitochondria Quality Control Mechanisms and Cardiac Aging. Cells 2020, 9, 933. [Google Scholar] [CrossRef]
- Mishra, S.; Dunkerly-Eyring, B.L.; Keceli, G.; Ranek, M.J. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front. Physiol. 2020, 11, 593585. [Google Scholar] [CrossRef]
- Biebl, M.M.; Buchner, J. Structure, Function, and Regulation of the Hsp90 Machinery. Cold Spring Harb. Perspect. Biol. 2019, 11, a034017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoter, A.; El-Sabban, M.; Naim, H. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. IJMS 2018, 19, 2560. [Google Scholar] [CrossRef] [Green Version]
- Didier Picard, P. Lab Hsp90 Interactors. Available online: https://www.picard.ch/downloads/Hsp90interactors.pdf (accessed on 20 September 2021).
- Lang, B.J.; Guerrero, M.E.; Prince, T.L.; Okusha, Y.; Bonorino, C.; Calderwood, S.K. The Functions and Regulation of Heat Shock Proteins; Key Orchestrators of Proteostasis and the Heat Shock Response. Arch. Toxicol. 2021, 95, 1943–1970. [Google Scholar] [CrossRef] [PubMed]
- Masser, A.E.; Ciccarelli, M.; Andréasson, C. Hsf1 on a Leash—Controlling the Heat Shock Response by Chaperone Titration. Exp. Cell Res. 2020, 396, 112246. [Google Scholar] [CrossRef] [PubMed]
- Rizzolo, K.; Houry, W.A. Multiple Functionalities of Molecular Chaperones Revealed through Systematic Mapping of Their Interaction Networks. J. Biol. Chem. 2019, 294, 2142–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streicher, J.M. The Role of Heat Shock Proteins in Regulating Receptor Signal Transduction. Mol. Pharmacol. 2019, 95, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Hatial, I.; Keegan, B.M.; Blagg, B.S.J. Assay Design and Development Strategies for Finding Hsp90 Inhibitors and Their Role in Human Diseases. Pharmacol. Ther. 2021, 221, 107747. [Google Scholar] [CrossRef]
- Serwetnyk, M.A.; Blagg, B.S.J. The Disruption of Protein−protein Interactions with Co-Chaperones and Client Substrates as a Strategy towards Hsp90 Inhibition. Acta Pharm. Sin. B 2021, 11, 1446–1468. [Google Scholar] [CrossRef]
- Gong, J.; Wang, X.; Wang, T.; Chen, J.; Xie, X.; Hu, H.; Yu, F.; Liu, H.; Jiang, X.; Fan, H. Molecular Signal Networks and Regulating Mechanisms of the Unfolded Protein Response. J. Zhejiang Univ. Sci. B 2017, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Datta Chaudhuri, R.; Banerjee, D.; Banik, A.; Sarkar, S. Severity and Duration of Hypoxic Stress Differentially Regulates HIF-1α-Mediated Cardiomyocyte Apoptotic Signalling Milieu during Myocardial Infarction. Arch. Biochem. Biophys. 2020, 690, 108430. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, H.; Ma, Y.; Tang, Z.; Zhao, N.; Wang, Y.; Pan, S. AGEs Exacerbates Coronary Microvascular Dysfunction in NoCAD by Activating Endoplasmic Reticulum Stress-Mediated PERK Signalling Pathway. Metabolism 2021, 117, 154710. [Google Scholar] [CrossRef]
- Ke, X.; Chen, J.; Peng, L.; Zhang, W.; Yang, Y.; Liao, X.; Mo, L.; Guo, R.; Feng, J.; Hu, C.; et al. Heat Shock Protein 90/Akt Pathway Participates in the Cardioprotective Effect of Exogenous Hydrogen Sulfide against High Glucose-Induced Injury to H9c2 Cells. Int. J. Mol. Med. 2017, 39, 1001–1010. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, Z.; Li, W. Downregulation of TRAP1 Aggravates Injury of H9c2 Cardiomyocytes in a Hyperglycemic State. Exp. Ther. Med. 2019, 18, 2681–2686. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, L.; Li, X.; Zhang, X.; Zhao, J.; Luo, Y.; Guo, X.; Zhao, T. TRAP1 Attenuates H9C2 Myocardial Cell Injury Induced by Extracellular Acidification via the Inhibition of MPTP Opening. Int. J. Mol. Med. 2020, 46, 663–674. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, J.; Chen, H.; Li, J.; Que, L.; Zhu, G.; Liu, L.; Ha, T.; Chen, Q.; Li, C.; et al. Peli1 Induction Impairs Cardiac Microvascular Endothelium through Hsp90 Dissociation from IRE1α. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2019, 1865, 2606–2617. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, S.; Li, Y.; Yan, C.; Wan, Q.; Wang, Z. HSP90 Inhibitor 17-AAG Prevents Apoptosis of Cardiomyocytes via MiR-93–Dependent Mitigation of Endoplasmic Reticulum Stress. J. Cell. Biochem. 2019, 120, 7888–7896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.-J.; Fan, X.-W.; Yang, H.-T.; Wu, J.-T.; Wang, S.-L.; Qiu, C.-G. MiR-93 Inhibition Ameliorates OGD/R Induced Cardiomyocyte Apoptosis by Targeting Nrf2. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5456–5461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, M.; Su, Y.; Wang, Z.; Zhao, Q.; Zhu, H.; Qian, Z.; Xu, J.; Tang, S.; Wu, D.; et al. Inhibition of Heat Stress-Related Apoptosis of Chicken Myocardial Cells through Inducing Hsp90 Expression by Aspirin Administration in Vivo. Br. Poult. Sci. 2018, 59, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, B.; Wu, J.; Sha, J.; Yang, B.; Zhu, J.; Sun, J.; Hartung, J.; Bao, E. Aspirin Enhances the Protection of Hsp90 from Heat-Stressed Injury in Cardiac Microvascular Endothelial Cells Through PI3K-Akt and PKM2 Pathways. Cells 2020, 9, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wu, J.; Sha, J.; Yang, B.; Sun, J.; Bao, E. Heat Shock Protein 90 Relieves Heat Stress Damage of Myocardial Cells by Regulating Akt and PKM2 Signalling In vivo. Int. J. Mol. Med. 2020, 45, 1888–1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Montero, J.; Brito, R.; Gajardo, A.I.; Rodrigo, R. Myocardial Reperfusion Injury and Oxidative Stress: Therapeutic Opportunities. WJC 2018, 10, 74–86. [Google Scholar] [CrossRef]
- Qin, C.; Wu, X.; Gu, J.; Du, D.; Guo, Y. Mitochondrial Dysfunction Secondary to Endoplasmic Reticulum Stress in Acute Myocardial Ischemic Injury in Rats. Med. Sci. Monit. 2020, 26, e923124. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Kashyap, A.; Kaur, A.; Singh, T.G. Pharmacological Postconditioning: A Molecular Aspect in Ischemic Injury. J. Pharm. Pharmacol. 2020, 72, 1513–1527. [Google Scholar] [CrossRef]
- Wang, D.-X.; Huang, Z.; Li, Q.-J.; Zhong, G.-Q.; He, Y.; Huang, W.-Q.; Cao, X.-L.; Tu, R.-H.; Meng, J.-J. Involvement of HSP90 in Ischemic Postconditioning-Induced Cardioprotection by Inhibition of the Complement System, JNK and Inflammation. Acta Cir. Bras. 2020, 35, e202000105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-Y.; Huang, Z.; Li, Q.-J.; Zhong, G.-Q.; Meng, J.-J.; Wang, D.-X.; Tu, R.-H.; Wu, H.-W. Role of HSP90 in Suppressing TLR4-Mediated Inflammation in Ischemic Postconditioning. Clin. Hemorheol. Microcirc. 2020, 76, 51–62. [Google Scholar] [CrossRef]
- Aceros, H.; Der Sarkissian, S.; Borie, M.; Stevens, L.-M.; Mansour, S.; Noiseux, N. Celastrol-Type HSP90 Modulators Allow for Potent Cardioprotective Effects. Life Sci. 2019, 227, 8–19. [Google Scholar] [CrossRef]
- Aceros, H.; Der Sarkissian, S.; Borie, M.; Pinto Ribeiro, R.V.; Maltais, S.; Stevens, L.-M.; Noiseux, N. Novel Heat Shock Protein 90 Inhibitor Improves Cardiac Recovery in a Rodent Model of Donation after Circulatory Death. J. Thorac. Cardiovasc. Surg. 2020, S0022522320307078. [Google Scholar] [CrossRef]
- Tu, R.-H.; Li, Q.-J.; Huang, Z.; He, Y.; Meng, J.-J.; Zheng, H.-L.; Zeng, Z.-Y.; Zhong, G.-Q. Novel Functional Role of Heat Shock Protein 90 in Mitochondrial Connexin 43-Mediated Hypoxic Postconditioning. Cell. Physiol. Biochem. 2017, 44, 982–997. [Google Scholar] [CrossRef] [Green Version]
- Hirschhäuser, C.; Lissoni, A.; Görge, P.M.; Lampe, P.D.; Heger, J.; Schlüter, K.-D.; Leybaert, L.; Schulz, R.; Boengler, K. Connexin 43 Phosphorylation by Casein Kinase 1 Is Essential for the Cardioprotection by Ischemic Preconditioning. Basic Res. Cardiol. 2021, 116, 21. [Google Scholar] [CrossRef]
- Meagher, P.B.; Lee, X.A.; Lee, J.; Visram, A.; Friedberg, M.K.; Connelly, K.A. Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells 2021, 10, 770. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sun, Y.; Jiang, P.; Qi, G.; Chen, X. Crosstalk between Endothelial Cell-Specific Calpain Inhibition and the Endothelial-Mesenchymal Transition via the HSP90/Akt Signalling Pathway. Biomed. Pharmacother. 2020, 124, 109822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, S.; Li, W.; Ma, Y.; Shen, J.; Wang, Y.; Shen, Y.; Chen, J.; Ji, Y.; Xie, Y.; et al. Piezo1-Mediated Mechanotransduction Promotes Cardiac Hypertrophy by Impairing Calcium Homeostasis to Activate Calpain/Calcineurin Signalling. Hypertension 2021, 78, 647–660. [Google Scholar] [CrossRef]
- Potz, B.A.; Sabe, A.A.; Sabe, S.A.; Lawandy, I.J.; Abid, M.R.; Clements, R.T.; Sellke, F.W. Calpain Inhibition Decreases Myocardial Fibrosis in Chronically Ischemic Hypercholesterolemic Swine. J. Thorac. Cardiovasc. Surg. 2020, 163, e11–e27. [Google Scholar] [CrossRef]
- Cáceres, R.A.; Chavez, T.; Maestro, D.; Palanca, A.R.; Bolado, P.; Madrazo, F.; Aires, A.; Cortajarena, A.L.; Villar, A.V. Reduction of Cardiac TGFβ-Mediated Profibrotic Events by Inhibition of Hsp90 with Engineered Protein. J. Mol. Cell. Cardiol. 2018, 123, 75–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhang, Y.; Miao, Q.; Shi, Z.; Hu, L.; Liu, S.; Gao, J.; Zhao, S.; Chen, H.; Huang, Z.; et al. Inhibition of HSP90 S-nitrosylation Alleviates Cardiac Fibrosis via TGFβ/SMAD3 Signalling Pathway. Br. J. Pharmacol. 2021, 178, 4608–4625. [Google Scholar] [CrossRef]
- Huang, G.; Cong, Z.; Wang, X.; Yuan, Y.; Xu, R.; Lu, Z.; Wang, X.; Qi, J. Targeting HSP90 Attenuates Angiotensin II-Induced Adventitial Remodelling via Suppression of Mitochondrial Fission. Cardiovasc. Res. 2020, 116, 1071–1084. [Google Scholar] [CrossRef]
- Gibb, A.A.; Lazaropoulos, M.P.; Elrod, J.W. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ. Res. 2020, 127, 427–447. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Bansal, T.; Rana, S.; Datta, K.; Datta Chaudhuri, R.; Chawla-Sarkar, M.; Sarkar, S. Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy. Mol. Cell. Biol. 2017, 37, e00611-16. [Google Scholar] [CrossRef] [Green Version]
- Tamura, S.; Marunouchi, T.; Tanonaka, K. Heat-Shock Protein 90 Modulates Cardiac Ventricular Hypertrophy via Activation of MAPK Pathway. J. Mol. Cell. Cardiol. 2019, 127, 134–142. [Google Scholar] [CrossRef]
- Parate, S.; Rampogu, S.; Lee, G.; Hong, J.C.; Lee, K.W. Exploring the Binding Interaction of Raf Kinase Inhibitory Protein With the N-Terminal of C-Raf Through Molecular Docking and Molecular Dynamics Simulation. Front. Mol. Biosci. 2021, 8, 655035. [Google Scholar] [CrossRef]
- Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Profumo, E.; Buttari, B.; Tinaburri, L.; D’Arcangelo, D.; Sorice, M.; Capozzi, A.; Garofalo, T.; Facchiano, A.; Businaro, R.; Kumar, P.; et al. Oxidative Stress Induces HSP90 Upregulation on the Surface of Primary Human Endothelial Cells: Role of the Antioxidant 7,8-Dihydroxy-4-Methylcoumarin in Preventing HSP90 Exposure to the Immune System. Oxidative Med. Cell. Longev. 2018, 2018, 2373167. [Google Scholar] [CrossRef] [Green Version]
- Krajka-Kuźniak, V.; Baer-Dubowska, W. Modulation of Nrf2 and NF-ΚB Signalling Pathways by Naturally Occurring Compounds in Relation to Cancer Prevention and Therapy. Are Combinations Better Than Single Compounds? IJMS 2021, 22, 8223. [Google Scholar] [CrossRef] [PubMed]
- Lazaro, I.; Oguiza, A.; Recio, C.; Lopez-Sanz, L.; Bernal, S.; Egido, J.; Gomez-Guerrero, C. Interplay between HSP90 and Nrf2 Pathways in Diabetes-Associated Atherosclerosis. Clínica Investig. Arterioscler. 2017, 29, 51–59. [Google Scholar] [CrossRef]
- Mu, H.; Wang, L.; Zhao, L. HSP90 Inhibition Suppresses Inflammatory Response and Reduces Carotid Atherosclerotic Plaque Formation in ApoE Mice. Cardiovasc. Ther. 2017, 35, e12243. [Google Scholar] [CrossRef] [PubMed]
- Weisell, J.; Ohukainen, P.; Näpänkangas, J.; Ohlmeier, S.; Bergmann, U.; Peltonen, T.; Taskinen, P.; Ruskoaho, H.; Rysä, J. Heat Shock Protein 90 Is Downregulated in Calcific Aortic Valve Disease. BMC Cardiovasc. Disord 2019, 19, 306. [Google Scholar] [CrossRef]
- Tsimikas, S. Potential Causality and Emerging Medical Therapies for Lipoprotein(a) and Its Associated Oxidised Phospholipids in Calcific Aortic Valve Stenosis. Circ. Res. 2019, 124, 405–415. [Google Scholar] [CrossRef]
- Conte, M.; Petraglia, L.; Campana, P.; Gerundo, G.; Caruso, A.; Grimaldi, M.G.; Russo, V.; Attena, E.; Leosco, D.; Parisi, V. The Role of Inflammation and Metabolic Risk Factors in the Pathogenesis of Calcific Aortic Valve Stenosis. Aging Clin. Exp. Res. 2021, 33, 1765–1770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, H.; Liu, C.; Wu, J.; Zhou, S.; Zhao, T. Serum Pentraxin 3 as a Biomarker for Prognosis of Acute Minor Stroke Due to Large Artery Atherosclerosis. Brain Behav. 2021, 11, e01956. [Google Scholar] [CrossRef]
- Zhong, W.; Sun, B.; Gao, W.; Qin, Y.; Zhang, H.; Huai, L.; Tang, Y.; Liang, Y.; He, L.; Zhang, X.; et al. Salvianolic Acid A Targeting the Transgelin-Actin Complex to Enhance Vasoconstriction. EBioMedicine 2018, 37, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Rashdan, N.A.; Zhu, D.; Milne, E.M.; Ajuh, P.; Milne, G.; Helfrich, M.H.; Lim, K.; Prasad, S.; Lerman, D.A.; et al. End Stage Renal Disease-Induced Hypercalcemia May Promote Aortic Valve Calcification via Annexin VI Enrichment of Valve Interstitial Cell Derived-Matrix Vesicles. J. Cell. Physiol. 2017, 232, 2985–2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, P.B.; Parsons, M.E.; Szklanna, P.B.; Zdanyte, M.; Münzer, P.; Chatterjee, M.; Wynne, K.; Rath, D.; Comer, S.P.; Hayden, M.; et al. Comparative Platelet Releasate Proteomic Profiling of Acute Coronary Syndrome versus Stable Coronary Artery Disease. Front. Cardiovasc. Med. 2020, 7, 101. [Google Scholar] [CrossRef]
- Myasoedova, V.A.; Di Minno, A.; Songia, P.; Massaiu, I.; Alfieri, V.; Valerio, V.; Moschetta, D.; Andreini, D.; Alamanni, F.; Pepi, M.; et al. Sex-Specific Differences in Age-Related Aortic Valve Calcium Load: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2020, 61, 101077. [Google Scholar] [CrossRef]
- Estébanez, B.; de Paz, J.A.; Cuevas, M.J.; González-Gallego, J. Endoplasmic Reticulum Unfolded Protein Response, Aging and Exercise: An Update. Front. Physiol. 2018, 9, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shpilka, T.; Haynes, C.M. The Mitochondrial UPR: Mechanisms, Physiological Functions and Implications in Ageing. Nat. Rev. Mol. Cell Biol. 2018, 19, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. CIA 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun-Wang, J.L.; Ivanova, S.; Zorzano, A. The Dialogue between the Ubiquitin-Proteasome System and Autophagy: Implications in Ageing. Ageing Res. Rev. 2020, 64, 101203. [Google Scholar] [CrossRef]
- Anderson, R.; Richardson, G.D.; Passos, J.F. Mechanisms Driving the Ageing Heart. Exp. Gerontol. 2018, 109, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann-Stroissnigg, H.; Ling, Y.Y.; Zhao, J.; McGowan, S.J.; Zhu, Y.; Brooks, R.W.; Grassi, D.; Gregg, S.Q.; Stripay, J.L.; Dorronsoro, A.; et al. Identification of HSP90 Inhibitors as a Novel Class of Senolytics. Nat. Commun. 2017, 8, 422. [Google Scholar] [CrossRef]
- Xu, J.; Khoury, N.; Jackson, C.W.; Escobar, I.; Stegelmann, S.D.; Dave, K.R.; Perez-Pinzon, M.A. Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury. Transl. Stroke Res. 2020, 11, 418–432. [Google Scholar] [CrossRef]
- Kang, C.; Qin, J.; Osei, W.; Hu, K. Regulation of Protein Kinase C-Epsilon and Its Age-Dependence. Biochem. Biophys. Res. Commun. 2017, 482, 1201–1206. [Google Scholar] [CrossRef]
- Kong, C.H.T.; Bryant, S.M.; Watson, J.J.; Roth, D.M.; Patel, H.H.; Cannell, M.B.; James, A.F.; Orchard, C.H. Cardiac-specific Overexpression of Caveolin-3 Preserves T-tubular I Ca during Heart Failure in Mice. Exp. Physiol. 2019, 104, 654–666. [Google Scholar] [CrossRef]
- Deng, F.; Wang, S.; Zhang, L.; Xie, X.; Cai, S.; Li, H.; Xie, G.; Miao, H.-L.; Yang, C.; Liu, X.; et al. Propofol Through Upregulating Caveolin-3 Attenuates Post-Hypoxic Mitochondrial Damage and Cell Death in H9C2 Cardiomyocytes During Hyperglycemia. Cell. Physiol. Biochem. 2017, 44, 279–292. [Google Scholar] [CrossRef]
- Zanphorlin, L.M.; Lima, T.B.; Wong, M.J.; Balbuena, T.S.; Minetti, C.A.S.A.; Remeta, D.P.; Young, J.C.; Barbosa, L.R.S.; Gozzo, F.C.; Ramos, C.H.I. Heat Shock Protein 90 KDa (Hsp90) Has a Second Functional Interaction Site with the Mitochondrial Import Receptor Tom70. J. Biol. Chem. 2016, 291, 18620–18631. [Google Scholar] [CrossRef] [Green Version]
- Inata, Y.; Piraino, G.; Hake, P.W.; O’Connor, M.; Lahni, P.; Wolfe, V.; Schulte, C.; Moore, V.; James, J.M.; Zingarelli, B. Age-Dependent Cardiac Function during Experimental Sepsis: Effect of Pharmacological Activation of AMP-Activated Protein Kinase by AICAR. Am. J. Physiol.-Heart Circ. Physiol. 2018, 315, H826–H837. [Google Scholar] [CrossRef] [PubMed]
- Quan, N.; Wang, L.; Chen, X.; Luckett, C.; Cates, C.; Rousselle, T.; Zheng, Y.; Li, J. Sestrin2 Prevents Age-Related Intolerance to Post Myocardial Infarction via AMPK/PGC-1α Pathway. J. Mol. Cell. Cardiol. 2018, 115, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turdi, S.; Fan, X.; Li, J.; Zhao, J.; Huff, A.F.; Du, M.; Ren, J. AMP-Activated Protein Kinase Deficiency Exacerbates Aging-Induced Myocardial Contractile Dysfunction: AMPK Deficiency and Aging. Aging Cell 2010, 9, 592–606. [Google Scholar] [CrossRef] [Green Version]
- Pesonen, L.; Svartsjö, S.; Bäck, V.; de Thonel, A.; Mezger, V.; Sabéran-Djoneidi, D.; Roos-Mattjus, P. Gambogic Acid and Gambogenic Acid Induce a Thiol-Dependent Heat Shock Response and Disrupt the Interaction between HSP90 and HSF1 or HSF2. Cell Stress Chaperones 2021, 26, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Meriin, A.B.; Gabai, V.L.; Christians, E.; Benjamin, I.; Wilson, A.; Wolozin, B.; Sherman, M.Y. The Heat Shock Transcription Factor Hsf1 Is Downregulated in DNA Damage-Associated Senescence, Contributing to the Maintenance of Senescence Phenotype: Role of Hsf1 in Senescence. Aging Cell 2012, 11, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Elnatan, D.; Agard, D.A. Calcium Binding to a Remote Site Can Replace Magnesium as Cofactor for Mitochondrial Hsp90 (TRAP1) ATPase Activity. J. Biol. Chem. 2018, 293, 13717–13724. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, I.; Nemajerova, A.; Foda, Z.H.; Kornaj, M.; Tong, M.; Moll, U.M.; Seeliger, M.A. A Novel In Vitro CypD-Mediated P53 Aggregation Assay Suggests a Model for Mitochondrial Permeability Transition by Chaperone Systems. J. Mol. Biol. 2016, 428, 4154–4167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masgras, I.; Sanchez-Martin, C.; Colombo, G.; Rasola, A. The Chaperone TRAP1 as a Modulator of the Mitochondrial Adaptations in Cancer Cells. Front. Oncol. 2017, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Yoon, N.G.; Kim, D.; Park, E.; Kim, S.-Y.; Lee, J.H.; Lee, C.; Kang, B.H.; Kang, S. Design and Synthesis of TRAP1 Selective Inhibitors: H-Bonding with Asn171 Residue in TRAP1 Increases Paralog Selectivity. ACS Med. Chem. Lett. 2021, 12, 1173–1180. [Google Scholar] [CrossRef]
- Im, C.-N. Past, Present, and Emerging Roles of Mitochondrial Heat Shock Protein TRAP1 in the Metabolism and Regulation of Cancer Stem Cells. Cell Stress Chaperones 2016, 21, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann-Stroissnigg, H.; Niedernhofer, L.J.; Robbins, P.D. Hsp90 Inhibitors as Senolytic Drugs to Extend Healthy Aging. Cell Cycle 2018, 17, 1048–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeger, H.; Chiang, W.-C.; Felden, J.; Nguyen, A.; Lin, J.H. ER Stress and Unfolded Protein Response in Ocular Health and Disease. FEBS J. 2019, 286, 399–412. [Google Scholar] [CrossRef]
- Duan, X.; Iwanowycz, S.; Ngoi, S.; Hill, M.; Zhao, Q.; Liu, B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front. Oncol. 2021, 11, 629846. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, S.; Amoreo, C.A.; Nuvoli, B.; Galati, R.; Strano, S.; Facciolo, F.; Alessandrini, G.; Pass, H.I.; Ciliberto, G.; Blandino, G.; et al. HSP90 Inhibition Alters the Chemotherapy-Driven Rearrangement of the Oncogenic Secretome. Oncogene 2018, 37, 1369–1385. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Fujita, M. DNA Damage Responses That Enhance Resilience to Replication Stress. Cell. Mol. Life Sci. 2021, 78, 6763–6773. [Google Scholar] [CrossRef]
- Sottile, M.L.; Nadin, S.B. Heat Shock Proteins and DNA Repair Mechanisms: An Updated Overview. Cell Stress Chaperones 2018, 23, 303–315. [Google Scholar] [CrossRef]
- Nalobin, D.; Alipkina, S.; Gaidamaka, A.; Glukhov, A.; Khuchua, Z. Telomeres and Telomerase in Heart Ontogenesis, Aging and Regeneration. Cells 2020, 9, 503. [Google Scholar] [CrossRef] [Green Version]
- Lagadari, M.; Zgajnar, N.R.; Gallo, L.I.; Galigniana, M.D. Hsp90-Binding Immunophilin FKBP51 Forms Complexes with HTERT Enhancing Telomerase Activity. Mol. Oncol. 2016, 10, 1086–1098. [Google Scholar] [CrossRef] [Green Version]
- Sanaei, M.; Kavoosi, F.; Ghasemzadeh, V. Investigation of the Effect of 5-Aza-2’-Deoxycytidine in Comparison to and in Combination with Trichostatin A on P16INK4a, P14ARF, P15INK4b Gene Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer Caco-2 Cell Line. Int. J. Prev. Med. 2021, 12, 64. [Google Scholar] [CrossRef]
- Wang, H.; Xu, G.; Huang, Z.; Li, W.; Cai, H.; Zhang, Y.; Xiong, D.; Liu, G.; Wang, S.; Xue, Z.; et al. NLRP6 Targeting Suppresses Gastric Tumorigenesis via P14 ARF –Mdm2–P53-Dependent Cellular Senescence. Oncotarget 2017, 8, 111597–111607. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.T.; Shingyoji, M.; Hanazono, M.; Zhong, B.; Morinaga, T.; Tada, Y.; Shimada, H.; Hiroshima, K.; Tagawa, M. An MDM2 Inhibitor Achieves Synergistic Cytotoxic Effects with Adenoviruses Lacking E1B55kDa Gene on Mesothelioma with the Wild-Type P53 through Augmenting NFI Expression. Cell Death Dis. 2021, 12, 663. [Google Scholar] [CrossRef]
- Gnanasundram, S.V.; Malbert-Colas, L.; Chen, S.; Fusée, L.; Daskalogianni, C.; Muller, P.; Salomao, N.; Fåhraeus, R. MDM2’s Dual MRNA Binding Domains Co-Ordinate Its Oncogenic and Tumour Suppressor Activities. Nucleic Acids Res. 2020, 48, 6775–6787. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Ko, A.; Kitano, H.; Choi, C.H.; Lee, M.-S.; Seo, J.; Fukuoka, J.; Kim, S.-Y.; Hewitt, S.M.; Chung, J.-Y.; et al. Molecular Chaperone HSP90 Is Necessary to Prevent Cellular Senescence via Lysosomal Degradation of P14ARF. Cancer Res. 2017, 77, 343–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowotny, K.; Jung, T.; Grune, T.; Höhn, A. Accumulation of Modified Proteins and Aggregate Formation in Aging. Exp. Gerontol. 2014, 57, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.P.; Fernando, R.; Reeg, S.; Meinl, W.; Almeida, H.; Grune, T. Non-Enzymatic Cleavage of Hsp90 by Oxidative Stress Leads to Actin Aggregate Formation: A Novel Gain-of-Function Mechanism. Redox Biol. 2019, 21, 101108. [Google Scholar] [CrossRef]
- Höhn, A.; Weber, D.; Jung, T.; Ott, C.; Hugo, M.; Kochlik, B.; Kehm, R.; König, J.; Grune, T.; Castro, J.P. Happily (n)Ever after: Aging in the Context of Oxidative Stress, Proteostasis Loss and Cellular Senescence. Redox Biol. 2017, 11, 482–501. [Google Scholar] [CrossRef]
- De Araújo, R.; Lôbo, M.; Trindade, K.; Silva, D.F.; Pereira, N. Fibroblast Growth Factors: A Controlling Mechanism of Skin Aging. Ski. Pharm. Physiol. 2019, 32, 275–282. [Google Scholar] [CrossRef]
- Kanugovi Vijayavittal, A.; Amere Subbarao, S. The Conformation-Specific Hsp90 Inhibition Interferes with the Oncogenic RAF Kinase Adaptation and Triggers Premature Cellular Senescence, Hence, Acts as a Tumor Suppressor Mechanism. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 118943. [Google Scholar] [CrossRef]
- Shan, Q.; Ma, F.; Wei, J.; Li, H.; Ma, H.; Sun, P. Physiological Functions of Heat Shock Proteins. CPPS 2020, 21, 751–760. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Bommaka, M.K.; Banerjee, A. Inhibiting Protein-Protein Interactions of Hsp90 as a Novel Approach for Targeting Cancer. Eur. J. Med. Chem. 2019, 178, 48–63. [Google Scholar] [CrossRef]
- Margulis, B.; Tsimokha, A.; Zubova, S.; Guzhova, I. Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis in Aging Cells. Cells 2020, 9, 1308. [Google Scholar] [CrossRef]
- Doi, T.; Kurokawa, Y.; Sawaki, A.; Komatsu, Y.; Ozaka, M.; Takahashi, T.; Naito, Y.; Ohkubo, S.; Nishida, T. Efficacy and Safety of TAS-116, an Oral Inhibitor of Heat Shock Protein 90, in Patients with Metastatic or Unresectable Gastrointestinal Stromal Tumour Refractory to Imatinib, Sunitinib and Regorafenib: A Phase II, Single-Arm Trial. Eur. J. Cancer 2019, 121, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, A.; Yamamoto, N.; Kondo, S.; Fujiwara, Y.; Suzuki, S.; Yanagitani, N.; Horiike, A.; Kitazono, S.; Ohyanagi, F.; Doi, T.; et al. First-in-Human Phase I Study of an Oral HSP90 Inhibitor, TAS-116, in Patients with Advanced Solid Tumors. Mol. Cancer Ther. 2019, 18, 531–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felip, E.; Barlesi, F.; Besse, B.; Chu, Q.; Gandhi, L.; Kim, S.-W.; Carcereny, E.; Sequist, L.V.; Brunsvig, P.; Chouaid, C.; et al. Phase 2 Study of the HSP-90 Inhibitor AUY922 in Previously Treated and Molecularly Defined Patients with Advanced Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-K.; Yoon, N.G.; Lee, J.-E.; Hu, S.; Yoon, S.; Kim, S.Y.; Hong, J.-H.; Nam, D.; Chae, Y.C.; Park, J.B.; et al. Unleashing the Full Potential of Hsp90 Inhibitors as Cancer Therapeutics through Simultaneous Inactivation of Hsp90, Grp94, and TRAP1. Exp. Mol. Med. 2020, 52, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.D.; Yan, P.; Seidler, P.M.; Patel, H.J.; Sun, W.; Yang, C.; Que, N.S.; Taldone, T.; Finotti, P.; Stephani, R.A.; et al. Paralog-Selective Hsp90 Inhibitors Define Tumor-Specific Regulation of HER2. Nat. Chem. Biol. 2013, 9, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.J.; Patel, P.D.; Ochiana, S.O.; Yan, P.; Sun, W.; Patel, M.R.; Shah, S.K.; Tramentozzi, E.; Brooks, J.; Bolaender, A.; et al. Structure-Activity Relationship in a Purine-Scaffold Compound Series with Selectivity for the Endoplasmic Reticulum Hsp90 Paralog Grp94. J. Med. Chem. 2015, 58, 3922–3943. [Google Scholar] [CrossRef] [Green Version]
- Kirkland, J.L.; Tchkonia, T.; Zhu, Y.; Niedernhofer, L.J.; Robbins, P.D. The Clinical Potential of Senolytic Drugs. J. Am. Geriatr. Soc. 2017, 65, 2297–2301. [Google Scholar] [CrossRef]
CVDs and CVD Risk Factors | Target | Involved Pathway/Activity | References |
---|---|---|---|
Microvascular injury | IRE1α | IRE1α-XBP1-VEGF pathway; interrupt vascular regeneration | [18,19] |
Peli1 | Peli1 enhances IRE1α phosphorylation | [24] | |
High glucose-mediated injury | Akt pathway | Regulate of mitochondrial membrane potential and MPTP opening | [21,22,23] |
Hypoxia/reoxygenation injury apoptosis | miR-93; NF-kB pathway | NF-kB-mediated prevention of apoptosis | [25,26] |
Heat stress-induced apoptosis | Akt pathway | Aspirin inhibits caspase-3 and caspase-9 activities | [27] |
Akt and Pkm2 pathways | Aspirin protects CMVECs from the heat-stress damage | [28,29] | |
I/R, IpostC and myocardial injury | Complement system, JNK, cytokines | Attenuate I/R-mediated myocardial injury and apoptosis | [33] |
TLR4 and NF-kB pathways | Reduced expression of TNFα, IL-1, IL-6 and ICAM1, and TLR4 and NF-kB-signalling pathways | [34] | |
Akt pathway | Protects against hypoxic and I/R stresses | [35] | |
Antioxidants | Celastrol-type HSP90 inhibitor increases the transcription of SOD1, SOD2, CAT, and GSR | [36] | |
Cx43 | Cardioprotection, reduction of redox stress | [37] | |
Akt pathway | Inhibits calpain in ECs, alleviates cardiac remodelling and fibrosis in mice | [40] | |
Myocardial fibrosis | TGFβ | HSP90 inhibitor CTPR390 reduces motility of myocardial TGFβ-activated fibroblasts, blocks collagen expression and improves AngII-induced cardiac myocardial fibrosis | [43] |
TGFβ/SMAD3 pathway | Reduced fibrosis | [44] | |
calcineurin/Drp1 pathways | HSP90 inhibitor 17-DMAG suppresses adventitial fibroblasts transformation and adventitial remodelling in hypertensive mice | [45] | |
STAT-3 | Hsp90 regulates collagen biosynthesis in fibroblasts during cardiac hypertrophy and associated fibrosis | [47] | |
Cardiac hypertrophy | Raf/Mek/Erk pathway | Hsp90 involved in the development of cardiac hypertrophy following myocardial infarction | [48] |
Atherosclerosis | NF-kB pathway | HSP90 promotes inflammatory response and pro-oxidant gene transcription | [52] |
NF-kB pathway | HSP90 inhibitor 17-DMAG reduces lesion size and inflammatory components in atherosclerotic plaques | [53] | |
MMP-8; NF-kB pathway | HSP90 regulates plaque development, vulnerability and inflammation | [54] | |
Akt/Erk/p38 pathways | HSP90 participates in the progression of aortic valve calcification | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabravolski, S.A.; Sukhorukov, V.N.; Kalmykov, V.A.; Orekhov, N.A.; Grechko, A.V.; Orekhov, A.N. Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. Int. J. Mol. Sci. 2022, 23, 649. https://doi.org/10.3390/ijms23020649
Dabravolski SA, Sukhorukov VN, Kalmykov VA, Orekhov NA, Grechko AV, Orekhov AN. Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. International Journal of Molecular Sciences. 2022; 23(2):649. https://doi.org/10.3390/ijms23020649
Chicago/Turabian StyleDabravolski, Siarhei A., Vasily N. Sukhorukov, Vladislav A. Kalmykov, Nikolay A. Orekhov, Andrey V. Grechko, and Alexander N. Orekhov. 2022. "Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing" International Journal of Molecular Sciences 23, no. 2: 649. https://doi.org/10.3390/ijms23020649
APA StyleDabravolski, S. A., Sukhorukov, V. N., Kalmykov, V. A., Orekhov, N. A., Grechko, A. V., & Orekhov, A. N. (2022). Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. International Journal of Molecular Sciences, 23(2), 649. https://doi.org/10.3390/ijms23020649