Genetic Variant in Nicotinic Receptor α4-Subunit Causes Sleep-Related Hyperkinetic Epilepsy via Increased Channel Opening
Abstract
:1. Introduction
2. Results
2.1. Clinical Evaluation
2.2. Expression of nAChRs Harboring α4-Ser284Trp
2.3. Patch Clamp Studies of nAChRs Harboring α4-Ser284Trp
3. Discussion
4. Materials and Methods
4.1. Expression of Human (α4)3(β2)2 and Human (α4)2(β2)3 AChRs
4.2. Drugs
4.3. Radio-Ligand Binding
4.4. Single Channel Recordings
4.5. Statistics
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steinlein, O.K. Preface. Genetics of epilepsy. Prog. Brain Res. 2014, 213, vii. [Google Scholar] [CrossRef] [PubMed]
- Becchetti, A.; Aracri, P.; Meneghini, S.; Brusco, S.; Amadeo, A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front. Physiol. 2015, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurahashi, H.; Hirose, S. GeneReviews((R)); Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Riney, K.; Bogacz, A.; Somerville, E.; Hirsch, E.; Nabbout, R.; Scheffer, I.E.; Zuberi, S.M.; Alsaadi, T.; Jain, S.; French, J.; et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset at a variable age: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1443–1474. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef] [Green Version]
- Dani, J.A.; Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 699–729. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Bermudez, I.; Sine, S.M. alpha4beta2 Nicotinic Acetylcholine Receptors: Relationships between subunit stoichiometry and function at the single channel level. J. Biol. Chem. 2017, 292, 2729–2740. [Google Scholar] [CrossRef] [Green Version]
- Walsh, R.M., Jr.; Roh, S.H.; Gharpure, A.; Morales-Perez, C.L.; Teng, J.; Hibbs, R.E. Structural principles of distinct assemblies of the human alpha4beta2 nicotinic receptor. Nature 2018, 557, 261–265. [Google Scholar] [CrossRef]
- Moroni, M.; Zwart, R.; Sher, E.; Cassels, B.K.; Bermudez, I. alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: Pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol. Pharmacol. 2006, 70, 755–768. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Strikwerda, J.R.; Sine, S.M. Stoichiometry-selective modulation of alpha4beta2 nicotinic ACh receptors by divalent cations. Br. J. Pharmacol. 2022, 179, 1353–1370. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Bermudez, I.; Sine, S.M. Potentiation of a neuronal nicotinic receptor via pseudo-agonist site. Cell. Mol. Life Sci. 2019, 76, 1151–1167. [Google Scholar] [CrossRef]
- Steinlein, O.K.; Magnusson, A.; Stoodt, J.; Bertrand, S.; Weiland, S.; Berkovic, S.F.; Nakken, K.O.; Propping, P.; Bertrand, D. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum. Mol. Genet. 1997, 6, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Phillips, H.A.; Favre, I.; Kirkpatrick, M.; Zuberi, S.M.; Goudie, D.; Heron, S.E.; Scheffer, I.E.; Sutherland, G.R.; Berkovic, S.F.; Bertrand, D.; et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am. J. Hum. Genet. 2001, 68, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Colquhoun, D. Binding, gating, affinity and efficacy: The interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 1998, 125, 924–947. [Google Scholar] [CrossRef] [Green Version]
- Mazzaferro, S.; Whiteman, S.T.; Alcaino, C.; Beyder, A.; Sine, S.M. NACHO and 14-3-3 promote expression of distinct subunit stoichiometries of the alpha4beta2 acetylcholine receptor. Cell. Mol. Life Sci. 2021, 78, 1565–1575. [Google Scholar] [CrossRef]
- Licchetta, L.; Pippucci, T.; Baldassari, S.; Minardi, R.; Provini, F.; Mostacci, B.; Plazzi, G.; Tinuper, P.; Bisulli, F. Sleep-related hypermotor epilepsy (SHE): Contribution of known genes in 103 patients. Seizure 2020, 74, 60–64. [Google Scholar] [CrossRef]
- Bertrand, D.; Picard, F.; Le Hellard, S.; Weiland, S.; Favre, I.; Phillips, H.; Bertrand, S.; Berkovic, S.F.; Malafosse, A.; Mulley, J. How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia 2002, 43 (Suppl. S5), 112–122. [Google Scholar] [CrossRef]
- Sine, S.M.; Engel, A.G. Recent advances in Cys-loop receptor structure and function. Nature 2006, 440, 448–455. [Google Scholar] [CrossRef]
- Engel, A.G.; Shen, X.M.; Selcen, D.; Sine, S.M. Congenital myasthenic syndromes: Pathogenesis, diagnosis, and treatment. Lancet Neurol. 2015, 14, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, D.; Elmslie, F.; Hughes, E.; Trounce, J.; Sander, T.; Bertrand, S.; Steinlein, O.K. The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol. Dis. 2005, 20, 799–804. [Google Scholar] [CrossRef]
- Leniger, T.; Kananura, C.; Hufnagel, A.; Bertrand, S.; Bertrand, D.; Steinlein, O.K. A new Chrna4 mutation with low penetrance in nocturnal frontal lobe epilepsy. Epilepsia 2003, 44, 981–985. [Google Scholar] [CrossRef]
- Weiland, S.; Witzemann, V.; Villarroel, A.; Propping, P.; Steinlein, O. An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett. 1996, 398, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Lendvai, B.; Vizi, E.S. Nonsynaptic chemical transmission through nicotinic acetylcholine receptors. Physiol. Rev. 2008, 88, 333–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descarries, L.; Gisiger, V.; Steriade, M. Diffuse transmission by acetylcholine in the CNS. Prog. Neurobiol. 1997, 53, 603–625. [Google Scholar] [CrossRef]
- Fu, X.; Moonschi, F.H.; Fox-Loe, A.M.; Snell, A.A.; Hopkins, D.M.; Avelar, A.J.; Henderson, B.J.; Pauly, J.R.; Richards, C.I. Brain Region Specific Single-Molecule Fluorescence Imaging. Anal. Chem. 2019, 91, 10125–10131. [Google Scholar] [CrossRef]
- Picard, F.; Bruel, D.; Servent, D.; Saba, W.; Fruchart-Gaillard, C.; Schollhorn-Peyronneau, M.A.; Roumenov, D.; Brodtkorb, E.; Zuberi, S.; Gambardella, A.; et al. Alteration of the in vivo nicotinic receptor density in ADNFLE patients: A PET study. Brain 2006, 129, 2047–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noviello, C.M.; Gharpure, A.; Mukhtasimova, N.; Cabuco, R.; Baxter, L.; Borek, D.; Sine, S.M.; Hibbs, R.E. Structure and gating mechanism of the alpha7 nicotinic acetylcholine receptor. Cell 2021, 184, 2121–2134.e13. [Google Scholar] [CrossRef]
- Pear, W.S.; Nolan, G.P.; Scott, M.L.; Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 1993, 90, 8392–8396. [Google Scholar] [CrossRef] [Green Version]
- Sine, S.M. Molecular dissection of subunit interfaces in the acetylcholine receptor: Identification of residues that determine curare selectivity. Proc. Natl. Acad. Sci. USA 1993, 90, 9436–9440. [Google Scholar] [CrossRef]
Receptor-Type (Number of Patches) | Agonist, µM | Mean Open Time (ms) 95% CI) | Fold Change Relative to Wild Type | Mean Cluster Duration (ms) (95% CI) | Fold Change Relative to Wild Type | Statistical Difference between Wild Type and α4-Ser284Trp |
---|---|---|---|---|---|---|
(α4)3(β2)2 (n = 9) | ACh, 1 | 0.66 (0.63–0.68) | 4.8 | 1.31 (1.23–1.40) | 20.3 | Yes |
(α4S284W)3(β2)2 (n = 7) | ACh, 1 | 3.18 (3.01–3.35) | 26.6 (22.8–33.3) | |||
(α4)3(β2)2 (n = 14) | ACh, 10 | 0.75 (0.72–0.78) | 3.3 | 2.36 (2.18–2.54) | 28.1 | Yes |
(α4S284W)3(β2)2 (n = 5) | ACh, 10 | 2.48 (2.37–2.58) | 66.4 (50.1–82.7) | |||
(α4)2(β2)3 (n = 5) | ACh, 1 | 0.80 (0.76–0.84) | 2.2 | 1.35 (1.26–1.44) | 14.2 | Yes |
(α4S284W)2(β2)3 (n = 7) | ACh, 1 | 1.76 (1.68–1.83) | 19.2 (17.4–21.0) | |||
(α4)2(β2)3 (n = 5) | ACh, 10 | 0.77 (0.74–0.79) | 2.2 | 1.49 (1.40–1.59) | 13.5 | Yes |
(α4S284W)2(β2)3 (n = 7) | ACh, 10 | 1.66 (1.58–1.74) | 20.1 (18.1–23.1) | |||
(α4)3(β2)2 (n = 3) | Nicotine, 1 | 0.90 (0.87–0.93) | 4.9 | 1.65 (1.57–1.73) | 20.7 | Yes |
(α4S284W)3(β2)2 (n = 3) | Nicotine, 1 | 4.45 (4.21–4.68) | 34.3 (28.9–39.7) | |||
(α4)2(β2)3 (n = 3) | Nicotine, 1 | 1.17 (1.11–1.23) | 1.21 | 1.42 (1.34–1.50) | 3.4 | Yes |
(α4S284W)2(β2)3 (n = 3) | Nicotine, 1 | 1.41 (1.37–1.45) | 4.79 (4.50–5.08) |
Receptor-Type (Number of Patches) | Agonist, µM | Current Amplitude (pA) at −70 mV Mean (95% CI); N = Number of Openings | Statistical Difference between Wild Type and α4-Ser284Trp |
---|---|---|---|
(α4)3(β2)2 (n = 9) | ACh, 1 | 3.9 (3.9–4); N = 120 | Yes |
(α4S284W)3(β2)2 (n = 8) | ACh, 1 | 2.8 (2.8–2.9); N = 70 | |
(α4)3(β2)2 (n = 11) | ACh, 10 | 3.7 (3.7–3.8); N = 112 | Yes |
(α4S284W)3(β2)2 (n = 5) | ACh, 10 | 3.0 (3.0–3.1); N = 54 | |
(α4)2(β2)3 (n = 5) | ACh, 1 | 2.4 (2.36–2.46); N = 60 | Yes |
(α4S284W)2(β2)3 (n = 7) | ACh, 1 | 1.7 (1.66–1.72); N = 81 | |
(α4)2(β2)3 (n = 5) | ACh, 10 | 2.3 (2.24–2.37); N = 60 | Yes |
(α4S284W)2(β2)3 (n = 7) | ACh, 10 | 1.9 (1.86–1.95); N = 74 | |
(α4)3(β2)2 (n = 3) | Nicotine, 1 | 3.9 (3.82–3.94); N = 74 | Yes |
(α4S284W)3(β2)2 (n = 3) | Nicotine, 1 | 2.9 (2.94–3.02); N = 74 | |
(α4)2(β2)3 (n = 3) | Nicotine, 1 | 2.7 (2.63–2.7); N = 95 | Yes |
(α4S284W)2(β2)3(n = 3) | Nicotine, 1 | 1.9 (1.84–1.88); N = 94 |
Receptor-Type (Number of Patches) | [Nicotine] µM | Mean open Time (ms) (95% CI) | Statistical Difference between Nicotine Activated and Spontaneous | Fold Change for Nicotine Activated Relative to Spontaneous |
---|---|---|---|---|
(α4S284W)3(β2)2 (n = 3) | 0 | 1.54 (1.38–1.69) | Yes | 2.9 |
(α4S284W)3(β2)2 (n = 3) | 1 | 4.45 (4.21–4.68) | ||
(α4S284W)2(β2)3 (n = 3) | 0 | 0.78 (0.66–0.90) | Yes | 1.8 |
(α4S284W)2(β2)3 (n = 3) | 1 | 1.41 (1.37–1.45) |
Receptor-Type (Number of Patches) | [Nicotine] µM | Current Amplitude (pA) at −70 mV Mean (95% CI); N = Number of Openings | Statistical Difference between Spontaneous and Nicotine Activated |
---|---|---|---|
(α4S284W)3(β2)2 (n = 3) | 1 | 2.9 (2.94–3.02); N = 74 | No |
(α4S284W)3(β2)2 (n = 4) | 0 | 2.9 (2.87–3.02); N = 68 | |
(α4S284W)2(β2)3 (n = 3) | 1 | 1.9 (1.84–1.88); N = 94 | No |
(α4S284W)2(β2)3 (n = 5) | 0 | 1.8 (1.75–1.89); N = 42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzaferro, S.; Msekela, D.J.; Cooper, E.C.; Maheshwari, A.; Sine, S.M. Genetic Variant in Nicotinic Receptor α4-Subunit Causes Sleep-Related Hyperkinetic Epilepsy via Increased Channel Opening. Int. J. Mol. Sci. 2022, 23, 12124. https://doi.org/10.3390/ijms232012124
Mazzaferro S, Msekela DJ, Cooper EC, Maheshwari A, Sine SM. Genetic Variant in Nicotinic Receptor α4-Subunit Causes Sleep-Related Hyperkinetic Epilepsy via Increased Channel Opening. International Journal of Molecular Sciences. 2022; 23(20):12124. https://doi.org/10.3390/ijms232012124
Chicago/Turabian StyleMazzaferro, Simone, Deborah J. Msekela, Edward C. Cooper, Atul Maheshwari, and Steven M. Sine. 2022. "Genetic Variant in Nicotinic Receptor α4-Subunit Causes Sleep-Related Hyperkinetic Epilepsy via Increased Channel Opening" International Journal of Molecular Sciences 23, no. 20: 12124. https://doi.org/10.3390/ijms232012124
APA StyleMazzaferro, S., Msekela, D. J., Cooper, E. C., Maheshwari, A., & Sine, S. M. (2022). Genetic Variant in Nicotinic Receptor α4-Subunit Causes Sleep-Related Hyperkinetic Epilepsy via Increased Channel Opening. International Journal of Molecular Sciences, 23(20), 12124. https://doi.org/10.3390/ijms232012124