Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis
Abstract
:1. Introduction
2. Results
2.1. Feasibility of Targeting Embryonic Chick Progenitors Using the UbC-StarTrack Approach
2.2. Targeting Single Progenitors in the Chick Retina
2.3. Clonal Arrangements in the Retina after UbC-StarTrack Targeting
2.4. Lineage Specification of Retinal Progenitors
3. Discussion
3.1. Distribution of Cellular Progenies in Retina after Targeting Single Progenitors in the Ciliary Margin
3.2. Heterogeneity of Ciliary Margin Progenitors Using UbC-StarTrack
4. Materials and Methods
4.1. Animals
4.2. Plasmids
4.3. Neurospheres Transfection
4.4. In Ovo Electroporation (IOE)
4.5. Tissue Processing
4.6. Image Processing and Data Analyses
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moshiri, A.; Reh, T.A. Persistent progenitors at the retinal margin of ptc+/-mice. J. Neurosci. 2004, 24, 229–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hocking, P.M.; Guggenheim, J.A. The chick as an animal model of eye disease. In Drug Discovery Today: Disease Models; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Belecky-Adams, T.L.; Haynes, T.; Wilson, J.M.; del Rio-Tsonis, K. The Chick as a Model for Retina Development and Regeneration. Anim. Models Eye Res. 2008, 102, 119. [Google Scholar]
- Wisely, C.E.; Sayed, J.A.; Tamez, H.; Zelinka, C.; Abdel-Rahman, M.H.; Fischer, A.J.; Cebulla, C.M. The chick eye in vision research: An excellent model for the study of ocular disease. In Progress in Retinal and Eye Research; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Vergara, M.N.; Canto-Soler, M.V. Rediscovering the chick embryo as a model to study retinal development. Neural Dev. 2012, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinfeld, J.; Steinfeld, I.; Coronato, N.; Hampel, M.L.; Layer, P.G.; Araki, M.; Vogel-Höpker, A. RPE specification in the chick is mediated by surface ectoderm-derived BMP and Wnt signalling. Development 2013, 140, 4959–4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquardt, T.; Gruss, P. Generating neuronal diversity in the retina: One for nearly all. Trends Neurosci. 2022, 25, 32–38. [Google Scholar] [CrossRef]
- Heavner, W.; Pevny, L. Eye development and retinogenesis. Cold Spring Harb. Perspect. Biol. 2012, 4, a008391. [Google Scholar] [CrossRef] [Green Version]
- Young, R.W. Cell Differentiation in the Retina of the Mouse. Anat. Rec. 1985, 212, 199–205. [Google Scholar] [CrossRef]
- Alexiades, M.R.; Cepko, C. Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev. Dyn. 1996, 205, 293–307. [Google Scholar] [CrossRef]
- Fujita, S. Kinetics of cellular proliferation. Exp. Cell Res. 1962, 28, 52–60. [Google Scholar] [CrossRef]
- Gloor, B.P.; Rokos, L.; Kaldarar-Pedotti, S. Cell cycle time and life-span of cells in the mouse eye. Measurements during the postfetal period using repeated 3H-thymidine injections. Dev. Ophthalmol. 1985, 12, 70–129. [Google Scholar]
- Li, Z.; Hu, M.; Ochocinska, M.J.; Joseph, N.M.; Easter, S.S., Jr. Modulation of cell proliferation in the embryonic retina of zebrafish (Danio rerio). Dev. Dyn. 2000, 219, 391–401. [Google Scholar] [CrossRef]
- Cayouette, M.; Raff, M. The orientation of cell division influences cell-fate choice in the developing mammalian retina. Development 2003, 130, 2329–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godinho, L.; Williams, P.R.; Claassen, Y.; Provost, E.; Leach, S.D.; Kamermans, M.; Wong, R.O.L. Nonapical Symmetric Divisions Underlie Horizontal Cell Layer Formation in the Developing Retina In Vivo. Neuron 2007, 56, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Rapaport, D.H.; Stone, J. The topography of cytogenesis in the developing retina of the cat. J. Neurosci. 1983, 3, 1824–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibber, M.S.; Kralj-Hans, I.; Savage, J.; Mobbs, P.G.; Jeffery, G. The orientation and dynamics of cell division within the plane of the developing vertebrate retina. Eur. J. Neurosci. 2004, 19, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Amini, R.; Labudina, A.A.; Norden, C. Stochastic single cell migration leads to robust horizontal cell layer formation in the vertebrate retina. Development 2019, 146, 561449. [Google Scholar] [CrossRef] [Green Version]
- Amini, R.; Rocha-Martins, M.; Norden, C. Neuronal migration and lamination in the vertebrate retina. Front. Neurosci. 2018, 11, 742. [Google Scholar] [CrossRef]
- Doh, S.T.; Hao, H.; Loh, S.C.; Patel, T.; Tawil, H.Y.; Chen, D.K.; Cai, L. Analysis of retinal cell development in chick embryo by immunohistochemistry and in ovo electroporation techniques. BMC Dev. Biol. 2010, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Morrow, E.M.; Chen, C.M.A.; Cepko, C.L. Temporal order of bipolar cell genesis in the neural retina. Neural Dev. 2008, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Prada, C.; Puga, J.; Pérez-Méndez, L.; López, R.; Ramírez, G. Spatial and temporal patterns of neurogenesis in the chick retina. Eur. J. Neurosci. 1991, 3, 559–569. [Google Scholar] [CrossRef]
- Masland, R.H. The Neuronal Organization of the Retina. Neuron 2012, 76, 266–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen-Ba-Charvet, K.T.; Rebsam, A. Neurogenesis and specification of retinal ganglion cells. Int. J. Mol. Sci. 2020, 21, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, M.; Yan, W.; Sanes, J.R. A cell atlas of the chick retina based on single-cell transcriptomics. eLife 2021, 10, e63907. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Nogales, M.; Murcia-Belmonte, V.; Chen, H.Y.; Herrera, E. The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog. Retin. Eye Res. 2019, 68, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.J.; Bosse, J.L.; El-Hodiri, H.M. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp. Eye Res. 2013, 116, 199–204. [Google Scholar] [CrossRef]
- Ghai, K.; Stanke, J.J.; Fischer, A.J. Patterning of the circumferential marginal zone of progenitors in the chicken retina. Brain Res. 2008, 1192, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Layer, P.G.; Willbold, E. Embryonic chicken retinal cells can regenerate all cell layers in vitro, but ciliary pigmented cells induce their correct polarity. Cell Tissue Res. 1989, 258, 233–242. [Google Scholar] [CrossRef]
- Willbold, E.; Layer, P.G. A Hidden Retinal Regenerative Capacity from the C Ciliary Margin is Reactivated In Vitro, that is Accompanied by Down-regulation of Butyrylcholinesterase. Eur. J. Neurosci. 1992, 4, 210–220. [Google Scholar] [CrossRef]
- Venters, S.J.; Cuenca, P.D.; Hyer, J. Retinal and anterior eye compartments derive from a common progenitor pool in the avian optic cup. Mol. Vis. 2011, 17, 3347–3363. [Google Scholar]
- Tsonis, P.A.; del Rio-Tsonis, K.; Hoffmann, A.; Lightcap, N.; Judge, C.; Barbosa-Sabanero, K. Lens and retina regeneration: New perspectives from model organisms. Biochem. J. 2012, 447, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Willbold, E.; Mansky, P.; Layer, P.G. Lateral and radial growth uncoupled in reaggregated retinospheroids of embryonic avian retina. Int. J. Dev. Biol. 1996, 40, 1151–1159. [Google Scholar] [PubMed]
- Layer, P.G.; Willbold, E. Regeneration of the avian retina by retinospheroid technology. Prog. Retin. Eye Res. 1994, 13, 197–230. [Google Scholar] [CrossRef]
- Fischer, A.J.; Reh, T.A. Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev. Biol. 2000, 220, 197–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echeverri-Ruiz, N.; Haynes, T.; Landers, J.; Woods, J.; Gemma, M.J.; Hughes, M.; del Rio-Tsonis, K. A biochemical basis for induction of retina regeneration by antioxidants. Dev. Biol. 2018, 433, 394. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.R.; Madhavan, M.; Ewing, J.D.; Jones, D.K.; Lehman, B.M.; del Rio-Tsonis, K. The hedgehog pathway is a modulator of retina regeneration. Development 2004, 131, 4607–4621. [Google Scholar] [CrossRef] [Green Version]
- Spence, J.R.; Gutierrez, C.; del Rio-Tsonis, K. Retina regeneration in the embryonic chick. Strateg. Retin. Tissue Repair Regen. Vertebr. Fish Hum. 2007, 661, 97–112. [Google Scholar]
- Coulombre, J.L.; Coulombre, A.J. Influence of Mouse Neural Retina on Regeneration of Chick Neural Retina from Chick Embryonic Pigmented Epithelium. Nature 1970, 228, 559–560. [Google Scholar] [CrossRef]
- Wetts, R.; Fraser, S.E. Multipotent precursors can give rise to all major cell types of the frog retina. Science 1988, 239, 1142–1145. [Google Scholar] [CrossRef]
- Trimarchi, J.M.; Stadler, M.B.; Cepko, C.L. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS ONE 2008, 3, e1588. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.C.; Bleckert, A.; Williams, P.R.; Takechi, M.; Kawamura, S.; Wong, R.O.L. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. Proc. Natl. Acad. Sci. USA 2013, 110, 15109–15114. [Google Scholar] [CrossRef] [Green Version]
- Fekete, D.M.; Perez-Miguelsanz, J.; Ryder, E.F.; Cepko, C.L. Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. Dev. Biol. 1994, 166, 666–682. [Google Scholar] [CrossRef] [PubMed]
- Holt, C.E.; Bertsch, T.W.; Ellis, H.M.; Harris, W.A. Cellular determination in the xenopus retina is independent of lineage and birth date. Neuron 1988, 1, 15–26. [Google Scholar] [CrossRef]
- Turner, D.L.; Snyder, E.Y.; Cepko, C.L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 1990, 4, 833–845. [Google Scholar] [CrossRef]
- Buenaventura, D.F.; Ghinia-Tegla, M.G.; Emerson, M.M. Fate-restricted retinal progenitor cells adopt a molecular profile and spatial position distinct from multipotent progenitor cells. Dev. Biol. 2018, 443, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Kumamoto, T.; Maurinot, F.; Barry-Martinet, R.; Vaslin, C.; Vandormael-Pournin, S.; Le, M.; Livet, J. Direct Readout of Neural Stem Cell Transgenesis with an Integration-Coupled Gene Expression Switch. Neuron 2020, 107, 617–630.e6. [Google Scholar] [CrossRef]
- Patoori, S.; Jean-Charles, N.; Gopal, A.; Sulaiman, S.; Gopal, S.; Wang, B.; Emerson, M.M. Cis-regulatory analysis of Onecut1 expression in fate-restricted retinal progenitor cells. Neural Dev. 2020, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Tegla, M.G.G.; Buenaventura, D.F.; Kim, D.Y.; Thakurdin, C.; Gonzalez, K.C.; Emerson, M.M. OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification. eLife 2020, 9, e54279. [Google Scholar] [CrossRef]
- Chen, F.; LoTurco, J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J. Neurosci. Methods 2012, 207, 172–180. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, G.; Almeida, A.D.; Cayouette, M.; Simons, B.D.; Harris, W.A. How Variable Clones Build an Invariant Retina. Neuron 2012, 75, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Cepko, C. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 2014, 15, 615–627. [Google Scholar] [CrossRef]
- De la Huerta, I.; Kim, I.J.; Voinescu, P.E.; Sanes, J.R. Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. Proc. Natl. Acad. Sci. USA 2012, 109, 17663–17668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edqvist, P.H.D.; Myers, S.M.; Hallb, Ã. Early identification of retinal subtypes in the developing, pre-laminated chick retina using the transcription factors Prox1, Lim1, Ap2a, Pax6, Isl1, Isl2, Lim3 and Chx10. Eur. J. Histochem. 2006, 50, 147–154. [Google Scholar] [PubMed]
- Santos-França, P.L.; David, L.A.; Kassem, F.; Meng, X.Q.; Cayouette, M. Time to see: How temporal identity factors specify the developing mammalian retina. In Seminars in Cell & Developmental Biology; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Cepko, C.L.; Austin, C.P.; Yang, X.; Alexiades, M.; Ezzedine, D. Cell Fate Determination in the Vertebrate Retina. Proc. Natl. Acad. Sci. USA 1996, 93, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Moreno, F.; Vasistha, N.A.; Begbie, J.; Molnár, Z. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 2014, 141, 1589–1598. [Google Scholar] [CrossRef] [Green Version]
- Figueres-Oñate, M.; García-Marqués, J.; López-Mascaraque, L. UbC-StarTrack, a clonal method to target the entire progeny of individual progenitors. Sci. Rep. 2016, 6, 33896. [Google Scholar] [CrossRef]
- Cerrato, V.; Parmigiani, E.; Figueres-Oñate, M.; Betizeau, M.; Aprato, J.; Nanavaty, I.; Buffo, A. Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biol. 2019, 16, e2005513. [Google Scholar] [CrossRef]
- Figueres-Oñate, M.; Sánchez-Villalón, M.; Sánchez-González, R.; López-Mascaraque, L. Lineage Tracing and Cell Potential of Postnatal Single Progenitor Cells In Vivo. Stem Cell Rep. 2019, 13, 700–712. [Google Scholar] [CrossRef]
- Herrero-Navarro, Á.; Puche-Aroca, L.; Moreno-Juan, V.; Sempere-Ferràndez, A.; Espinosa, A.; Susín, R.; López-Bendito, G. Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Sci. Adv. 2021, 7, eabe8978. [Google Scholar] [CrossRef]
- Redmond, S.A.; Figueres-Oñate, M.; Obernier, K.; Nascimento, M.A.; Parraguez, J.I.; López-Mascaraque, L.; Alvarez-Buylla, A. Development of Ependymal and Postnatal Neural Stem Cells and Their Origin from a Common Embryonic Progenitor. Cell Rep. 2019, 27, 429–441.e3. [Google Scholar] [CrossRef] [Green Version]
- Ojalvo-Sanz, A.C.; López-Mascaraque, L. Gliogenic potential of single pallial radial glial cells in lower cortical layers. Cells 2021, 10, 3237. [Google Scholar] [CrossRef]
- López-Mascaraque, L.; Sánchez-González, R. Lineage Relationships Between Subpallial Progenitors and Glial Cells in the Piriform Cortex. Front. Neurosci. 2022, 103, 825969. [Google Scholar] [CrossRef]
- Martín-Pardillos, A.; Valls Chiva, Á.; Bande Vargas, G.; Hurtado Blanco, P.; Piñeiro Cid, R.; Guijarro, P.J.; Hümmer, S.; Bejar Serrano, E.; Rodriguez-Casanova, A.; Diaz-Lagares, Á.; et al. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer 2019, 19, 666. [Google Scholar] [CrossRef] [PubMed]
- García-Marqués, J.; López-Mascaraque, L. Clonal Identity Determines Astrocyte Cortical Heterogeneity. Cereb. Cortex 2012, 23, 1463–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueres-Oñate, M.; García-Marqués, J.; Pedraza, M.; de Carlos, J.A.; López-Mascaraque, L. Spatiotemporal analyses of neural lineages after embryonic and postnatal progenitor targeting combining different reporters. Front. Neurosci. 2015, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Kasai, T.; Nakagawa, S.; Tanabe, K.; Watanabe, T.; Kawakami, K.; Takahashi, Y. Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev. Biol. 2007, 305, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Lin, C.; Wang, X. PiggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res. 2009, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Glover, J.D.; Taylor, L.; Sherman, A.; Zeiger-Poli, C.; Sang, H.M.; McGrew, M.J. A novel piggybac transposon inducible expression system identifies a role for Akt signalling in primordial germ cell migration. PLoS ONE 2013, 8, e77222. [Google Scholar] [CrossRef] [Green Version]
- Woltjen, K.; Michael, I.P.; Mohseni, P.; Desai, R.; Mileikovsky, M.; Hämäläinen, R.; Nagy, A. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009, 458, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Shiau, F.; Ruzycki, P.A.; Clark, B.S. A single-cell guide to retinal development: Cell fate decisions of multipotent retinal progenitors in scRNA-seq. Dev. Biol. 2021, 478, 41–58. [Google Scholar] [CrossRef]
- Cajal, S.R.Y. La retine des vertebres. Cellule 1983, 9, 119–255. [Google Scholar]
- Willbold, E.; Reinicke, M.; Lance-Jones, C.; Lagenaur, C.; Lemmon, V.; Layer, P.G. Müller Glia Stabilizes Cell Columns During Retinal Development: Lateral Cell Migration but not Neuropil Growth is Inhibited in Mixed Chick-Quail Retinospheroids. Eur. J. Neurosci. 1995, 7, 2277–2284. [Google Scholar] [CrossRef] [PubMed]
- Reese, B.E.; Harvey, A.R.; Tan, S.S. Radial and tangential dispersion patterns in the mouse retina are cell-class specific. Proc. Natl. Acad. Sci. USA 1995, 92, 2494–2498. [Google Scholar] [CrossRef] [PubMed]
- Jean-Charles, N.; Buenaventura, D.F.; Emerson, M.M. Identification and characterization of early photoreceptor cis-regulatory elements and their relation to Onecut1. Neural Dev. 2018, 13, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schick, E.; McCaffery, S.D.; Keblish, E.E.; Thakurdin, C.; Emerson, M.M. Lineage tracing analysis of cone photoreceptor associated cis-regulatory elements in the developing chicken retina. Sci. Rep. 2019, 9, 9358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, F.L.A.F.; Zhang, G.; Carbonell, F.; Correa, J.A.; Harris, W.A.; Simons, B.D.; Cayouette, M. Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 2011, 138, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1951, 88, 49–92. [Google Scholar] [CrossRef]
- Bellairs, R.; Osmond, M. The Atlas of Chick Development; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Fiore, L.; Olmos-Carreño, C.L.; Medori, M.; Spelzini, G.; Sanchez, V.; Scicolone, G. Neurospheres obtained from the ciliary margin of the chicken eye possess positional values and retinal ganglion cells differentiated from them respond to EphA/ephrin-A system. Exp. Eye Res. 2022, 217, 108965. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmos-Carreño, C.L.; Figueres-Oñate, M.; Scicolone, G.E.; López-Mascaraque, L. Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis. Int. J. Mol. Sci. 2022, 23, 12388. https://doi.org/10.3390/ijms232012388
Olmos-Carreño CL, Figueres-Oñate M, Scicolone GE, López-Mascaraque L. Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis. International Journal of Molecular Sciences. 2022; 23(20):12388. https://doi.org/10.3390/ijms232012388
Chicago/Turabian StyleOlmos-Carreño, Cindy L., María Figueres-Oñate, Gabriel E. Scicolone, and Laura López-Mascaraque. 2022. "Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis" International Journal of Molecular Sciences 23, no. 20: 12388. https://doi.org/10.3390/ijms232012388
APA StyleOlmos-Carreño, C. L., Figueres-Oñate, M., Scicolone, G. E., & López-Mascaraque, L. (2022). Cell Fate of Retinal Progenitor Cells: In Ovo UbC-StarTrack Analysis. International Journal of Molecular Sciences, 23(20), 12388. https://doi.org/10.3390/ijms232012388