The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity
Abstract
:1. Introduction
2. Results
2.1. Interaction of the Antimicrobial Peptide 1018-K6 with Model Membranes
2.1.1. Peptide Binding to Multilamellar Vesicles (MLVs) and Lipid Sedimentation Assays
2.1.2. Peptide Binding to Multilamellar Vesicles (MLVs) from Biological Membranes
2.2. Fluorescence Properties of 1018-K6 in Aqueous and Lipid Solutions
2.2.1. Blue Shifts in Emission Spectra
2.2.2. Fluorescence Quenching of 1018-K6
2.3. The Effect of 1018-K6 on the Permeabilization of Model and Biological Membranes
2.4. Effect of 1018-K6 on Vesicle Aggregation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Model Membranes: Multilamellar Vesicles (MLVs)
4.3. Preparation of Biological Membranes from Bacterial Strains and Hepatic Rat Tissue
4.4. Lipid Binding Assay
4.4.1. Steady-State Tryptophan Fluorescence
4.4.2. UV-Vis Absorption Spectrophotometry
4.5. Vesicle Aggregation
4.6. Absorption Maximum and Quenching of 1018-K6 Fluorescence in Aqueous and Lipid Environments
4.7. Permeabilization of Model and Biological Membranes
4.8. Lipid Sedimentation Assay
4.9. Statistical Analyses
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to Their Use in the Isolation of B. Influenzæ. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Rev. Antimicrob. Resist. 2016, 1, 1–84. [Google Scholar]
- World Health Organization. The Evolving Threat of Antimicrobial Resistance: Options for Action; World Health Organization: Cham, Switzerland, 2012; ISBN 9789241503181.
- Escribá, P.V.; Busquets, X.; Inokuchi, J.I.; Balogh, G.; Török, Z.; Horváth, I.; Harwood, J.L.; Vígh, L. Membrane Lipid Therapy: Modulation of the Cell Membrane Composition and Structure as a Molecular Base for Drug Discovery and New Disease Treatment. Prog. Lipid Res. 2015, 59, 38–53. [Google Scholar] [CrossRef] [Green Version]
- Verkleij, A.J.; Zwaal, R.F.; Roelofsen, B.; Comfurius, P.; Kastelijn, D.; Deenen, L.L.M. The Asymmetric Distribution of Phospholipids in the Human Red Cell Membrane. A Combined Study Using Phospholipases and Freeze-Etch Electron Microscopy. Biochim. Biophys. Acta 1973, 323, 178–193. [Google Scholar] [CrossRef]
- Rothman, J.E.; Lenard, J. Membrane Asymmetry. Science 1977, 195, 743–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozelli, J.C.; Yune, J.; Dang, X.; Narayana, J.L.; Wang, G.; Epand, R.M. Membrane Activity of Two Short Trp-Rich Amphipathic Peptides. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183280. [Google Scholar] [CrossRef] [PubMed]
- Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res. 2016, 96, 254–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balhara, V.; Schmidt, R.; Gorr, S.U.; Dewolf, C. Membrane Selectivity and Biophysical Studies of the Antimicrobial Peptide GL13K. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2193–2203. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, A.; Pirri, G.; Bozzi, A.; Di Giulio, A.; Aschi, M.; Rinaldi, A.C. Antimicrobial Peptides: Natural Templates for Synthetic Membrane-Active Compounds. Cell Mol. Life Sci. 2008, 65, 2450–2460. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial Peptides of Multicellular Organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- Davies, D. Understanding Biofilm Resistance to Antibacterial Agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Peters, B.M.; Shirtliff, M.E.; Jabra-Rizk, M.A. Antimicrobial Peptides: Primeval Molecules or Future Drugs? PLoS Pathog. 2010, 6, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, D.A.; Dennison, S.R.; Harris, F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. Antimicrob. Pept. 2013, 8, 1–37. [Google Scholar] [CrossRef]
- Farkas, A.; Maróti, G.; Kereszt, A.; Kondorosi, É. Comparative Analysis of the Bacterial Membrane Disruption Effect of Two Natural Plant Antimicrobial Peptides. Front. Microbiol. 2017, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-H.; Hall, K.N.; Aguilar, M.-I. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Curr. Top. Med. Chem. 2016, 16, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rozek, A.; Hancock, R.E.W. Interaction of Cationic Antimicrobial Peptides with Model Membranes. J. Biol. Chem. 2001, 276, 35714–35722. [Google Scholar] [CrossRef] [Green Version]
- Yim, G.; Wang, H.H.; Davies, J. Antibiotics as Signalling Molecules. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1195–1200. [Google Scholar] [CrossRef] [Green Version]
- Sani, M.A.; Separovic, F. How Membrane-Active Peptides Get into Lipid Membranes. Acc. Chem. Res. 2016, 49, 1130–1138. [Google Scholar] [CrossRef]
- Chang, C.C.; Edwald, E.; Veatch, S.; Steel, D.G.; Gafni, A. Interactions of Amyloid-β Peptides on Lipid Bilayer Studied by Single Molecule Imaging and Tracking. Biochim. Biophys. Acta Biomembr. 2018, 1860, 1616–1624. [Google Scholar] [CrossRef]
- Wiatrak, B.; Piasny, J.; Kuźniarski, A.; Gąsiorowski, K. Interactions of Amyloid-β with Membrane Proteins. Int. J. Mol. Sci. 2021, 22, 6075. [Google Scholar] [CrossRef]
- Meker, S.; Chin, H.; Sut, T.N.; Cho, N.J. Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness. Langmuir 2018, 34, 9548–9560. [Google Scholar] [CrossRef] [PubMed]
- Drabik, D.; Chodaczek, G.; Kraszewski, S. Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters–Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Sessa, L.; Concilio, S.; Walde, P.; Robinson, T.; Dittrich, P.S.; Porta, A.; Panunzi, B.; Caruso, U.; Piotto, S. Study of the Interaction of a Novel Semi-Synthetic Peptide with Model Lipid Membranes. Membranes 2020, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Balestrieri, M.; Capuano, F.; Proroga, Y.T.R.; Pomilio, F.; Centorame, P.; Riccio, A.; Marrone, R.; Anastasio, A. Bactericidal and Antibiofilm Activity of Bactenecin-Derivative Peptides against the Food-Pathogen Listeria Monocytogenes: New Perspectives for Food Processing Industry. Int. J. Food Microbiol. 2018, 279, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, G.; Tatè, R.; Gogliettino, M.; Balestrieri, M.; Rea, I.; Terracciano, M.; Proroga, Y.T.; Capuano, F.; Anastasio, A.; De Stefano, L. Small Synthetic Peptides Bioconjugated to Hybrid Gold Nanoparticles Destroy Potentially Deadly Bacteria at Submicromolar Concentrations. Bioconjug. Chem. 2018, 29, 3877–3885. [Google Scholar] [CrossRef] [PubMed]
- Agrillo, B.; Balestrieri, M.; Gogliettino, M.; Palmieri, G.; Moretta, R.; Proroga, Y.T.R.; Rea, I.; Cornacchia, A.; Capuano, F.; Smaldone, G.; et al. Functionalized Polymeric Materials with Bio-Derived Antimicrobial Peptides for “Active” Packaging. Int. J. Mol. Sci. 2019, 20, 601. [Google Scholar] [CrossRef] [Green Version]
- Colagiorgi, A.; Festa, R.; Di Ciccio, P.A.; Gogliettino, M.; Balestrieri, M.; Palmieri, G.; Anastasio, A.; Ianieri, A. Rapid Biofilm Eradication of the Antimicrobial Peptide 1018-K6 against Staphylococcus Aureus: A New Potential Tool to Fight Bacterial Biofilms. Food Control 2020, 107, 106815. [Google Scholar] [CrossRef]
- Festa, R.; Ambrosio, R.L.; Lamas, A.; Gratino, L.; Palmieri, G.; Franco, C.M.; Cepeda, A.; Anastasio, A. A Study on the Antimicrobial and Antibiofilm Peptide 1018-K6 as Potential Alternative to Antibiotics against Food-Pathogen Salmonella enterica. Foods 2021, 10, 1372. [Google Scholar] [CrossRef]
- Ambrosio, R.L.; Gogliettino, M.; Agrillo, B.; Proroga, Y.T.R.; Balestrieri, M.; Gratino, L.; Cristiano, D.; Palmieri, G.; Anastasio, A. An Active Peptide-Based Packaging System to Improve the Freshness and Safety of Fish Products: A Case Study. Foods 2022, 11, 338. [Google Scholar] [CrossRef]
- Alvarez, R.; Casas, J.; López, D.J.; Ibarguren, M.; Suari-Rivera, A.; Terés, S.; Guardiola-Serrano, F.; Lossos, A.; Busquets, X.; Kakhlon, O.; et al. Triacylglycerol Mimetics Regulate Membrane Interactions of Glycogen Branching Enzyme: Implications for Therapy. J. Lipid Res. 2017, 58, 1598–1612. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.F.; Law, J.H.; Tsukagoshi, N.; Wilson, G. A Density Label for Membranes. Proc. Natl. Acad. Sci. USA 1970, 67, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Scatchard, G. The Attractions of Proteins for Small Molecules and Ions. Ann. N. Y. Acad. Sci. 1949, 51, 660–672. [Google Scholar] [CrossRef]
- Jain, M.K.; Rogers, J.; Simpson, L.; Gierasch, L.M. Effect of Tryptophan Derivatives on the Phase Properties of Bilayers. BBA Biomembr. 1985, 816, 153–162. [Google Scholar] [CrossRef]
- Ito, A.S.; Castrucci, A.M.d.L.; Hruby, V.J.; Hadley, M.E.; Krajcarski, D.T.; Szabo, A.G. Structure-Activity Correlations of Melanotropin Peptides in Model Lipids by Tryptophan Fluorescence Studies. Biochemistry 1993, 32, 12264–12272. [Google Scholar] [CrossRef]
- Santos, N.C.; Prieto, M.; Castanho, M.A.R.B. Quantifying Molecular Partition into Model Systems of Biomembranes: An Emphasis on Optical Spectroscopic Methods. Biochim. Biophys. Acta Biomembr. 2003, 1612, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Escriba, P.V.; Ferrer-Montiel, A.V.; Ferragut, J.A.; Gonzalez-Ros, J.M. Role of Membrane Lipids in the Interaction of Daunomycin with Plasma Membranes from Tumor Cells: Implications in Drug-Resistance Phenomena. Biochemistry 1990, 29, 7275–7282. [Google Scholar] [CrossRef]
- Bessalle, R.; Haas, H.; Goria, A.; Shalit, I.; Fridkin, M. Augmentation of the Antibacterial Activity of Magainin by Positive-Charge Chain Extension. Antimicrob. Agents Chemother. 1992, 36, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Matsuzaki, K.; Nakamura, A.; Murase, O.; Sugishita, K.I.; Fujii, N.; Miyajima, K. Modulation of Magainin 2-Lipid Bilayer Interactions by Peptide Charge. Biochemistry 1997, 36, 2104–2111. [Google Scholar] [CrossRef]
- Dathe, M.; Nikolenko, H.; Meyer, J.; Beyermann, M.; Bienert, M. Optimization of the Antimicrobial Activity of Magainin Peptides by Modification of Charge. FEBS Lett. 2001, 501, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Melo, M.N.; Ferre, R.; Castanho, M.A.R.B. Melo, Ferre, Castanho_2009_Antimicrobial Peptides Linking Partition, Activity and High Membrane-Bound Concentrations. Nat. Rev. Microbiol. 2009, 7, 245–250. [Google Scholar] [CrossRef]
- Matsuno, R.; Ishihara, K. Integrated Functional Nanocolloids Covered with Artificial Cell Membranes for Biomedical Applications. Nano Today 2011, 6, 61–74. [Google Scholar] [CrossRef]
- Bello, J.; Bello, H.R.; Granados, E. Conformation and Aggregation of Melittin: Dependence on PH and Concentration. Biochemistry 1982, 21, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Dathe, M.; Wieprecht, T. Structural Features of Helical Antimicrobial Peptides: Their Potential to Modulate Activity on Model Membranes and Biological Cells. Biochim. Biophys. Acta Biomembr. 1999, 1462, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.W. Molecular Mechanism of Antimicrobial Peptides: The Origin of Cooperativity. Biochim. Biophys. Acta Biomembr. 2006, 1758, 1292–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, K.; Lee, T.H.; Daly, N.L.; Craik, D.J.; Aguilar, M.I. Gly6 of Kalata B1 Is Critical for the Selective Binding to Phosphatidylethanolamine Membranes. Biochim. Biophys. Acta Biomembr. 2012, 1818, 2354–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Baltimore, MA, USA, 2006. [Google Scholar]
- Tang, Y.L.; Shi, Y.H.; Zhao, W.; Hao, G.; Le, G.W. Insertion Mode of a Novel Anionic Antimicrobial Peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese Traditional Edible Larvae of Housefly and Its Effect on Surface Potential of Bacterial Membrane. J. Pharm. Biomed. Anal. 2008, 48, 1187–1194. [Google Scholar] [CrossRef]
- Tucker, S.A.; Darmodjo, H.; Acree, W.E., Jr.; Fetzer, J.C.; Zander, M. Spectroscopic Investigation of Fluorescence Quenching Agents. Part II: Effect of Nitromethane on the Fluorescence Emission Behavior of Thirty-Six Alternant Benzenoid Polycyclic Aromatic Hydrocarbons. Appl. Spectrosc. 1992, 46, 1260–1265. [Google Scholar] [CrossRef]
- Pan, H.; Marsh, J.N.; Christenson, E.T.; Soman, N.R.; Ivashyna, O.; Lanza, G.M.; Schlesinger, P.H.; Wickline, S.A. Postformulation Peptide Drug Loading of Nanostructures. Methods Enzymol. 2012, 508, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Mulgrew-Nesbitt, A.; Diraviyam, K.; Wang, J.; Singh, S.; Murray, P.; Li, Z.; Rogers, L.; Mirkovic, N.; Murray, D. The Role of Electrostatics in Protein-Membrane Interactions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2006, 1761, 812–826. [Google Scholar] [CrossRef]
- Epand, R.M.; Epand, R.F. Bacterial Membrane Lipids in the Action of Antimicrobial Agents. J. Pept. Sci. 2011, 17, 298–305. [Google Scholar] [CrossRef]
- Boggs, J.M.; Stamp, D.; Hughes, D.W.; Deber, C.M. Influence of Ether Linkage on the Lamellar to Hexagonal Phase Transition of Ethanolamine Phospholipids. Biochemistry 1981, 20, 5728–5735. [Google Scholar] [CrossRef] [PubMed]
- Morein, S.; Koeppe, R.E.; Lindblom, G.; De Kruijff, B.; Killian, J.A. The Effect of Peptide/Lipid Hydrophobic Mismatch on the Phase Behavior of Model Membranes Mimicking the Lipid Composition in Escherichia Coli Membranes. Biophys. J. 2000, 78, 2475–2485. [Google Scholar] [CrossRef] [Green Version]
- Escribá, P.V. Membrane-Lipid Therapy: A New Approach in Molecular Medicine. Trends Mol. Med. 2006, 12, 34–43. [Google Scholar] [CrossRef]
- Escribá, P.V.; González-Ros, J.M.; Goñi, F.M.; Kinnunen, P.K.J.; Vigh, L.; Sánchez-Magraner, L.; Fernández, A.M.; Busquets, X.; Horváth, I.; Barceló-Coblijn, G. Membranes: A Meeting Point for Lipids, Proteins and Therapies. J. Cell Mol. Med. 2008, 12, 829–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Ros, J.M.; Farach, M.C.; Martinez-Carrion, M. Ligand-Induced Effects at Regions of Acetylcholine Receptor Accessible to Membrane Lipids. Biochemistry 1983, 22, 3807–3811. [Google Scholar] [CrossRef]
- Melloni, E.; Pontremoli, S.; Sparatore, B.; Patrone, M.; Grossi, F.; Marks, P.A.; Rifkind, R.A. Introduction of the Beta Isozyme of Protein Kinase C Accelerates Induced Differentiation of Murine Erythroleukemia Cells. Proc. Natl. Acad. Sci. USA 1990, 87, 4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, P.F.; Pokorny, A. Interactions of Antimicrobial Peptides with Lipid Bilayers. Compr. Biophys. 2012, 5, 189–222. [Google Scholar] [CrossRef]
- Kirby, C.; Gregoriadis, G. Dehydration-Rehydration Vesicles: A Simple Method for High Yield Drug Entrapment in Liposomes. Nat. Biotechnol. 1984, 2, 979–984. [Google Scholar] [CrossRef]
- Senior, J.H. Fate and Behavior of Liposomes in Vivo: A Review of Controlling Factors. Crit. Rev. Ther. Drug Carr. Syst. 1987, 3, 123–193. [Google Scholar]
- Tatulian, S.A.; Kandel, N. Membrane Pore Formation by Peptides Studied by Fluorescence Techniques. Methods Mol. Biol. 2019, 2003, 449–464. [Google Scholar] [CrossRef]
- Guilhelmelli, F.; Vilela, N.; Albuquerque, P.; Derengowski, L.; Silva-Pereira, I.; Kyaw, C. Antibiotic Development Challenges: The Various Mechanisms of Action of Antimicrobial Peptides and of Bacterial Resistance. Front. Microbiol. 2013, 4, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auvynet, C.; Rosenstein, Y. Multifunctional Host Defense Peptides: Antimicrobial Peptides, the Small yet Big Players in Innate and Adaptive Immunity. FEBS J. 2009, 276, 6497–6508. [Google Scholar] [CrossRef]
- Torcato, I.M.; Huang, Y.H.; Franquelim, H.G.; Gaspar, D.; Craik, D.J.; Castanho, M.A.R.B.; Troeira Henriques, S. Design and Characterization of Novel Antimicrobial Peptides, R-BP100 and RW-BP100, with Activity against Gram-Negative and Gram-Positive Bacteria. Biochim. Biophys. Acta Biomembr. 2013, 1828, 944–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallivan, J.P.; Dougherty, D.A. Cation-π Interactions in Structural Biology. Proc. Natl. Acad. Sci. USA 1999, 96, 9459–9464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, S.H.; Wimley, W.C. Hydrophobic Interactions of Peptides with Membrane Interfaces. Biochim. Biophys. Acta Rev. Biomembr. 1998, 1376, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and Arginine-Rich Antimicrobial Peptides: Structures and Mechanisms of Action. Biochim. Biophys. Acta Biomembr. 2006, 1758, 1184–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shai, Y. Mechanism of the Binding, Insertion and Destabilization of Phospholipid Bilayer Membranes by α-Helical Antimicrobial and Cell Non-Selective Membrane-Lytic Peptides. Biochim. Biophys. Acta Biomembr. 1999, 1462, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Yasir, M.; Dutta, D.; Willcox, M.D.P. Comparative Mode of Action of the Antimicrobial Peptide Melimine and Its Derivative Mel4 against Pseudomonas Aeruginosa. Sci. Rep. 2019, 9, 7063. [Google Scholar] [CrossRef] [Green Version]
- Hancock, R.E.W.; Scott, M.G. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 2000, 97, 8856–8861. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics 2022, 11, 349. [Google Scholar] [CrossRef]
- Pokorny, A.; Almeida, P.F.F. Permeabilization of Raft-Containing Lipid Vesicles by δ-Lysin: A Mechanism for Cell Sensitivity to Cytotoxic Peptides. Biochemistry 2005, 44, 9538–9544. [Google Scholar] [CrossRef] [PubMed]
- Bahar, A.A.; Ren, D. Antimicrobial Peptides. Pharmaceuticals 2013, 6, 1543. [Google Scholar] [CrossRef] [PubMed]
- Miteva, M.; Andersson, M.; Karshikoff, A.; Otting, G. Molecular Electroporation: A Unifying Concept for the Description of Membrane Pore Formation by Antibacterial Peptides, Exemplified with NK-Lysin. FEBS Lett. 1999, 462, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Tieleman, D.P. The Molecular Basis of Electroporation. BMC Biochem. 2004, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwani, P.; Reichert, J.; Bürck, J.; Ulrich, A.S. Antimicrobial and Cell-Penetrating Peptides Induce Lipid Vesicle Fusion by Folding and Aggregation. Eur. Biophys. J. 2012, 41, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casares, D.; Escribá, P.V.; Rosselló, C.A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int. J. Mol. Sci. 2019, 20, 2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, S.C.; Nobre, T.M.; Volpati, D.; Cilli, E.M.; Correa, D.S.; Oliveira, O.N. The Cyclic Peptide Labaditin Does Not Alter the Outer Membrane Integrity of Salmonella enterica Serovar Typhimurium. Sci. Rep. 2019, 9, 1993. [Google Scholar] [CrossRef] [Green Version]
- Alatoom, A.A.; Cunningham, S.A.; Ihde, S.M.; Mandrekar, J.; Patel, R. Comparison of Direct Colony Method versus Extraction Method for Identification of Gram-Positive Cocci by Use of Bruker Biotyper Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2011, 49, 2868–2873. [Google Scholar] [CrossRef] [Green Version]
- Peruzy, M.F.; Murru, N.; Yu, Z.; Kerkhof, P.J.; Neola, B.; Joossens, M.; Proroga, Y.T.R.; Houf, K. Assessment of Microbial Communities on Freshly Killed Wild Boar Meat by MALDI-TOF MS and 16S RRNA Amplicon Sequencing. Int. J. Food Microbiol. 2019, 301, 51–60. [Google Scholar] [CrossRef]
- Dennison, S.R.; Howe, J.; Morton, L.H.G.; Brandenburg, K.; Harris, F.; Phoenix, D.A. Interactions of an Anionic Antimicrobial Peptide with Staphylococcus Aureus Membranes. Biochem. Biophys. Res. Commun. 2006, 347, 1006–1010. [Google Scholar] [CrossRef]
- Whitem, S.H.; Wimley, W.C.; Ladokhin, A.S.; Hristova, K. Protein Folding in Membranes: Determining Energetics of Peptide-Bilayer Interactions. Methods Enzymol. 1998, 295, 62–87. [Google Scholar]
- Roussel, G.; White, S.H. Binding of SecA ATPase Monomers and Dimers to Lipid Vesicles. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183112. [Google Scholar] [CrossRef] [PubMed]
- Mintun, M.A.; Raichle, M.E.; Kilbourn, M.R.; Wooten, G.F.; Welch, M.J. A Quantitative Model for the in Vivo Assessment of Drug Binding Sites with Positron Emission Tomography. Ann. Neurol. 1984, 15, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zheng, M.Q.; Holden, D.; Lin, S.F.; Kapinos, M.; Ropchan, J.; Gallezot, J.D.; Huang, Y.; Carson, R.E. Measurement of B Max and K d with the Glycine Transporter 1 Radiotracer 18 F-MK6577 Using a Novel Multi-Infusion Paradigm. J. Cereb. Blood Flow Metab. 2015, 35, 2001–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriques, S.T.; Castanho, M.A.R.B. Consequences of Nonlytic Membrane Perturbation to the Translocation of the Cell Penetrating Peptide Pep-1 in Lipidic Vesicles. Biochemistry 2004, 43, 9716–9724. [Google Scholar] [CrossRef]
- Fiske, B.Y.C.H.; Subbarow, Y. The Colorimetric Determination of Phosphorus. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- BARTLETT, G.R. Phosphorus Assay in Column Chromatography. J. Biol. Chem. 1959, 234, 466–468. [Google Scholar] [CrossRef]
- Böttcher, C.J.F.; Van gent, C.M.; Pries, C. A Rapid and Sensitive Sub-Micro Phosphorus Determination. Anal. Chim. Acta 1961, 24, 203–204. [Google Scholar] [CrossRef]
Cell Type | Lipid Mixture | Kp/(×104 M−1) | |
---|---|---|---|
Fluorescence | UV-Vis Absorption | ||
Zwitterionic membrane | PC | 0.76 ± 0.21 A | 0.83 ± 0.22 A |
Eukaryotic membrane | PC40:POPE40:SM15:PS5 | 0.37 ± 0.27 A | 0.10 ± 0.10 B |
Salmonella Typhimurium | DOPE78: POPG18:CL4 | 30.07 ± 4.53 B | 26.23 ± 4.87 C |
Escherichia coli | PE80:CL5:POPG15 | 36.50 ± 4.67 B | 14.65 ± 1.68 C |
Staphylococcus aureus | CL42:POPG58 | 19.69 ± 2.90 C | 16.11 ± 2.88 C |
Peptide: Liposome Incubation (mins) | Cell Type | Lipid Mixture | KSV, Acrylamide M−1 | Equation | R Squared |
---|---|---|---|---|---|
30, 90, 150 | Zwitterionic membrane | PC | 154.8 ± 8.8 bAB | Y = 154.80*X − 0.5730 | 0.9504 |
30, 90, 150 | Eukaryotic membrane | PC40:POPE40:SM15:PS5 | 374.0 ± 47.9 acA | Y = 374.00*X − 3.1910 | 0.7925 |
30, 90, 150 | Salmonella Typhimurium | DOPE78: POPG18:CL4 | 14.4 ± 1.0 cC | Y = 14.39*X + 0.9384 | 0.9333 |
30, 90, 150 | Staphylococcus aureus * | CL42:POPG58 | 55.7 ± 21.2 acBC | Y = 55.65*X − 0.3668 | 0.3020 |
30, 90, 150 | Buffer | - | 142.7 ± 16.3 a | Y = 142.70*X − 1.1240 | 0.8279 |
30 | * Staphylococcus aureus | CL42:POPG58 | 132.7 ± 39.1 | Y = 132.70*X − 0.6068 | 0.4183 |
90 | Staphylococcus aureus | CL42:POPG58 | 21.5 ± 6.1 | Y = 21.46*X + 0.8326 | 0.4347 |
150 | Staphylococcus aureus | CL42:POPG58 | 12.8 ± 1.0 | Y = 12.81*X + 0.8746 | 0.9089 |
Peptide:Liposome Incubation (mins) | Biological Membranes | KSV, Acrylamide M−1 | Equation | R Squared |
---|---|---|---|---|
30, 90, 150 | Salmonella spp. | 11.0 ± 0.5 A | Y = 11.01*X + 0.9797 | 0.9695 |
30, 90, 150 | Escherichia coli | 15.2 ± 0.4 A | Y = 15.16*X + 1.001 | 0.9885 |
30, 90, 150 | Staphylococcus aureus * | 16.3 ± 4.6 A | Y = 16.25*X + 0.9782 | 0.2666 |
30, 90, 150 | Buffer | 142.7 ± 16.3 B | Y = 142.70*X − 1.1240 | 0.8279 |
30 | * Staphylococcus aureus | 23.3 ± 8.5 | Y = 23.33*X + 0.9695 | 0.3218 |
90–150 | Staphylococcus aureus | 9.2 ± 0.3 | Y = 9.17*X + 0.9869 | 0.9854 |
Peptide:Liposome Incubation (mi) | Cell Type | Lipid Mixture | KSV, Nitromethane M−1 | Equation | R squared |
---|---|---|---|---|---|
30, 90, 150 | Zwitterionic membrane | PC | 130.5 ± 15.8 A | Y = 130.50*X + 0.1678 | 0.7817 |
30, 90, 150 | Eukaryotic membrane | PC40:POPE40:SM15:PS5 | 107.5 ± 21.0 A | Y = 107.50*X + 2.0950 | 0.5808 |
30, 90, 150 | Salmonella Typhimurium | DOPE78: POPG18:CL4 | 54.7 ± 5.0 aB | Y = 54.73*X + 0.8185 | 0.8626 |
30, 90, 150 | Staphylococcus aureus | CL42:POPG58 | 54.9 ± 3.2 aB | Y = 54.91*X + 0.5856 | 0.9384 |
30, 90, 150 | Buffer | - | 117.0 ± 11.0 b | Y = 117.00*X − 0.3541 | 0.8564 |
Peptide:Liposome Incubation (mins) | Biological Membranes | KSV, Nitromethane M−1 | Equation | R Squared |
---|---|---|---|---|
30, 90, 150 | Salmonella spp. | 50.6 ± 3.1 aA | Y = 50.59*X + 0.7656 | 0.9328 |
30, 90, 150 | Escherichia coli | 9.0 ± 2.0 B | Y = 8.95*X + 0.9698 | 0.5179 |
30, 90, 150 | Staphylococcus aureus | 55.3 ± 5.0 aA | Y = 55.25*X + 0.4668 | 0.8650 |
30, 90, 150 | Buffer | 117.0 ± 11.0 bA | Y = 117.00*X − 0.3541 | 0.8564 |
Membrane | PC | SM | PS | PE | DOPE | POPE | POPG | CL |
---|---|---|---|---|---|---|---|---|
Eukaryotic membrane 1 | 40 | 15 | 5 | 40 | ||||
Zwitterionic membrane | 100 | |||||||
Salmonella Typhimurium 2GN | 78 | 18 | 4 | |||||
Escherichia coli3GN | 80 | 15 | 5 | |||||
Staphylococcus aureus3GP | 58 | 42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrosio, R.L.; Rosselló, C.A.; Casares, D.; Palmieri, G.; Anastasio, A.; Escribá, P.V. The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity. Int. J. Mol. Sci. 2022, 23, 12392. https://doi.org/10.3390/ijms232012392
Ambrosio RL, Rosselló CA, Casares D, Palmieri G, Anastasio A, Escribá PV. The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity. International Journal of Molecular Sciences. 2022; 23(20):12392. https://doi.org/10.3390/ijms232012392
Chicago/Turabian StyleAmbrosio, Rosa Luisa, Catalina Ana Rosselló, Doralicia Casares, Gianna Palmieri, Aniello Anastasio, and Pablo V. Escribá. 2022. "The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity" International Journal of Molecular Sciences 23, no. 20: 12392. https://doi.org/10.3390/ijms232012392
APA StyleAmbrosio, R. L., Rosselló, C. A., Casares, D., Palmieri, G., Anastasio, A., & Escribá, P. V. (2022). The Antimicrobial Peptide 1018-K6 Interacts Distinctly with Eukaryotic and Bacterial Membranes, the Basis of Its Specificity and Bactericidal Activity. International Journal of Molecular Sciences, 23(20), 12392. https://doi.org/10.3390/ijms232012392