Microbiota and Serum Metabolic Profile Changes in Korean Native Hanwoo Steer in Response to Diet Feeding Systems
Abstract
:1. Introduction
2. Results
2.1. Physiological and Metabolic Testing of Hanwoo Steer
2.2. Fecal 16S rRNA Gene Sequencing Report
2.3. Sequencing Depth, Coverage, and Alpha Diversity Metrics
2.4. PCA Analyses of Grazing- and Housing-Related Fecal Microbiota Shifts
2.5. Overall Fecal Microbiota Compositions of the Hanwoo Steers
3. Discussion
4. Material and Methods
4.1. Pasture and Grassland Management
4.2. Animals and Feeding Systems
4.3. Fecal Sample Collection and Nutrient Analysis of Forages
4.4. Blood Sampling and Metabolic Profile Test
4.5. Genomic DNA Extraction
4.6. Library Construction and Sequencing
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Xu, K.; Liu, H.; Liu, G.; Bai, M.; Peng, C.; Li, T.; Yin, Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, V.; Ditu, L.M.; Pircalabioru, G.G.; Gheorghe, I.; Curutiu, C.; Holban, A.M.; Picu, A.; Petcu, L.; Chifiriuc, M.C. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front. Immunol. 2018, 9, 1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Dumont, B.; Ryschawy, J.; Duru, M.; Benoit, M.; Chatellier, V.; Delaby, L.; Donnars, C.; Dupraz, P.; Lemauviel-Lavenant, S.; Méda, B.; et al. Review: Associations among goods, impacts and ecosystem services provided by livestock farming. Animal 2018, 13, 1773–1784. [Google Scholar] [CrossRef] [Green Version]
- Rivero, M.J.; Lee, M. A perspective on animal welfare of grazing ruminants and its relationship with sustainability. Anim. Prod. Sci. 2022. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F.; Rivero, M.J.; Chamberlain, A.T. Some challenges and opportunities for grazing dairy cows on temperate pastures. Grass Forage Sci. 2020, 75, 1–17. [Google Scholar] [CrossRef]
- Smid, A.C.; Weary, D.M.; von Keyserlingk, M.A.G. The Influence of Different Types of Outdoor Access on Dairy Cattle Behavior. Front. Vet. Sci. 2020, 7, 257. [Google Scholar] [CrossRef]
- Mullan, S.; Bunglavan, S.J.; Rowe, E.; Barrett, D.C.; Lee, M.R.F.; Ananth, D.; Tarlton, J. Welfare Challenges of Dairy Cows in India Identified Through On-Farm Observations. Animals 2020, 10, 586. [Google Scholar] [CrossRef] [Green Version]
- Haga, S.; Nakano, M.; Nakao, S.; Hirano, K.; Yamamoto, Y.; Sasaki, H.; Ishizaki, H. Seasonal foraging patterns of forest-grazing Japanese Black heifers with increased plasma total antioxidant capacity. Anim. Sci. J. 2016, 87, 209–216. [Google Scholar] [CrossRef]
- Nakajima, N.; Yayota, M. Grazing and cattle health: A nutritional, physiological, and immunological status perspective. Anim. Behav. Manag. 2019, 55, 143–153. [Google Scholar] [CrossRef]
- Prache, S.; Martin, B.; Coppa, M. Review: Authentication of grass-fed meat and dairy products from cattle and sheep. Animal 2020, 14, 854–863. [Google Scholar] [CrossRef] [Green Version]
- Manzi, P.; Durazzo, A. Organic vs. Conventional Milk: Some Considerations on Fat-Soluble Vitamins and Iodine Content. Beverages 2017, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef] [Green Version]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.; Ding, L.; Din, A.U.; Hassan, F.-U.; Ahmad, A.A.; Wei, H.; Wang, X.; Yan, Q.; Ishaq, M.; Ali, N.; et al. Differential Effects of Natural Grazing and Feedlot Feeding on Yak Fecal Microbiota. Front. Vet. Sci. 2022, 9, 791245. [Google Scholar] [CrossRef]
- Mote, R.S.; Hill, N.S.; Skarlupka, J.H.; Turner, Z.B.; Sanders, Z.P.; Jones, D.P.; Suen, G.; Filipov, N.M. Response of Beef Cattle Fecal Microbiota to Grazing on Toxic Tall Fescue. Appl. Environ. Microbiol. 2019, 85, e00032-19. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Feng, X.-Z.; Shi, C.-W.; Zhang, D.; Chen, H.-L.; Huang, H.-B.; Jiang, Y.-L.; Wang, J.-Z.; Cao, X.; Wang, N.; et al. Gut Bacterial Composition and Functional Potential of Tibetan Pigs Under Semi-Grazing. Front. Microbiol. 2022, 13, 850687. [Google Scholar] [CrossRef]
- Shanks, O.C.; Kelty, C.A.; Archibeque, S.; Jenkins, M.; Newton, R.J.; McLellan, S.L.; Huse, S.M.; Sogin, M.L. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl. Environ. Microbiol. 2011, 77, 2992–3001. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef]
- Yost, W.M.; Young, J.W.; Schmidt, S.P.; McGilliard, A.D. Gluconeogenesis in ruminants: Propionic acid production from a high-grain diet fed to cattle. J. Nutr. 1977, 107, 2036–2043. [Google Scholar] [CrossRef]
- Rhoades, R.D.; Sawyer, J.E.; Chung, K.Y.; Schell, M.L.; Lunt, D.K.; Smith, S.B. Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers. J. Anim. Sci. 2007, 85, 1719–1726. [Google Scholar] [CrossRef]
- Beever, D.E. The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance. Anim. Reprod. Sci. 2006, 96, 212–226. [Google Scholar] [CrossRef]
- Douglas, G.N.; Overton, T.R.; Bateman, H.G.; Dann, H.M.; Drackley, J.K. Prepartal Plane of Nutrition, Regardless of Dietary Energy Source, Affects Periparturient Metabolism and Dry Matter Intake in Holstein Cows1. J. Dairy Sci. 2006, 89, 2141–2157. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, D.L.; Miranda-de la Lama, G.C.; Villarroel, M.; Garcia-Belenguer, S.; Sañudo, C.; Maria, G.A. Effect of straw on lamb welfare, production performance and meat quality during the finishing phase of fattening. Meat Sci. 2012, 92, 829–836. [Google Scholar] [CrossRef]
- Samra, J.S.; Clark, M.L.; Humphreys, S.M.; MacDonald, I.A.; Bannister, P.A.; Frayn, K.N. Effects of physiological hypercortisolemia on the regulation of lipolysis in subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 1998, 83, 626–631. [Google Scholar] [CrossRef]
- Belanche, A.; Doreau, M.; Edwards, J.E.; Moorby, J.M.; Pinloche, E.; Newbold, C.J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 2012, 142, 1684–1692. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, K.A.; Kittelmann, S.; Rogers, C.W.; Gee, E.K.; Bolwell, C.F.; Bermingham, E.N.; Thomas, D.G. Faecal Microbiota of Forage-Fed Horses in New Zealand and the Population Dynamics of Microbial Communities following Dietary Change. PLoS ONE 2014, 9, e112846. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Wang, J.K.; Wu, Y.M.; Liu, J.X. Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid- and solid-associated ruminal microbes in vitro. Anim. Feed Sci. Technol. 2008, 141, 1–14. [Google Scholar] [CrossRef]
- Latham, E.A.; Weldon, K.K.; Wickersham, T.A.; Coverdale, J.A.; Pinchak, W.E. Responses in the rumen microbiome of Bos taurus and indicus steers fed a low-quality rice straw diet and supplemented protein. J. Anim. Sci. 2018, 96, 1032–1044. [Google Scholar] [CrossRef]
- Jensen, K.B.; Harrison, P.; Chatterton, N.J.; Bushman, B.S.; Creech, J.E. Seasonal Trends in Nonstructural Carbohydrates in Cool- and Warm-season Grasses. Crop Sci. 2014, 54, 2328–2340. [Google Scholar] [CrossRef]
- Jami, E.; White, B.A.; Mizrahi, I. Potential Role of the Bovine Rumen Microbiome in Modulating Milk Composition and Feed Efficiency. PLoS ONE 2014, 9, e85423. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, L.; He, Y.; Luo, X.; Zhao, S.; Jia, X. Composition of Fecal Microbiota in Grazing and Feedlot Angus Beef Cattle. Animals 2021, 11, 3167. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Abecia, L.; Angarita, E.; Aravena, P.; Nora Arenas, G.; Ariza, C.; et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 14567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, K.; Wang, Z.; Bai, X.; Peng, Q.; Jin, L. Bacterial Community Diversity Associated With Different Utilization Efficiencies of Nitrogen in the Gastrointestinal Tract of Goats. Front. Microbiol. 2019, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Vitorino, F.; Goldfarb, K.C.; Karaoz, U.; Leal, S.; Garcia-Amado, M.A.; Hugenholtz, P.; Tringe, S.G.; Brodie, E.L.; Dominguez-Bello, M.G. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J. 2012, 6, 531–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziemer, C.J. Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl. Environ. Microbiol. 2014, 80, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Stewart, R.D.; Auffret, M.D.; Warr, A.; Wiser, A.H.; Press, M.O.; Langford, K.W.; Liachko, I.; Snelling, T.J.; Dewhurst, R.J.; Walker, A.W.; et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 2018, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, M.; Xue, C.; Zhu, W.; Mao, S. Characterization and comparison of the temporal dynamics of ruminal bacterial microbiota colonizing rice straw and alfalfa hay within ruminants. J. Dairy Sci. 2016, 99, 9668–9681. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Z.; Yu, Z.; Zhu, W. Monensin and Nisin Affect Rumen Fermentation and Microbiota Differently In Vitro. Front. Microbiol. 2017, 8, 1111. [Google Scholar] [CrossRef] [Green Version]
- Morotomi, M.; Nagai, F.; Sakon, H.; Tanaka, R. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family ’Prevotellaceae’ isolated from human faeces. Int. J. Syst. Evol. Microbiol. 2009, 59, 1895–1900. [Google Scholar] [CrossRef]
- Li, R.W.; Connor, E.E.; Li, C.; Vi, R.L.B.; Sparks, M.E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 2012, 14, 129–139. [Google Scholar] [CrossRef]
- Kim, H.B.; Borewicz, K.; White, B.A.; Singer, R.S.; Sreevatsan, S.; Tu, Z.J.; Isaacson, R.E. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 2011, 153, 124–133. [Google Scholar] [CrossRef]
- Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, W.; Zhu, W.; Liu, J.; Mao, S. Effect of dietary forage sources on rumen microbiota, rumen fermentation and biogenic amines in dairy cows. J. Sci. Food Agric. 2014, 94, 1886–1895. [Google Scholar] [CrossRef]
- Wexler, H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, N.B.; Anderson, K.L.; Smithson, S.L.; Wang, G.R.; Salyers, A.A. Conjugal transfer of a shuttle vector from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella (Bacteroides) ruminicola B(1)4. Appl. Environ. Microbiol. 1991, 57, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Rismani-Yazdi, H.; Carver, S.M.; Christy, A.D.; Yu, Z.; Bibby, K.; Peccia, J.; Tuovinen, O.H. Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population. Bioresour. Technol. 2013, 129, 281–288. [Google Scholar] [CrossRef]
- Naas, A.E.; Mackenzie, A.K.; Mravec, J.; Schückel, J.; Willats, W.G.T.; Eijsink, V.G.H.; Pope, P.B. Do Rumen Bacteroidetes Utilize an Alternative Mechanism for Cellulose Degradation? mBio 2014, 5, e01401–e01414. [Google Scholar] [CrossRef]
- Hopkins, M.J.; Englyst, H.N.; Macfarlane, S.; Furrie, E.; Macfarlane, G.T.; McBain, A.J. Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. Appl. Environ. Microbiol. 2003, 69, 6354–6360. [Google Scholar] [CrossRef] [Green Version]
- Shah, H.N.; Collins, M.D. Proposal To Restrict the Genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and Closely Related Species. Int. J. Syst. Evol. Microbiol. 1989, 39, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Osborne, J.M.; Dehority, B.A. Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria. Appl. Environ. Microbiol. 1989, 55, 2247–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, R.J.; McKain, N.; Broderick, G.A.; Rode, L.M.; Walker, N.D.; Newbold, C.J.; Kopecny, J. Peptidases of the rumen bacterium, Prevotella ruminicola. Anaerobe 1997, 3, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Gulino, L.-M.; Ouwerkerk, D.; Kang, A.Y.H.; Maguire, A.J.; Kienzle, M.; Klieve, A.V. Shedding Light on the Microbial Community of the Macropod Foregut Using 454-Amplicon Pyrosequencing. PLoS ONE 2013, 8, e61463. [Google Scholar] [CrossRef] [PubMed]
- Bekele, A.Z.; Koike, S.; Kobayashi, Y. Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. FEMS Microbiol. Lett. 2011, 316, 51–60. [Google Scholar] [CrossRef]
Parameters | Groups | 1M | 3M | 5M | 7M |
---|---|---|---|---|---|
ALB (g/dL) | GS | 5.10 ± 1.19 | 5.03 ± 0.82 * | 5.93 ± 1.38 | 5.13 ± 0.33 |
HS | 5.23 ± 1.16 | 6.97 ± 0.17 | 6.57 ± 0.94 | 5.90 ± 0.54 | |
CA (mg/dL) | GS | 7.87 ± 2.12 | 7.57 ± 1.35 * | 9.63 ± 2.52 | 7.20 ± 0.86 |
HS | 8.13 ± 2.37 | 11.7 ± 0.26 | 10.80 ± 1.55 | 9.43 ± 0.97 | |
CK (mg/dL) | GS | 138.0 ± 19.1 | 129.3 ± 27.8 | 174.6 ± 42.2 | 128.0 ± 14.9 |
HS | 189 3 ± 39.7 | 140.6 ± 20.9 | 182.3 ± 44.0 | 108.6 ± 4.50 | |
CRE (mg/dL) | GS | 0.03 ± 0.05 | 0.03 ± 0.05 | 0.00 ± 0.00 | 0.10 ± 0.08 |
HS | 0.03 ± 0.05 | 0.00 ± 0.00 | 0.07 ± 0.05 | 0.00 ± 0.00 | |
γGTP (IU/L) | GS | 20.33 ± 2.05 | 13.67 ± 0.47 * | 24.0 ± 3.27 * | 7.67 ± 3.86 * |
HS | 27.33 ± 9.46 | 24.67 ± 1.70 | 32.33 ± 2.62 | 22.33 ± 2.62 | |
GLU (mg/dL) | GS | 100.6 ± 22.6 | 89.00 ± 10.2 * | 96.67 ± 18.3 * | 85.67 ± 5.56 * |
HS | 95.67 ± 25.0 | 114.0 ± 3.74 | 111.6 ± 4.19 | 108.0 ± 3.56 | |
SGOT (IU/L) | GS | 70.67 ± 17.7 | 83.00 ± 1.41 * | 101.0 ± 21.7 | 101.6 ± 27.0 |
HS | 103.3 ± 17.7 | 124. 6 ± 12.3 | 148.0 ± 46.1 | 83.33 ± 4.11 | |
SGPT(IU/L) | GS | 24.6 ± 5.46 | 23.6 ± 4.99 | 28.3 ± 7.72 | 26.33 ± 2.49 |
HS | 24.6 ± 5.44 | 31.0 ± 3.27 | 39.33 ± 2.05 | 30.67 ± 4.64 | |
LDH(IU/L) | GS | 1139 ± 232 | 1101 ± 243 * | 1373 ± 180 * | 1385 ± 76.11 |
HS | 1193 ± 368 | 1566 ±179 | 1831 ±70.29 | 1313 ± 103.1 | |
Mg (mg/dL) | GS | 25.3 ± 0.49 | 2.23 ± 0.41 * | 25.3 ± 0.45 | 2.20 ± 0.16 * |
HS | 2.47 ± 0.54 | 3.07 ± 0.12 | 3.10 ± 0.41 | 2.87 ± 0.25 | |
p (mg/dL) | GS | 11.0 ± 3.00 | 11.2 ± 1.02 * | 12.3 ± 2.56 | 8.47 ± 0.62 |
HS | 11.2 ± 2.43 | 14.8 ± 1.25 | 13.17 ±1.26 | 11.90 ± 1.77 | |
T-Bil (mg/dL) | GS | 0.07 ± 0.05 | 0.07 ± 0.02 | 0.14 ± 0.07 | 0.22 ± 0.07 |
HS | 0.08 ± 0.04 | 0.08 ± 0.02 | 0.08 ± 0.06 | 0.14 ± 0.13 | |
T-Cho(mg/dL) | GS | 147.0 ± 52.4 | 119.3 ± 6.24 * | 94.3 ± 10.8 * | 130.0 ± 13.7 * |
HS | 133.3 ± 29.3 | 164.3 ± 8.34 | 187.6 ± 29.2 | 188.6 ± 22.8 | |
T-Pro(g/dL) | GS | 1.53 ± 0.45 | 1.53 ± 0.26 | 1.67 ± 0.33 | 1.80 ± 0.08 |
HS | 1.43 ± 0.31 | 2.10 ± 0.00 | 2.00 ± 0.28 | 1.87 ± 0.17 | |
TG (mg/dL) | GS | 13.6 ± 5.91 | 12.3 ± 0.47 * | 26.0 ± 2.16 * | 16.33 ± 4.92 * |
HS | 10.3 ± 1.89 | 22.3 ± 8.99 | 44.0 ± 2.16 | 37.33 ± 3.86 | |
BUN (mg/dL) | GS | 10.7 ± 2.13 | 12.3 ± 3.03 | 18.1 ± 3.25 | 15.60 ± 1.95 |
HS | 13.3 ± 4.01 | 14.7 ± 1.24 | 14.3 ± 2.73 | 12.03 ± 1.47 | |
NEFA(μEq/L) | GS | 132.6 ± 48.6 | 139.3 ± 47.2 | 201 ± 97.1 * | 36.0 ± 19.1 * |
HS | 229.0 ± 19.6 | 287.0 ± 28.0 | 257.3 ± 67.0 | 112.0 ± 23.2 |
S. No | Family | Grazing | Housing | STD | p-Values |
---|---|---|---|---|---|
1 | Sphingobacteriaceae | 13.1 | 18.4 | 2.56 | 0.009 |
2 | Flavobacteriaceae | 0.78 | 1.31 | 0.76 | 0.360 |
3 | Non-classified | 6.86 | 6.65 | 1.27 | 0.422 |
4 | Bacteroidaceae | 12.9 | 17.9 | 1.85 | 0.002 |
5 | Porphyromonadaceae | 2.25 | 1.57 | 0.87 | 0.250 |
6 | Prevotellaceae | 3.93 | 6.19 | 2.70 | 0.280 |
7 | Rikenellaceae | 4.60 | 6.20 | 1.47 | 0.140 |
8 | Streptococcaceae | 0.02 | 0.03 | 0.02 | 0.530 |
9 | Christensenellaceae | 0.12 | 0.11 | 0.05 | 0.940 |
10 | Clostridiaceae | 1.02 | 0.68 | 0.26 | 0.090 |
11 | Clostridiales Family | 1.11 | 0.89 | 0.39 | 0.480 |
12 | Clostridiales Family III. | 0.55 | 0.49 | 0.18 | 0.630 |
13 | Eubacteriaceae | 0.96 | 0.84 | 0.27 | 0.500 |
14 | Lachnospiraceae | 5.11 | 4.28 | 0.62 | 0.050 |
15 | Oscillospiraceae | 1.32 | 1.86 | 0.61 | 0.200 |
16 | Peptostreptococcaceae | 0.87 | 0.40 | 0.31 | 0.043 |
17 | Ruminococcaceae | 20.9 | 16.9 | 1.55 | 0.002 |
18 | Acidaminococcaceae | 0.33 | 0.20 | 0.17 | 0.274 |
19 | Selenomonadaceae | 0.14 | 0.09 | 0.06 | 0.330 |
20 | Kiloniellaceae | 0.00 | 0.04 | 0.02 | 0.050 |
21 | Rhodospirillaceae | 0.06 | 0.37 | 0.22 | 0.110 |
22 | Desulfovibrionaceae | 0.02 | 0.08 | 0.05 | 0.160 |
23 | Enterobacteriaceae | 0.04 | 0.13 | 0.10 | 0.310 |
24 | Succinivibrionaceae | 0.09 | 0.52 | 0.37 | 0.220 |
Genus | Grazing | Housing | STD | p-Values |
---|---|---|---|---|
Parapedobacter | 13.96 | 17.55 | 2.44 | 0.044 |
Bacteroides | 12.76 | 16.84 | 2.03 | 0.014 |
Porphyromonas | 3.173 | 1.572 | 0.81 | 0.013 |
Paraprevotella | 3.068 | 5.296 | 2.54 | 0.250 |
Prevotella | 0.694 | 0.083 | 0.17 | 0.001 |
Alistipes | 4.237 | 6.059 | 1.44 | 0.090 |
Ethanoligenens | 2.880 | 1.774 | 0.45 | 0.004 |
Papillibacter | 9.173 | 6.020 | 1.23 | 0.002 |
Coprococcus | 1.069 | 0.605 | 0.20 | 0.021 |
Dorea | 0.281 | 0.145 | 0.07 | 0.02 |
Blautia | 0.187 | 0.127 | 0.08 | 0.020 |
Treponema | 4.467 | 4.471 | 3.75 | 0.990 |
Non-classified | 4.113 | 4.286 | 0.51 | 0.610 |
S. No | Species Name | Grazing | Housing | STD | p-Values |
---|---|---|---|---|---|
1 | Non-classified | 1.264 | 1.153 | 0.003 | 0.510 |
2 | Parapedobacter koreensis | 4.351 | 6.196 | 0.006 | 0.002 |
3 | Parapedobacter soli | 12.14 | 11.35 | 0.030 | 0.700 |
4 | Muribaculum intestinale | 3.268 | 5.329 | 0.014 | 0.090 |
5 | Paludibacter propionicigenes | 1.793 | 0.263 | 0.002 | 0.000 |
6 | Bacteroides cellulosilyticus | 0.000 | 0.252 | 0.002 | 0.150 |
7 | Bacteroides clarus | 3.809 | 2.655 | 0.014 | 0.220 |
8 | Bacteroides plebeius | 4.665 | 5.339 | 0.018 | 0.600 |
9 | Porphyromonas pogonae | 2.062 | 1.406 | 0.009 | 0.270 |
10 | Paraprevotella clara | 3.068 | 5.296 | 0.025 | 0.250 |
11 | Prevotella shahii | 0.455 | 0.000 | 0.002 | 0.019 |
12 | Alistipes finegoldii | 1.110 | 2.329 | 0.009 | 0.069 |
13 | Alistipes onderdonkii | 1.161 | 1.138 | 0.005 | 0.940 |
14 | Alistipes putredinis | 0.993 | 1.283 | 0.005 | 0.440 |
15 | Flavonifractor plautii | 0.748 | 0.505 | 0.003 | 0.220 |
16 | Intestinimonas butyriciproducens | 2.519 | 2.409 | 0.006 | 0.810 |
17 | Acidaminobacter hydrogenoformans | 1.112 | 0.894 | 0.004 | 0.480 |
18 | Kineothrix alysoides | 2.128 | 1.746 | 0.006 | 0.420 |
19 | Eubacterium] tenue | 0.638 | 0.281 | 0.002 | 0.450 |
20 | Clostridium] cellobioparum | 1.298 | 0.766 | 0.005 | 0.130 |
21 | Clostridium] stercorarium | 0.141 | 0.340 | 0.001 | 0.070 |
22 | Ethanoligenens harbinense | 2.880 | 1.774 | 0.004 | 0.004 |
23 | Papillibacter cinnamivorans | 9.173 | 6.020 | 0.012 | 0.002 |
24 | Treponema porcinum | 3.584 | 3.973 | 0.038 | 0.880 |
25 | Akkermansia glycaniphila | 4.901 | 1.175 | 0.030 | 0.130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.S.; Soundharrajan, I.; Kim, D.; Baik, M.; Ha, S.; Choi, K.C. Microbiota and Serum Metabolic Profile Changes in Korean Native Hanwoo Steer in Response to Diet Feeding Systems. Int. J. Mol. Sci. 2022, 23, 12391. https://doi.org/10.3390/ijms232012391
Jung JS, Soundharrajan I, Kim D, Baik M, Ha S, Choi KC. Microbiota and Serum Metabolic Profile Changes in Korean Native Hanwoo Steer in Response to Diet Feeding Systems. International Journal of Molecular Sciences. 2022; 23(20):12391. https://doi.org/10.3390/ijms232012391
Chicago/Turabian StyleJung, Jeong Sung, Ilavenil Soundharrajan, Dahye Kim, Myunggi Baik, Seungmin Ha, and Ki Choon Choi. 2022. "Microbiota and Serum Metabolic Profile Changes in Korean Native Hanwoo Steer in Response to Diet Feeding Systems" International Journal of Molecular Sciences 23, no. 20: 12391. https://doi.org/10.3390/ijms232012391
APA StyleJung, J. S., Soundharrajan, I., Kim, D., Baik, M., Ha, S., & Choi, K. C. (2022). Microbiota and Serum Metabolic Profile Changes in Korean Native Hanwoo Steer in Response to Diet Feeding Systems. International Journal of Molecular Sciences, 23(20), 12391. https://doi.org/10.3390/ijms232012391