Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants
Abstract
:1. Introduction
2. Results
2.1. Iterative Phylogeny Analysis of GELP Sequences
2.2. Orthogroup Definition
2.2.1. Cluster 1
2.2.2. Cluster 2
2.2.3. Cluster 3
2.2.4. Cluster 4
Sub-Cluster C4X
Sub-Cluster 4Y
2.2.5. Cluster 5
2.2.6. Cluster 6
2.2.7. Cluster 7
2.2.8. Cluster 8
2.2.9. Cluster 9
2.2.10. Cluster 10
2.3. Gene Structure of GELP Genes
2.3.1. Exon–Intron Architecture
2.3.2. Functional Domain Structure
2.4. Functionally Characterized GELP Genes
2.5. Automatic Genome-Wide Classification
3. Discussion
3.1. An Iterative Phylogenetic Approach for Large Gene Families
3.2. Comparison with Previous Published Studies
3.3. Extending Classification to New Genomes
3.4. Gene Duplicates
3.5. Functional Transfer in Large Gene Families
4. Materials and Methods
4.1. Sequence Retrieval and Curation
4.2. Phylogenetic Analyses
4.3. Orthogroups Curation
4.4. Literature Curation
4.5. Automatic Sequence Assignation to Curated OGs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Upton, C.; Buckley, J.T. A New Family of Lipolytic Enzymes? Trends Biochem. Sci. 1995, 20, 178–179. [Google Scholar] [CrossRef]
- Akoh, C.C.; Lee, G.-C.; Liaw, Y.-C.; Huang, T.-H.; Shaw, J.-F. GDSL Family of Serine Esterases/Lipases. Prog. Lipid Res. 2004, 43, 534–552. [Google Scholar] [CrossRef] [PubMed]
- Volokita, M.; Rosilio-Brami, T.; Rivkin, N.; Zik, M. Combining Comparative Sequence and Genomic Data to Ascertain Phylogenetic Relationships and Explore the Evolution of the Large GDSL-Lipase Family in Land Plants. Mol. Biol. Evol. 2011, 28, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.-N.; Li, M.; Wang, W.-J.; Cao, J.; Wang, Z.; Zhu, K.-M.; Yang, Y.-H.; Li, Y.-L.; Tan, X.-L. Advances in Plant GDSL Lipases: From Sequences to Functional Mechanisms. Acta Physiol. Plant. 2019, 41, 151. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Liaw, Y.-C.; Gorbatyuk, V.Y.; Huang, T.-H. Backbone Dynamics of Escherichia coli Thioesterase/Protease I: Evidence of a Flexible Active-Site Environment for a Serine Protease. J. Mol. Biol. 2001, 307, 1075–1090. [Google Scholar] [CrossRef]
- Dong, X.; Yi, H.; Han, C.-T.; Nou, I.-S.; Hur, Y. GDSL Esterase/Lipase Genes in Brassica rapa L.: Genome-Wide Identification and Expression Analysis. Mol. Genet. Genom. 2016, 291, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, X.; Qiu, W.; Xu, D.; Wang, Y.; Yu, M.; Hu, X.; Zhuo, R. Identification and Expression Analysis of the GDSL Esterase/Lipase Family Genes, and the Characterization of SaGLIP8 in Sedum alfredii Hance under Cadmium Stress. PeerJ 2019, 7, e6741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.-G.; Zhang, X.-H.; Wang, T.-T.; Wei, W.-L.; Wang, Y.-X.; Chen, J.; Zhou, Y.-B.; Chen, M.; Ma, Y.-Z.; Xu, Z.-S.; et al. Genome-Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. Front. Plant Sci. 2020, 11, 726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, X.; Zhao, J.; Sun, L.; Wang, H.; Zhu, Y.; Xiao, J.; Wang, X. Genome-Wide Identification of GDSL-Type Esterase/Lipase Gene Family in Dasypyrum villosum L. Reveals That DvGELP53 Is Related to BSMV Infection. Int. J. Mol. Sci. 2021, 22, 12317. [Google Scholar] [CrossRef]
- Yao-guang, S.; Yu-qing, H.; He-xuan, W.; Jing-bin, J.; Huan-huan, Y.; Xiang-yang, X. Genome-Wide Identification and Expression Analysis of GDSL Esterase/Lipase Genes in Tomato. J. Integr. Agric. 2022, 21, 389–406. [Google Scholar] [CrossRef]
- Yang, X.; Wang, K.; Bu, Y.; Niu, F.; Ge, L.; Zhang, L.; Song, X. Genome-Wide Analysis of GELP Gene Family in Wheat and Validation of TaGELP073 Involved in Anther and Pollen Development. Environ. Exp. Bot. 2022, 200, 104914. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, S.; Zou, J.; Dong, S.; Wang, N.; Feng, H. Mutation in BrGGL7 Gene Encoding a GDSL Esterase / Lipase Causes Male Sterility in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis). Theor. Appl. Genet. 2022, 135, 3323–3335. [Google Scholar] [CrossRef] [PubMed]
- Tsugama, D.; Fujino, K.; Liu, S.; Takano, T. A GDSL-Type Esterase/Lipase Gene, GELP77, Is Necessary for Pollen Dissociation and Fertility in Arabidopsis. Biochem. Biophys. Res. Commun. 2020, 526, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Long, T.; Wang, Y.; Tong, X.; Tang, J.; Li, J.; Wang, H.; Tang, L.; Li, Z.; Shu, Y.; et al. RMS2 Encoding a GDSL Lipase Mediates Lipid Homeostasis in Anthers to Determine Rice Male Fertility. Plant Physiol. 2020, 182, 2047–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altenhoff, A.M.; Studer, R.A.; Robinson-Rechavi, M.; Dessimoz, C. Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs. PLoS Comput. Biol. 2012, 8, e1002514. [Google Scholar] [CrossRef] [Green Version]
- Stamboulian, M.; Guerrero, R.F.; Hahn, M.W.; Radivojac, P. The Ortholog Conjecture Revisited: The Value of Orthologs and Paralogs in Function Prediction. Bioinformatics 2020, 36, i219–i226. [Google Scholar] [CrossRef]
- Gabaldón, T. Large-Scale Assignment of Orthology: Back to Phylogenetics? Genome Biol. 2008, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Altenhoff, A.M.; Škunca, N.; Glover, N.; Train, C.-M.; Sueki, A.; Piližota, I.; Gori, K.; Tomiczek, B.; Müller, S.; Redestig, H.; et al. The OMA Orthology Database in 2015: Function Predictions, Better Plant Support, Synteny View and Other Improvements. Nucleic Acids Res. 2015, 43, D240–D249. [Google Scholar] [CrossRef] [Green Version]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving Fundamental Biases in Whole Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cenci, A.; Guignon, V.; Roux, N.; Rouard, M. Genomic Analysis of NAC Transcription Factors in Banana (Musa acuminata) and Definition of NAC Orthologous Groups for Monocots and Dicots. Plant Mol. Biol. 2014, 85, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Cenci, A.; Rouard, M. Evolutionary Analyses of GRAS Transcription Factors in Angiosperms. Front. Plant Sci. 2017, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Cenci, A.; Chantret, N.; Rouard, M. Glycosyltransferase Family 61 in Liliopsida (Monocot): The Story of a Gene Family Expansion. Front. Plant Sci. 2018, 9, 1843. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, R. ENOD8, a Novel Early Nodule-Specific Gene, Is Expressed in Empty Alfalfa Nodules. Mol. Plant. Microbe Interact. 1993, 6, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagane, Y.; Nakagawa, T.; Yamamoto, K.; Michikawa, S.; Oguri, S.; Momonoki, Y.S. Molecular Characterization of Maize Acetylcholinesterase. A Novel Enzyme Family in the Plant Kingdom. Plant Physiol. 2005, 138, 1359–1371. [Google Scholar] [CrossRef] [Green Version]
- van Engelen, F.A.; de Jong, A.J.; Meijer, E.A.; Kuil, C.W.; Meyboom, J.K.; Dirkse, W.G.; Booij, H.; Hartog, M.V.; Vandekerckhove, J.; de Vries, S.C.; et al. Purification, Immunological Characterization and CDNA Cloning of a 47 KDa Glycoprotein Secreted by Carrot Suspension Cells. Plant Mol. Biol. 1995, 27, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Yuan, H.; An, J.; Hao, X.; Li, H. A Gossypium hirsutum GDSL Lipase/Hydrolase Gene (GhGLIP) Appears to Be Involved in Promoting Seed Growth in Arabidopsis. PLoS ONE 2018, 13, e0195556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.; Oguri, S.; Momonoki, Y.S. Characterization of Trimeric Acetylcholinesterase from a Legume Plant, Macroptilium atropurpureum Urb. Planta 2008, 227, 809–822. [Google Scholar] [CrossRef]
- Yamamoto, K.; Oguri, S.; Chiba, S.; Momonoki, Y.S. Molecular Cloning of acetylcholinesterase Gene from Salicornia europaea L. Plant Signal. Behav. 2009, 4, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, M.; Woll, J.; Giritch, A.; Genady, E.; Ma, X.; Stöckigt, J. Functional Expression of an Ajmaline Pathway-Specific Esterase from Rauvolfia in a Novel Plant-Virus Expression System. Planta 2005, 222, 888–898. [Google Scholar] [CrossRef]
- Ling, H.; Zhao, J.; Zuo, K.; Qiu, C.; Yao, H.; Qin, J.; Sun, X.; Tang, K. Isolation and Expression Analysis of a GDSL-like Lipase Gene from Brassica napus L. BMB Rep. 2006, 39, 297–303. [Google Scholar] [CrossRef]
- Riemann, M.; Gutjahr, C.; Korte, A.; Riemann, M.; Danger, B.; Muramatsu, T.; Bayer, U.; Waller, F.; Furuya, M.; Nick, P. GER1, a GDSL Motif-Encoding Gene from Rice Is a Novel Early Light- and Jasmonate-Induced Gene. Plant Biol. 2007, 9, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, I.; Edwards, R. Purification and Cloning of an Esterase from the Weed Black-Grass (Alopecurus myosuroides), Which Bioactivates Aryloxyphenoxypropionate Herbicides. Plant J. 2004, 39, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-A.; Cho, T.-J. Characterization of a Salicylic Acid- and Pathogen-Induced Lipase-like Gene in Chinese Cabbage. BMB Rep. 2003, 36, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Kikuta, Y.; Ueda, H.; Takahashi, M.; Mitsumori, T.; Yamada, G.; Sakamori, K.; Takeda, K.; Furutani, S.; Nakayama, K.; Katsuda, Y.; et al. Identification and Characterization of a GDSL Lipase-like Protein That Catalyzes the Ester-Forming Reaction for Pyrethrin Biosynthesis in Tanacetum cinerariifolium—A New Target for Plant Protection. Plant J. 2012, 71, 183–193. [Google Scholar] [CrossRef]
- Kim, K.-J.; Lim, J.H.; Kim, M.J.; Kim, T.; Chung, H.M.; Paek, K.-H. GDSL-lipase1 (CaGL1) Contributes to Wound Stress Resistance by Modulation of CaPR-4 Expression in Hot Pepper. Biochem. Biophys. Res. Commun. 2008, 374, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.K.; Choi, H.W.; Hwang, I.S.; Kim, D.S.; Kim, N.H.; Choi, D.S.; Kim, Y.J.; Hwang, B.K. Function of a Novel GDSL-Type Pepper Lipase Gene, CaGLIP1, in Disease Susceptibility and Abiotic Stress Tolerance. Planta 2008, 227, 539–558. [Google Scholar] [CrossRef]
- Kram, B.W.; Bainbridge, E.A.; Perera, M.A.D.N.; Carter, C. Identification, Cloning and Characterization of a GDSL Lipase Secreted into the Nectar of Jacaranda mimosifolia. Plant Mol. Biol. 2008, 68, 173. [Google Scholar] [CrossRef]
- Ji, R.; Wang, H.; Xin, X.; Peng, S.; Hur, Y.; Li, Z.; Feng, H. BrEXL6, a GDSL Lipase Gene of Brassica rapa, Functions in Pollen Development. Biol. Plant. 2017, 61, 685–692. [Google Scholar] [CrossRef]
- Updegraff, E.P.; Zhao, F.; Preuss, D. The Extracellular Lipase EXL4 Is Required for Efficient Hydration of Arabidopsis Pollen. Sex. Plant Reprod. 2009, 22, 197–204. [Google Scholar] [CrossRef]
- Watkins, J.L.; Li, M.; McQuinn, R.P.; Chan, K.X.; McFarlane, H.E.; Ermakova, M.; Furbank, R.T.; Mares, D.; Dong, C.; Chalmers, K.J.; et al. A GDSL Esterase/Lipase Catalyzes the Esterification of Lutein in Bread Wheat. Plant Cell 2019, 31, 3092–3112. [Google Scholar] [CrossRef]
- An, X.; Dong, Z.; Tian, Y.; Xie, K.; Wu, S.; Zhu, T.; Zhang, D.; Zhou, Y.; Niu, C.; Ma, B.; et al. ZmMs30 Encoding a Novel GDSL Lipase Is Essential for Male Fertility and Valuable for Hybrid Breeding in Maize. Mol. Plant 2019, 12, 343–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, M.; Li, Y.; Yan, W.; Chang, Z.; Ni, H.; Chen, Z.; Wu, J.; Xu, C.; Deng, X.W.; et al. GDSL Esterase/Lipases OsGELP34 and OsGELP110/OsGELP115 Are Essential for Rice Pollen Development. J. Integr. Plant Biol. 2020, 62, 1574–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reina, J.J.; Guerrero, C.; Heredia, A. Isolation, Characterization, and Localization of AgaSGNH CDNA: A New SGNH-Motif Plant Hydrolase Specific to Agave americana L. Leaf Epidermis. J. Exp. Bot. 2007, 58, 2717–2731. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, M.Á.; Forment, J.; Roldán, M.; Serrano, R.; Vicente, O. Overexpression of Arabidopsis thaliana LTL1, a Salt-Induced Gene Encoding a GDSL-Motif Lipase, Increases Salt Tolerance in Yeast and Transgenic Plants. Plant Cell Environ. 2006, 29, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Yeats, T.H.; Huang, W.; Chatterjee, S.; Viart, H.M.-F.; Clausen, M.H.; Stark, R.E.; Rose, J.K.C. Tomato Cutin Deficient 1 (CD1) and Putative Orthologs Comprise an Ancient Family of Cutin Synthase-like (CUS) Proteins that Are Conserved among Land Plants. Plant J. 2014, 77, 667–675. [Google Scholar] [CrossRef]
- Gottin, C.; Dievart, A.; Summo, M.; Droc, G.; Périn, C.; Ranwez, V.; Chantret, N. A New Comprehensive Annotation of Leucine-Rich Repeat-Containing Receptors in Rice. Plant J. 2021, 108, 492–508. [Google Scholar] [CrossRef]
- Chepyshko, H.; Lai, C.-P.; Huang, L.-M.; Liu, J.-H.; Shaw, J.-F. Multifunctionality and Diversity of GDSL Esterase/Lipase Gene Family in Rice (Oryza sativa L. japonica) Genome: New Insights from Bioinformatics Analysis. BMC Genom. 2012, 13, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.-P.; Huang, L.-M.; Chen, L.-F.O.; Chan, M.-T.; Shaw, J.-F. Genome-Wide Analysis of GDSL-Type Esterases/Lipases in Arabidopsis. Plant Mol. Biol. 2017, 95, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Han, Y.; Meng, D.; Abdullah, M.; Yu, J.; Li, D.; Jin, Q.; Lin, Y.; Cai, Y. Expansion and Evolutionary Patterns of GDSL-Type Esterases/Lipases in Rosaceae Genomes. Funct. Integr. Genom. 2018, 18, 673–684. [Google Scholar] [CrossRef]
- de la Torre, F.; Sampedro, J.; Zarra, I.; Revilla, G. AtFXG1, an Arabidopsis Gene Encoding α-l-Fucosidase Active against Fucosylated Xyloglucan Oligosaccharides. Plant Physiol. 2002, 128, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Pringle, D.; Dickstein, R. Purification of ENOD8 Proteins from Medicago sativa Root Nodules and Their Characterization as Esterases. Plant Physiol. Biochem. 2004, 42, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, M.; Buss, K.; Larrimore, K.E.; Segerson, N.A.; Kannan, L.; Mor, T.S. The Arabidopsis thaliana Ortholog of a Purported Maize Cholinesterase Gene Encodes a GDSL-Lipase. Plant Mol. Biol. 2013, 81, 565–576. [Google Scholar] [CrossRef] [Green Version]
- Albert, V.A.; Barbazuk, W.B.; dePamphilis, C.W.; Der, J.P.; Leebens-Mack, J.; Ma, H.; Palmer, J.D.; Rounsley, S.; Sankoff, D.; Schuster, S.C.; et al. The Amborella Genome and the Evolution of Flowering Plants. Science 2013, 342, 1241089. [Google Scholar] [CrossRef]
- Al-Mssallem, I.S.; Hu, S.; Zhang, X.; Lin, Q.; Liu, W.; Tan, J.; Yu, X.; Liu, J.; Pan, L.; Zhang, T.; et al. Genome Sequence of the Date Palm Phoenix dactylifera L. Nat. Commun. 2013, 4, 2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, G.; Baurens, F.-C.; Droc, G.; Rouard, M.; Cenci, A.; Kilian, A.; Hastie, A.; Doležel, J.; Aury, J.-M.; Alberti, A.; et al. Improvement of the Banana “Musa acuminata” Reference Sequence Using NGS Data and Semi-Automated Bioinformatics Methods. BMC Genom. 2016, 17, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canaguier, A.; Grimplet, J.; Di Gaspero, G.; Scalabrin, S.; Duchêne, E.; Choisne, N.; Mohellibi, N.; Guichard, C.; Rombauts, S.; Le Clainche, I.; et al. A New Version of the Grapevine Reference Genome Assembly (12X.v2) and of Its Annotation (VCost.V3). Genom. Data 2017, 14, 56–62. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Sun, L.; Zhao, F.; Huang, B.; Yang, W.; Tao, Y.; Wang, J.; Yuan, Z.; Fan, G.; et al. The Genome of Prunus mume. Nat. Commun. 2012, 3, 1318. [Google Scholar] [CrossRef] [Green Version]
- Argout, X.; Salse, J.; Aury, J.-M.; Guiltinan, M.J.; Droc, G.; Gouzy, J.; Allegre, M.; Chaparro, C.; Legavre, T.; Maximova, S.N.; et al. The Genome of Theobroma cacao. Nat. Genet. 2011, 43, 101–108. [Google Scholar] [CrossRef]
- Kaul, S.; Koo, H.; Jenkins, J.; Rizzo, M.; Rooney, T.; Tallon, L.; Feldblyum, T.; Nierman, W.; Benito, M.; Lin, X.; et al. Analysis of the Genome Sequence of the Flowering Plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cowley, A.; Uludag, M.; Gur, T.; McWilliam, H.; Squizzato, S.; Park, Y.M.; Buso, N.; Lopez, R. The EMBL-EBI Bioinformatics Web and Programmatic Tools Framework. Nucleic Acids Res. 2015, 43, W580–W584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Delsuc, F.; Dufayard, J.-F.; Gascuel, O. Estimating Maximum Likelihood Phylogenies with PhyML. Methods Mol. Biol. Clifton N. J. 2009, 537, 113–137. [Google Scholar] [CrossRef] [Green Version]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.Fr: Robust Phylogenetic Analysis for the Non-Specialist. Nucleic Acids Res. 2008, 36, W465–W469. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdobnov, E.M.; Apweiler, R. InterProScan—An Integration Platform for the Signature-Recognition Methods in InterPro. Bioinformatics 2001, 17, 847–848. [Google Scholar] [CrossRef] [Green Version]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [Green Version]
- Guignon, V.; Toure, A.; Droc, G.; Dufayard, J.F.; Conte, M.; Rouard, M. GreenPhylDB v5: A Comparative Pangenomic Database for Plant Genomes. Nucleic Acids Res. 2021, 49, D1464–D1471. [Google Scholar] [CrossRef]
Step | Sequence Number | Positions | Divergent Cluster (aLRT Support) | Sequences in Cluster |
---|---|---|---|---|
1 | 248 (66-81-101) | 102 | Cluster 1 (99) | 14 (2-6-6) |
2 | 234 (64-75-95) | 113 | Cluster 2 (100) | 12 (3-5-4) |
3 | 222 (61-70-91) | 135 | Cluster 3 (100) | 9 (1-2-6) |
4 | 213 (60-68-85) | 126 | Cluster 4 (96) | 65 (17-26-22) |
5 | 148 (43-42-63) | 179 | Cluster 5 (100) | 20 (10-2-8) |
6 | 128 (33-40-55) | 195 | Cluster 6 (98) | 10 (4-3-3) |
7 | 118 (29-37-52) | 204 | Cluster 7 (94) | 36 (8-6-22) |
8 | 82 (21-31-30) | 253 | Cluster 8 (90) | 33 (6-13-14) |
Cluster 9 (100) | 9 (2-3-4) | |||
Cluster 10 (97) | 40 (13-15-12) |
Cluster Name | Sequence Number | Positions | Tree Name |
---|---|---|---|
Cluster 1 | 47 (2-6-5-7-6-4-5-9-3) | 231 | TreeC1 |
Cluster 2 | 37 (3-5-4-4-4-4-4-4-5) | 217 | TreeC2 |
Cluster 3 | 30 (1-2-3-2-6-8-1-5-2) | 254 | TreeC3 |
Cluster 4 | 253 (17-26-35-54-22-23-25-25-27) | 169 | TreeC4 |
Sub-cluster 4X | 50 (5-2-4-2-10-9-10-4-4) | 334 | TreeC4X |
Sub-cluster 4Y | 149 (9-20-24-44-5-6-8-14-19) | 220 | TreeC4Y |
Cluster 5 | 60 (10-2-0-0-8-12-10-11-7) | 284 | TreeC5 |
Cluster 6 | 35 (4-3-4-3-3-5-6-4-3) | 319 | TreeC6 |
Cluster 7 | 103 (8-6-8-7-22-14-15-15-8) | 240 | TreeC7 |
Cluster 8 | 129 (6-13-12-18-14-13-11-33-9) | 262 | TreeC8 |
Cluster 8X | 84 (3-6-7-10-10-7-6-29-6) | 275 | TreeC8X |
Cluster 8X1 | 29 (2-1-2-3-3-2-4-8-4) | 295 | TreeC8X1 |
Cluster 8X2 | 55 (1-5-5-7-7-5-2-21-2) | 279 | TreeC8X2 |
Cluster 9 | 32 (2-3-4-3-4-3-3-5-5) | 312 | TreeC9 |
Cluster 10 | 129 (13-15-20-24-12-15-11-9-10) | 213 | TreeC10 |
Cluster 10X | 33 (1-4-5-5-4-3-3-4-4) | 334 | TreeC10X |
Cluster 10Y | 37 (3-6-10-10-2-3-2-0-1) | 249 | TreeC10Y |
Orthogroup Name | AMBTC | Dicots and Mono Cots | PHODA | MUSAC | ORYSA | VITVI | PRUMU | THECC | ARATH | COFCA | Exon Structure |
---|---|---|---|---|---|---|---|---|---|---|---|
OG-GELP-C1a | 1 | 15 | 4 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | (1), (2) |
OG-GELP-C1b | 1 | 30 | 2 | 2 | 4 | 5 | 3 | 4 | 8 | 2 | (1), (2) |
OG-GELP-C2a | 1 | 15 | 3 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | (1), (2), (3), (4), (5), (6) |
OG-GELP-C2b | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | (1), (2), (3), (4), (5), (6) |
OG-GELP-C2c | 1 | 11 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | (1), (2+3), (4), (5), (6) |
OG-GELP-C3 | 1 | 29 | 2 | 3 | 2 | 6 | 8 | 1 | 5 | 2 | (1), (2), (3), (4), (5) |
OG-GELP-C4a | 1 | 17 | 1 | 2 | 1 | 2 | 4 * | 3 * | 3 * | 1 | (1), (2), (3), (4), (5) |
OG-GELP-C4b | 1 | 26 | 2 | 4 | 6 | 4 | 3 | 3 | 3 | 1 | (1), (2), (3), (4), (5) |
OG-GELP-C4c | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | (1), (2), (3), (4), (5) |
OG-GELP-C4d | 1 | 9 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | (1+2+3), (4+5) |
OG-GELP-C4e | 1 | 25 | 2 | 4 | 2 | 6 | 5 | 3 | 2 | 1 | (1), (2), (3), (4), (5) |
OG-GELP-C4f | 4 | 20 | - | - | - | 4 | 4 | 7 | 2 | 3 | (1), (2), (3), (4), (5) |
OG-GELP-C4g | 8 | 24 | 2 | 1 | 4 | 1 | 1 | 4 | 1 | 10 | (1), (2), (3), (4), (5) |
OG-GELP-C4h | 61 | 9 | 12 | 16 | 1 | 3 | 2 | 11 | 7 | (1), (2), (3), (4), (5) | |
OG-GELP-C4i | 46 | 8 | 10 | 23 | 1 | 1 | 1 | 1 | 1 | (1), (2), (3), (4), (5) | |
OG-GELP-C5a | 2 | 6 | 2 | - | - | 1 | 1 | 1 | - | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C5b | 8 | 44 | - | - | - | 7 | 11 | 9 | 11 | 6 | (1), (2′), (3′), (4), (5) |
OG-GELP-C6a | 2 | 12 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C6b | 1 | 10 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C6c | 1 | 9 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C7a | 1 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C7b | 1 | 37 | 2 | 2 | 3 | 8 | 7 | 4 | 8 | 3 | (1), (2′), (3′), (4), (5) |
OG-GELP-C7c | 1 | 9 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C7d | 1 | 11 | 1 | 2 | - | 2 | 1 | 2 | 2 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C7e | 1 | 3 | - | 1 | - | 1 | - | - | 1 | - | (1), (2′), (3′), (4), (5) |
OG-GELP-C7f | 1 | 17 | - | - | - | 7 | 1 | 6 | 2 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C7g | 1 | 9 | 1 | 1 | 1 | 1 | 3 | 1 | - | 1 | (1+2′), (3′), (4), (5) |
OG-GELP-C7h | 1 | 1 | - | - | - | 1 | - | - | - | - | (1), (2′), (3′), (4), (5) |
OG-GELP-C8a | 2 | 7 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C8b | 1 | 35 | 6 | 5 | 7 | 3 | 5 | 4 | 3 | 2 | (1+2′), (3′+4), (5) |
OG-GELP-C8c | 1 | 5 | - | - | - | 1 | - | 1 | 1 | 2 | (1), (2′), (3′), (4), (5) |
OG-GELP-C8d | 1 | 6 | 1 | 1 | 2 | - | 1 | - | 1 | - | (1+2′+3′), (4), (5) |
OG-GELP-C8e | 17 | - | 1 | 1 | 2 | 1 | 3 | 7 | 2 | (1+2′+3′), (4), (5) | |
OG-GELP-C8f | 1 | 55 | 5 | 5 | 7 | 7 | 5 | 2 | 21 | 2 | (1), (2′), (3′), (4), (5) |
OG-GELP-C9a | 1 | 12 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | (1), (2′), (3′), (4), (5) |
OG-GELP-C9b | 1 | 18 | 2 | 2 | 1 | 2 | 2 | 2 | 4 | 3 | (1), (2′), (3′), (4), (5) |
OG-GELP-C10a | 1 | 6 | 1 | - | 2 | 1 | 1 | 1 | - | - | (1), (2′+3′), (4), (5)a |
OG-GELP-C10b | 2 | 10 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C10c | 1 | 5 | - | - | - | 1 | 1 | 1 | 1 | 1 | (1), (2′), (3′+4), (5) |
OG-GELP-C10d | 3 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C10e | 1 | 9 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | (1), (2′), (3′a), (3′b), (4), (5)b |
OG-GELP-C10f | 1 | 12 | 1 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | (1), (2′), (3′), (4), (5) |
OG-GELP-C10g | 1 | 32 | 4 | 5 | 5 | 4 | 3 | 3 | 4 | 4 | (1), (2′), (3′), (4), (5) |
OG-GELP-C10h | 3 | 34 | 6 | 10 | 10 | 2 | 3 | 2 | - | 1 | (1), (2′), (3′), (4), (5) |
Total | 66 | 791 | 81 | 95 | 122 | 101 | 101 | 91 | 121 | 78 |
Gene Name | Gene Function | Species | Classification | References |
---|---|---|---|---|
Enod8 | Nodule specific | Medicago truncatula | OG-GELP-C4e | [23] |
AChE | Acetylcholinesterase | Zea mays | OG-GELP-C4e | [24] |
iEP4 | In carrot suspension cells | Daucus carota | OG-GELP-C4e | [25] |
GhGLIP | Seed growth | Gossypium hirsutum | OG-GELP-C4f | [26] |
AChE | Acetylcholinesterase | Macroptilium atropurpureum | OG-GELP-C4f | [27] |
AChE | Acetylcholinesterase | Salicornia europaea | OG-GELP-C4f | [28] |
AAE | Acetylajmalan esterase | Rauvolfia serpentina | OG-GELP-C4g | [29] |
BnLIP2 | Seed germination | Brassica napus | OG-GELP-C4h | [30] |
GER1 | Light and jasmonate-induced gene | Oryza sativa | OG-GELP-C4i | [31] |
Amgdsh1 | Herbicide activation | Alopecurus myosuroides | OG-GELP-C4i | [32] |
Br-sil1 | Salicylic acid- and pathogen-induced | Brassica rapa | OG-GELP-C5b | [33] |
TcGLIP | Pyrethrin synthesis | Tanacetum cinerariifolium | OG-GELP-C5b | [34] |
BrGGL7 | Pollen development | Brassica rapa | OG-GELP-C7a | [12] |
CaGL1 | Wound stress resistance | Capsicum annuum | OG-GELP-C7b | [35] |
CaGLIP1 | Disease susceptibility and abiotic stress tolerance | Capsicum annuum | OG-GELP-C7b | [36] |
SaGLIP8 | Cadmium tolerance | Sedum alfredii | OG-GELP-C7b | [7] |
JNP1 | Nectar lipid hydrolization | Jacaranda mimosifolia | OG-GELP-C7b | [37] |
BrEXL6 | Pollen development | Brassica rapa | OG-GELP-C8f | [38] |
EXL4 | Pollen development | Arabidopsis | OG-GELP-C8f | [39] |
Xat | Esterification of lutein | Triticum aestivum | OG-GELP-C9a | [40] |
ZmMs30 | Male fertility | Zea mais | OG-GELP-C10a | [41] |
OsGELP110/OsGELP115 | Male fertility | Oryza sativa | OG-GELP-C10a | [42] |
Rms2 | Male fertility | Oryza sativa | OG-GELP-C10b | [14] |
Gelp77 | Male fertility | Arabidopsis thaliana | OG-GELP-C10b | [13] |
AgaSGNH | Leaf epidermis hydrolase | Agave americana | OG-GELP-C10g | [43] |
AtLTL1 | Salt tolerance | Arabidopsis thaliana | OG-GELP-C10g | [44] |
CUS1 | Cutin synthesis | Solanum lycopersicum | OG-GELP-C10g | [45] |
TaGELP073 | Anther and pollen development | Triticum aestivum | OG-GELP-C10h | [11] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenci, A.; Concepción-Hernández, M.; Guignon, V.; Angenon, G.; Rouard, M. Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants. Int. J. Mol. Sci. 2022, 23, 12114. https://doi.org/10.3390/ijms232012114
Cenci A, Concepción-Hernández M, Guignon V, Angenon G, Rouard M. Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants. International Journal of Molecular Sciences. 2022; 23(20):12114. https://doi.org/10.3390/ijms232012114
Chicago/Turabian StyleCenci, Alberto, Mairenys Concepción-Hernández, Valentin Guignon, Geert Angenon, and Mathieu Rouard. 2022. "Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants" International Journal of Molecular Sciences 23, no. 20: 12114. https://doi.org/10.3390/ijms232012114
APA StyleCenci, A., Concepción-Hernández, M., Guignon, V., Angenon, G., & Rouard, M. (2022). Genome-Wide Classification and Phylogenetic Analyses of the GDSL-Type Esterase/Lipase (GELP) Family in Flowering Plants. International Journal of Molecular Sciences, 23(20), 12114. https://doi.org/10.3390/ijms232012114