Reconstructed Genome-Scale Metabolic Model Characterizes Adaptive Metabolic Flux Changes in Peripheral Blood Mononuclear Cells in Severe COVID-19 Patients
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of PBMC Gene Expression Profile in COVID-19
2.2. Metabolic Profile of Reconstructed PBMC Networks
2.3. Aerobic Glycolysis and Lactic Acid Production Are Enhanced in Severe Infection
2.4. Demand for Lipid Metabolism Increases in Response to Infection
2.5. Pentose Phosphate Pathway Maintains Redox Homeostasis and Nucleotide Metabolism
2.6. Adaptive Biosynthesis Increases of Two Vitamins Folate and Retinoate
3. Materials and Methods
3.1. Analysis of Differentially Expressed Genes (DEGs)
3.2. Gene Ontology Enrichment Analysis of Differentially Expressed Genes
3.3. Genome-Scale Metabolic Model Reconstruction and Flux-Based Reaction Filtration
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
25HC | 25-hydroxycholesterol |
5-MTHF | 5-methyltetrahydrofolate |
ACE2 | angiotensin-converting enzyme 2 |
ACHR | artificial centering hit-and-run |
ACTZ | acetazolamide |
AKG | α-ketoglutarate |
ALDOA | fructose bisphosphonate aldolase A |
AMPK | AMP-activated protein kinase |
ATG5 | autophagy-related gene 5 |
C | complement |
CA2 | carbonic anhydrases 2 |
CMPK2 | cytidine/uridine monophosphate kinase 2 |
COVID-19 | coronavirus disease 2019 |
cPLA2 | cytoplasmic phospholipase A2 |
CYP1B1 | cytochrome P450 family 1 subfamily B member 1 |
DEG | differentially expressed gene |
DHF | dihydrofolate |
EZA | ethoxzolamide |
FA | folate |
FASN | fatty acid synthase |
FBA | flux balance analysis |
FR | folate transport-related receptor |
GAPDH | glycoraldehyde-3-phosphate dehydrogenase |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
GLB1 | galactosidase β 1 |
GLB1 | galactosidase beta 1 |
GLTP | glycolipid transfer protein |
GO | gene ontology |
GPR | Gene-Protein-Reaction rules |
GSEA | gene set enrichment analysis |
GSH | reduced glutathione |
GSMM | genome-scale metabolic model |
GSR | glutathione-disulfide reductase |
GSSG | oxidized glutathione |
HDLBP | high-density lipoprotein-binding protein |
HIV | human immunodeficiency virus |
HLA-DR | human leukocyte antigen D-related |
HMG-CoA | 3-hydroxy-3-methylglutaryl-coenzyme A |
HMR | human metabolic reactions |
IFN | interferon |
IFN-γ | Interferon-γ |
IL | interleukin |
IL-6 | interleukin-6 |
LacCer | lactosylceramide |
lb | lower boundaries |
LDHA | lactate dehydrogenase A |
LPS | lipopolysaccharide |
LTF | lactotransferrin |
MAS | malate-aspartate shuttle |
MERS-CoV | Middle East respiratory syndrome coronavirus |
MeV | measles virus |
MPO | myeloperoxidase |
mTORC1 | mechanistic target of rapamycin complex 1 |
MTX | methotrexate |
MZB1 | marginal zone B and B1 cell specific protein |
NES | normalized enrichment scores |
noxPPP | non-oxidative phase PPP |
NPC1 | Niemann-Pick C intracellular cholesterol transporter 1 |
Nrf2 | nuclear factor E2-related factor 2 |
OXPHOS | oxidative phosphorylation |
oxPPP | oxidative phase PPP |
PaO2 | arterial partial pressure of blood oxygen |
PBMCs | peripheral blood mononuclear cells |
PECAM-1 | platelet/endothelial cell adhesion molecule-1 |
PFK | phosphofructokinase |
PGAM | phosphoglycerate mutase |
PKM | pyruvate kinase M1/2 |
PPP | pentose phosphate pathway |
RAR-α | alpha retinoic acid receptor |
RIG-I | retinoid-induced gene I |
RNASE2 | ribonuclease A family member 2 |
ROS | reactive oxygen species |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus-2 |
scRNA-Seq | single-cell RNA-Seq |
SDH | succinate dehydrogenase |
SLC | solute carrier |
SLC2A3 | solute carrier family 2 member 3 |
SREBP | sterol regulatory element-binding proteins |
SRF | severe respiratory failure |
TCA | tricarboxylic acid cycle |
TPM | transcript per million |
TXNDC5 | thioredoxin domain containing 5 |
ub | upper boundaries |
References
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020, 27, 992–1000.e3. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Leventogiannis, K.; Norrby-Teglund, A.; Dimopoulos, G.; Pantazi, A.; Orfanos, S.E.; Rovina, N.; Tsangaris, I.; Gkavogianni, T.; Botsa, E.; et al. Macrophage Activation-like Syndrome: An Immunological Entity Associated with Rapid Progression to Death in Sepsis. BMC Med. 2017, 15, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukaszewicz, A.-C.; Grienay, M.; Resche-Rigon, M.; Pirracchio, R.; Faivre, V.; Boval, B.; Payen, D. Monocytic HLA-DR Expression in Intensive Care Patients: Interest for Prognosis and Secondary Infection Prediction. Crit. Care Med. 2009, 37, 2746–2752. [Google Scholar] [PubMed]
- Song, E.; Zhang, C.; Israelow, B.; Lu-Culligan, A.; Prado, A.V.; Skriabine, S.; Lu, P.; Weizman, O.-E.; Liu, F.; Dai, Y.; et al. Neuroinvasion of SARS-CoV-2 in Human and Mouse BrainNeuroinvasion of SARS-CoV-2 in Humans and Mice. J. Exp. Med. 2021, 218, e20202135. [Google Scholar] [CrossRef]
- Wu, C.-T.; Lidsky, P.V.; Xiao, Y.; Lee, I.T.; Cheng, R.; Nakayama, T.; Jiang, S.; Demeter, J.; Bevacqua, R.J.; Chang, C.A.; et al. SARS-CoV-2 Infects Human Pancreatic β Cells and Elicits β Cell Impairment. Cell Metab. 2021, 33, 1565–1576.e5. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Pan, F.; Yang, L.; Li, Y.; Liang, B.; Li, L.; Ye, T.; Li, L.; Liu, D.; Gui, S.; Hu, Y.; et al. Factors Associated with Death Outcome in Patients with Severe Coronavirus Disease-19 (COVID-19): A Case-Control Study. Int. J. Med. Sci. 2020, 17, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat Rev Immunol 2020, 20, 363–374. [Google Scholar] [CrossRef]
- D’Ignazio, L.; Bandarra, D.; Rocha, S. NF-ΚB and HIF Crosstalk in Immune Responses. FEBS J. 2016, 283, 413–424. [Google Scholar] [CrossRef]
- Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020, 35, 266–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EL Kasmi, K.C.; Stenmark, K.R. Contribution of Metabolic Reprogramming to Macrophage Plasticity and Function. Semin. Immunol. 2015, 27, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, E.L.; Gudgeon, N.; Dimeloe, S. Control of T Cell Metabolism by Cytokines and Hormones. Front. Immunol. 2021, 12, 653605. [Google Scholar] [CrossRef] [PubMed]
- Iperi, C.; Bordron, A.; Dueymes, M.; Pers, J.-O.; Jamin, C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front. Immunol. 2021, 12, 3984. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.S.; Park, J.H.; Jung, H.E.; Kim, H.-J.; Lee, H.K. Autophagic Protein ATG5 Controls Antiviral Immunity via Glycolytic Reprogramming of Dendritic Cells against Respiratory Syncytial Virus Infection. Autophagy 2021, 17, 2111–2127. [Google Scholar] [CrossRef]
- Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic Crosstalk between NF-ΚB and SIRT1 in the Regulation of Inflammation and Metabolic Disorders. Cell Signal. 2013, 25, 1939–1948. [Google Scholar] [CrossRef]
- Du Preez, I.; Loots, D.T. Novel Insights into the Pharmacometabonomics of First-Line Tuberculosis Drugs Relating to Metabolism, Mechanism of Action and Drug-Resistance. Drug. Metab. Rev. 2018, 50, 466–481. [Google Scholar] [CrossRef]
- Kulkarni, A.; Mateus, M.; Thinnes, C.C.; McCullagh, J.S.; Schofield, C.J.; Taylor, G.P.; Bangham, C.R.M. Glucose Metabolism and Oxygen Availability Govern Reactivation of the Latent Human Retrovirus HTLV-1. Cell Chem. Biol. 2017, 24, 1377–1387.e3. [Google Scholar] [CrossRef] [Green Version]
- Giraud-Gatineau, A.; Coya, J.M.; Maure, A.; Biton, A.; Thomson, M.; Bernard, E.M.; Marrec, J.; Gutierrez, M.G.; Larrouy-Maumus, G.; Brosch, R.; et al. The Antibiotic Bedaquiline Activates Host Macrophage Innate Immune Resistance to Bacterial Infection. eLife 2020, 9, e55692. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.; Spaink, H.P.; Ottenhoff, T.H.M.; van der Graaf, P.H.; van Hasselt, J.G.C. Host-Directed Therapies for Tuberculosis: Quantitative Systems Pharmacology Approaches. Trends Pharmacol. Sci. 2022, 43, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Thiele, I.; Palsson, B.Ø. What Is Flux Balance Analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Hyötyläinen, T.; Jerby, L.; Petäjä, E.M.; Mattila, I.; Jäntti, S.; Auvinen, P.; Gastaldelli, A.; Yki-Järvinen, H.; Ruppin, E.; Orešič, M. Genome-Scale Study Reveals Reduced Metabolic Adaptability in Patients with Non-Alcoholic Fatty Liver Disease. Nat. Commun. 2016, 7, 8994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, W.; Ryu, J.Y.; Kim, H.U.; Hong, S.W.; Lee, E.B.; Lee, S.Y.; Yoon, S.K. Systems Approach to Characterize the Metabolism of Liver Cancer Stem Cells Expressing CD133. Sci. Rep. 2017, 7, 45557. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhou, Y.; Tang, H.; Liu, B.; Su, B.; Wang, Q. Differential Metabolic Network Construction for Personalized Medicine: Study of Type 2 Diabetes Mellitus Patients’ Response to Gliclazide-Modified-Release-Treated. J. Biomed. Inform. 2021, 118, 103796. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Martin-Sancho, L.; Pal, L.R.; Pu, Y.; Riva, L.; Yin, X.; Sinha, S.; Nair, N.U.; Chanda, S.K.; Ruppin, E. Genome-scale Metabolic Modeling Reveals SARS-CoV-2-induced Metabolic Changes and Antiviral Targets. Mol. Syst. Biol. 2021, 17, e10260. [Google Scholar] [CrossRef]
- Delattre, H.; Sasidharan, K.; Soyer, O.S. Inhibiting the Reproduction of SARS-CoV-2 through Perturbations in Human Lung Cell Metabolic Network. Life Sci. Alliance 2021, 4, e202000869. [Google Scholar] [CrossRef]
- Bannerman, B.P.; Júlvez, J.; Oarga, A.; Blundell, T.L.; Moreno, P.; Floto, R.A. Integrated Human/SARS-CoV-2 Metabolic Models Present Novel Treatment Strategies against COVID-19. Life Sci. Alliance 2021, 4, e202000954. [Google Scholar] [CrossRef]
- Lee, J.W.; Su, Y.; Baloni, P.; Chen, D.; Pavlovitch-Bedzyk, A.J.; Yuan, D.; Duvvuri, V.R.; Ng, R.H.; Choi, J.; Xie, J.; et al. Integrated Analysis of Plasma and Single Immune Cells Uncovers Metabolic Changes in Individuals with COVID-19. Nat. Biotechnol. 2022, 40, 110–120. [Google Scholar] [CrossRef]
- Shi, G.; Kenney, A.D.; Kudryashova, E.; Zani, A.; Zhang, L.; Lai, K.K.; Hall-Stoodley, L.; Robinson, R.T.; Kudryashov, D.S.; Compton, A.A.; et al. Opposing Activities of IFITM Proteins in SARS-CoV-2 Infection. EMBO J. 2021, 40, e106501. [Google Scholar] [CrossRef]
- Silvin, A.; Chapuis, N.; Dunsmore, G.; Goubet, A.-G.; Dubuisson, A.; Derosa, L.; Almire, C.; Hénon, C.; Kosmider, O.; Droin, N.; et al. Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell 2020, 182, 1401–1418.e18. [Google Scholar] [CrossRef] [PubMed]
- Abers, M.S.; Delmonte, O.M.; Ricotta, E.E.; Fintzi, J.; Fink, D.L.; de Jesus, A.A.A.; Zarember, K.A.; Alehashemi, S.; Oikonomou, V.; Desai, J.V.; et al. An Immune-Based Biomarker Signature Is Associated with Mortality in COVID-19 Patients. JCI Insight 2021, 6, e144455. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Li, J.; Wei, R.; Guidi, I.; Cozzuto, L.; Ponomarenko, J.; Prats-Ejarque, G.; Boix, E. Selective Cleavage of NcRNA and Antiviral Activity by RNase2/EDN in THP1-Induced Macrophages. Cell Mol. Life Sci. 2022, 79, 209. [Google Scholar] [CrossRef] [PubMed]
- Edman, J.C.; Ellis, L.; Blacher, R.W.; Roth, R.A.; Rutter, W.J. Sequence of Protein Disulphide Isomerase and Implications of Its Relationship to Thioredoxin. Nature 1985, 317, 267–270. [Google Scholar] [CrossRef]
- Haslbauer, J.D.; Matter, M.S.; Stalder, A.K.; Tzankov, A. Histomorphological Patterns of Regional Lymph Nodes in COVID-19 Lungs. Pathologe 2021, 42, 89–97. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, S.; Zaim, A.; Ibrahim, W.H. The Role of Iron in the Pathogenesis of COVID-19 and Possible Treatment with Lactoferrin and Other Iron Chelators. Biomed. Pharmacother. 2021, 136, 111228. [Google Scholar] [CrossRef]
- Muri, J.; Kopf, M. Redox Regulation of Immunometabolism. Nat. Rev. Immunol. 2021, 21, 363–381. [Google Scholar] [CrossRef]
- Chelliah, V.; Juty, N.; Ajmera, I.; Ali, R.; Dumousseau, M.; Glont, M.; Hucka, M.; Jalowicki, G.; Keating, S.; Knight-Schrijver, V.; et al. BioModels: Ten-Year Anniversary. Nucleic Acids Res. 2015, 43, D542–D548. [Google Scholar] [CrossRef] [PubMed]
- Raškevičius, V.; Mikalayeva, V.; Antanavičiūtė, I.; Ceslevičienė, I.; Skeberdis, V.A.; Kairys, V.; Bordel, S. Genome Scale Metabolic Models as Tools for Drug Design and Personalized Medicine. PLoS ONE 2018, 13, e0190636. [Google Scholar] [CrossRef] [Green Version]
- Bordel, S. Constraint Based Modeling of Metabolism Allows Finding Metabolic Cancer Hallmarks and Identifying Personalized Therapeutic Windows. Oncotarget 2018, 9, 19716–19729. [Google Scholar] [CrossRef] [Green Version]
- Okuyama, M.; Saburi, W.; Mori, H.; Kimura, A. α-Glucosidases and α-1,4-Glucan Lyases: Structures, Functions, and Physiological Actions. Cell Mol. Life Sci. 2016, 73, 2727–2751. [Google Scholar] [CrossRef] [PubMed]
- Krasikov, V.V.; Karelov, D.V.; Firsov, L.M. α-Glucosidases. Biochemistry 2001, 66, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef] [Green Version]
- Han, H.-S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.-H. Regulation of Glucose Metabolism from a Liver-Centric Perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoolwerth, A.C.; Smith, B.C.; Culpepper, R.M. Renal Gluconeogenesis. Min. Electrolyte Metab. 1988, 14, 347–361. [Google Scholar]
- Spinelli, J.B.; Rosen, P.C.; Sprenger, H.-G.; Puszynska, A.M.; Mann, J.L.; Roessler, J.M.; Cangelosi, A.L.; Henne, A.; Condon, K.J.; Zhang, T.; et al. Fumarate Is a Terminal Electron Acceptor in the Mammalian Electron Transport Chain. Science 2021, 374, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Nie, M.; Pang, H.; Wang, B.; Hu, J.; Meng, X.; Li, K.; Ran, X.; Long, Q.; Deng, H.; et al. Integrated Cytokine and Metabolite Analysis Reveals Immunometabolic Reprogramming in COVID-19 Patients with Therapeutic Implications. Nat. Commun. 2021, 12, 1618. [Google Scholar] [CrossRef]
- Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; et al. SARS-CoV2-Mediated Suppression of NRF2-Signaling Reveals Potent Antiviral and Anti-Inflammatory Activity of 4-Octyl-Itaconate and Dimethyl Fumarate. Nat. Commun. 2020, 11, 4938. [Google Scholar] [CrossRef]
- Blanc, M.; Hsieh, W.Y.; Robertson, K.A.; Kropp, K.A.; Forster, T.; Shui, G.; Lacaze, P.; Watterson, S.; Griffiths, S.J.; Spann, N.J.; et al. The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response. Immunity 2013, 38, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-Y.; Aliyari, R.; Chikere, K.; Li, G.; Marsden, M.D.; Smith, J.K.; Pernet, O.; Guo, H.; Nusbaum, R.; Zack, J.A.; et al. Interferon-Inducible Cholesterol-25-Hydroxylase Broadly Inhibits Viral Entry by Production of 25-Hydroxycholesterol. Immunity 2013, 38, 92–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luteijn, R.D.; Zaver, S.A.; Gowen, B.G.; Wyman, S.K.; Garelis, N.E.; Onia, L.; McWhirter, S.M.; Katibah, G.E.; Corn, J.E.; Woodward, J.J.; et al. SLC19A1 Transports Immunoreactive Cyclic Dinucleotides. Nature 2019, 573, 434–438. [Google Scholar] [CrossRef]
- Hiemstra, I.H.; Beijer, M.R.; Veninga, H.; Vrijland, K.; Borg, E.G.F.; Olivier, B.J.; Mebius, R.E.; Kraal, G.; den Haan, J.M.M. The Identification and Developmental Requirements of Colonic CD169+ Macrophages. Immunology 2014, 142, 269–278. [Google Scholar] [CrossRef]
- Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol. 1927, 8, 519–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newsholme, P.; Curi, R.; Gordon, S.; Newsholme, E.A. Metabolism of Glucose, Glutamine, Long-Chain Fatty Acids and Ketone Bodies by Murine Macrophages. Biochem. J. 1986, 239, 121–125. [Google Scholar] [CrossRef]
- Balyan, R.; Gautam, N.; Gascoigne, N.R.J. The Ups and Downs of Metabolism during the Lifespan of a T Cell. Int. J. Mol. Sci. 2020, 21, 7972. [Google Scholar] [CrossRef]
- Cordes, T.; Wallace, M.; Michelucci, A.; Divakaruni, A.S.; Sapcariu, S.C.; Sousa, C.; Koseki, H.; Cabrales, P.; Murphy, A.N.; Hiller, K.; et al. Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. J. Biol. Chem. 2016, 291, 14274–14284. [Google Scholar] [CrossRef] [Green Version]
- Palsson-McDermott, E.M.; Curtis, A.M.; Goel, G.; Lauterbach, M.A.R.; Sheedy, F.J.; Gleeson, L.E.; van den Bosch, M.W.M.; Quinn, S.R.; Domingo-Fernandez, R.; Johnston, D.G.W.; et al. Pyruvate Kinase M2 Regulates Hif-1α Activity and IL-1β Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metab. 2015, 21, 65–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Bossche, J.; O’Neill, L.A.; Menon, D. Macrophage Immunometabolism: Where Are We (Going)? Trends Immunol. 2017, 38, 395–406. [Google Scholar] [CrossRef]
- Kornberg, M.D.; Bhargava, P.; Kim, P.M.; Putluri, V.; Snowman, A.M.; Putluri, N.; Calabresi, P.A.; Snyder, S.H. Dimethyl Fumarate Targets GAPDH and Aerobic Glycolysis to Modulate Immunity. Science 2018, 360, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Qin, K.; Zhang, Y.; Jia, W.; Chen, Y.; Cheng, B.; Peng, L.; Chen, N.; Liu, Y.; Zhou, W.; et al. S-Glycosylation-Based Cysteine Profiling Reveals Regulation of Glycolysis by Itaconate. Nat. Chem. Biol. 2019, 15, 983–991. [Google Scholar] [CrossRef]
- Lampropoulou, V.; Sergushichev, A.; Bambouskova, M.; Nair, S.; Vincent, E.E.; Loginicheva, E.; Cervantes-Barragan, L.; Ma, X.; Huang, S.C.-C.; Griss, T.; et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016, 24, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi-Ponciano, K.; Vadillo, E.; Mayani, H.; Gonzalez-Bonilla, C.R.; Torres, J.; Majluf, A.; Flores-Padilla, G.; Wacher-Rodarte, N.; Galan, J.C.; Ferat-Osorio, E.; et al. Increased Expression of Hypoxia-Induced Factor 1α MRNA and Its Related Genes in Myeloid Blood Cells from Critically Ill COVID-19 Patients. Ann. Med. 2021, 53, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Motawi, T.K.; Shahin, N.N.; Awad, K.; Maghraby, A.S.; Abd-Elshafy, D.N.; Bahgat, M.M. Glycolytic and Immunological Alterations in Human U937 Monocytes in Response to H1N1 Infection. IUBMB Life 2020, 72, 2481–2498. [Google Scholar] [CrossRef] [PubMed]
- Hitosugi, T.; Zhou, L.; Fan, J.; Elf, S.; Zhang, L.; Xie, J.; Wang, Y.; Gu, T.-L.; Alečković, M.; LeRoy, G.; et al. Tyr26 Phosphorylation of PGAM1 Provides a Metabolic Advantage to Tumours by Stabilizing the Active Conformation. Nat. Commun. 2013, 4, 1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nechipurenko, Y.D.; Semyonov, D.A.; Lavrinenko, I.A.; Lagutkin, D.A.; Generalov, E.A.; Zaitceva, A.Y.; Matveeva, O.V.; Yegorov, Y.E. The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Biology 2021, 10, 852. [Google Scholar] [CrossRef]
- Mastaglio, S.; Ruggeri, A.; Risitano, A.M.; Angelillo, P.; Yancopoulou, D.; Mastellos, D.C.; Huber-Lang, M.; Piemontese, S.; Assanelli, A.; Garlanda, C.; et al. The First Case of COVID-19 Treated with the Complement C3 Inhibitor AMY-101. Clin. Immunol. 2020, 215, 108450. [Google Scholar] [CrossRef] [PubMed]
- Kulasekararaj, A.G.; Lazana, I.; Large, J.; Posadas, K.; Eagleton, H.; Lord Villajin, J.; Zuckerman, M.; Gandhi, S.; Marsh, J.C.W. Terminal Complement Inhibition Dampens the Inflammation during COVID-19. Br. J. Haematol. 2020, 190, e141–e143. [Google Scholar] [CrossRef]
- Diurno, F.; Numis, F.G.; Porta, G.; Cirillo, F.; Maddaluno, S.; Ragozzino, A.; De Negri, P.; Di Gennaro, C.; Pagano, A.; Allegorico, E.; et al. Eculizumab Treatment in Patients with COVID-19: Preliminary Results from Real Life ASL Napoli 2 Nord Experience. Eur. Rev. Med. Pharm. Sci. 2020, 24, 4040–4047. [Google Scholar] [CrossRef]
- World Health Organization. Clinical Management of Severe Acute Respiratory Infection (SARI) When COVID-19 Disease Is Suspected: Interim Guidance, 13 March 2020; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Ovens, M.J.; Davies, A.J.; Wilson, M.C.; Murray, C.M.; Halestrap, A.P. AR-C155858 Is a Potent Inhibitor of Monocarboxylate Transporters MCT1 and MCT2 That Binds to an Intracellular Site Involving Transmembrane Helices 7–10. Biochem. J. 2010, 425, 523–530. [Google Scholar] [CrossRef]
- Letavernier, E.; Daudon, M. Stiripentol Identifies a Therapeutic Target to Reduce Oxaluria. Curr. Opin. Nephrol. Hypertens. 2020, 29, 394–399. [Google Scholar] [CrossRef]
- Robinson, G.A.; Waddington, K.E.; Pineda-Torra, I.; Jury, E.C. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function. Front. Immunol. 2017, 8, 1636. [Google Scholar] [CrossRef] [Green Version]
- Varshney, P.; Yadav, V.; Saini, N. Lipid Rafts in Immune Signalling: Current Progress and Future Perspective. Immunology 2016, 149, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Balram, A.; Li, W. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes. Int. J. Mol. Sci. 2021, 22, 1816. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.B.; Dey, S.; Shi, W.Y.; Thomas, K.; Hutchins, G.M. Accumulation of Glycosphingolipids in Human Atherosclerotic Plaque and Unaffected Aorta Tissues. Glycobiology 1997, 7, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Nagy, C.; Haschemi, A. Time and Demand Are Two Critical Dimensions of Immunometabolism: The Process of Macrophage Activation and the Pentose Phosphate Pathway. Front. Immunol. 2015, 6, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, R.; Majoros, I.; Misra, A.C.; Koch, A.E.; Campbell, P.; Marotte, H.; Bergin, I.L.; Cao, Z.; Goonewardena, S.; Morry, J.; et al. Folate Receptor-Targeted Dendrimer-Methotrexate Conjugate for Inflammatory Arthritis. J. Biomed. Nanotechnol. 2015, 11, 1431–1441. [Google Scholar] [CrossRef]
- Stephensen, C.B. Vitamin a, Infection, and Immune Function. Annu. Rev. Nutr. 2001, 21, 167–192. [Google Scholar] [CrossRef]
- Soye, K.J.; Trottier, C.; Richardson, C.D.; Ward, B.J.; Miller, W.H., Jr. RIG-I Is Required for the Inhibition of Measles Virus by Retinoids. PLoS ONE 2011, 6, e22323. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, Y.; Xu, J.; Su, L.; Wang, W. Effect of All-Trans-Retinoic Acid on Enterovirus 71 Infection in Vitro. Br. J. Nutr. 2014, 111, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Chu, H.; Chan, J.F.-W.; Ye, Z.-W.; Wen, L.; Yan, B.; Lai, P.-M.; Tee, K.-M.; Huang, J.; Chen, D.; et al. SREBP-Dependent Lipidomic Reprogramming as a Broad-Spectrum Antiviral Target. Nat. Commun. 2019, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; et al. Bidirectional Transport of Amino Acids Regulates MTOR and Autophagy. Cell 2009, 136, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Hudalla, H.; Michael, Z.; Christodoulou, N.; Willis, G.R.; Fernandez-Gonzalez, A.; Filatava, E.J.; Dieffenbach, P.; Fredenburgh, L.E.; Stearman, R.S.; Geraci, M.W.; et al. Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2019, 61, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-N.; Wang, P.; Mao, Y.-M.; Dan, Y.-L.; Wu, Q.; Li, X.-M.; Wang, D.-G.; Davis, C.; Hu, W.; Pan, H.-F. Potential Role of Melatonin in Autoimmune Diseases. Cytokine Growth Factor Rev. 2019, 48, 1–10. [Google Scholar] [CrossRef]
- Havranek, O.; Xu, J.; Köhrer, S.; Wang, Z.; Becker, L.; Comer, J.M.; Henderson, J.; Ma, W.; Man Chun Ma, J.; Westin, J.R.; et al. Tonic B-Cell Receptor Signaling in Diffuse Large B-Cell Lymphoma. Blood 2017, 130, 995–1006. [Google Scholar] [CrossRef] [Green Version]
- Naghashpour, M.; Ghiassian, H.; Mobarak, S.; Adelipour, M.; Piri, M.; Seyedtabib, M.; Golabi, S. Profiling Serum Levels of Glutathione Reductase and Interleukin-10 in Positive and Negative-PCR COVID-19 Outpatients: A Comparative Study from Southwestern Iran. J. Med. Virol. 2022, 94, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Goud, P.T.; Bai, D.; Abu-Soud, H.M. A Multiple-Hit Hypothesis Involving Reactive Oxygen Species and Myeloperoxidase Explains Clinical Deterioration and Fatality in COVID-19. Int. J. Biol. Sci. 2021, 17, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Wilk, A.J.; Rustagi, A.; Zhao, N.Q.; Roque, J.; Martínez-Colón, G.J.; McKechnie, J.L.; Ivison, G.T.; Ranganath, T.; Vergara, R.; Hollis, T.; et al. A Single-Cell Atlas of the Peripheral Immune Response in Patients with Severe COVID-19. Nat. Med. 2020, 26, 1070–1076. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinformatics 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Huber, W. Differential Expression Analysis for Sequence Count Data. Nat. Prec. 2010, 11, R106. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
Reaction | Subsystem | Reaction Formula Name | Differential Flux | Reaction Direction |
---|---|---|---|---|
HMR_4421 | Purine metabolism | PEP[c] + dADP[c] --> dATP[c] + pyruvate[c] | 9.99 | Forward |
HMR_6614 | Pyrimidine metabolism | dTTP[c] + dADP[c] <==> dTDP[c] + dATP[c] | 8.81 | Reverse |
HMR_5473 | Transport | glutamine[s] + alanine[c] <==> glutamine[c] + alanine[s] | 7.89 | Reverse |
HMR_7643 | Transport | D-alanine[c] + glutamine[s] <==> D-alanine[s] + glutamine[c] | 7.81 | Reverse |
HMR_4006 | Pyrimidine metabolism | UTP[c] + ADP[c] <==> UDP[c] + ATP[c] | 7.68 | Forward |
HMR_7644 | Transport | D-alanine[c] + glycine[s] <==> D-alanine[s] + glycine[c] | 7.42 | Forward |
HMR_8734 | Transport | D-serine[c] + glycine[s] <==> D-serine[s] + glycine[c] | 6.68 | Reverse |
HMR_5458 | Transport | alanine[c] + glycine[s] <==> alanine[s] + glycine[c] | 5.62 | Forward |
HMR_8733 | Transport | D-serine[c] + glutamine[s] <==> D-serine[s] + glutamine[c] | 5.62 | Forward |
HMR_5497 | Transport | threonine[s] + glutamine[c] <==> threonine[c] + glutamine[s] | 5.61 | Reverse |
HMR_6040 | Transport | retinoate[s] + formate[c] <==> retinoate[c] + formate[s] | 5.39 | Forward |
HMR_4379 | Glycolysis/Gluconeogenesis | fructose-6-phosphate[c] + ATP[c] --> fructose-1,6-bisphosphate[c] + ADP[c] | 5.31 | Forward |
HMR_1917 | Transport | cholesterol[c] <==> cholesterol[l] | 5.25 | Forward |
HMR_7885 | Nucleotide metabolism | CTP[n] + ADP[n] <==> CDP[n] + ATP[n] | 5.15 | Forward |
HMR_6627 | Pyrimidine metabolism | PEP[c] + dTDP[c] <==> dTTP[c] + pyruvate[c] | 5.09 | Reverse |
HMR_5492 | Transport | cysteine[c] + glutamine[s] <==> cysteine[s] + glutamine[c] | 4.91 | Forward |
HMR_4373 | Glycolysis/Gluconeogenesis | 1,3-bisphospho-D-glycerate[c] + NADH[c] + H+[c] <==> GAP[c] + NAD+[c] + Pi[c] | 4.66 | Reverse |
HMR_4365 | Glycolysis/Gluconeogenesis | 2-phospho-D-glycerate[c] <==> 3-phospho-D-glycerate[c] | 4.65 | Reverse |
HMR_5460 | Transport | serine[s] + glycine[c] <==> serine[c] + glycine[s] | 4.61 | Forward |
HMR_4375 | Glycolysis/Gluconeogenesis | GAP[c] + DHAP[c] <==> fructose-1,6-bisphosphate[c] | 4.60 | Reverse |
HMR_4363 | Glycolysis/Gluconeogenesis | 2-phospho-D-glycerate[c] <==> PEP[c] + H2O[c] | 4.56 | Forward |
HMR_8450 | Nucleotide metabolism | dGDP[c] + dCDP[c] <==> dGTP[c] + dCMP[c] | 4.08 | Reverse |
HMR_4368 | Glycolysis/Gluconeogenesis | 1,3-bisphospho-D-glycerate[c] + ADP [c] <==> 3-phospho-D-glycerate[c] + ATP [c] | 4.00 | Forward |
HMR_6041 | Transport | (R)-3-hydroxybutanoate[c] + formate[s] <==> (R)-3-hydroxybutanoate[s] + formate[c] | 3.99 | Forward |
HMR_5516 | Transport | leucine[c] + methionine[s] <==> leucine[s] + methionine[c] | 3.98 | Forward |
Reaction | Subsystem | Reaction Formula Name | Differential Flux | Reaction Direction |
---|---|---|---|---|
HMR_7804 | Transport | dCDP[c] + dADP[m] <==> dCDP[m] + dADP[c] | −1.08 | Reverse |
HMR_6006 | Transport | 2-hydroxybutyrate[c] + acetoacetate[s] <==> 2-hydroxybutyrate[s] + acetoacetate[c] | −1.10 | Forward |
HMR_4863 | Transport | succinate[c] + sulfate[m] <==> succinate[m] + sulfate[c] | −1.13 | Reverse |
HMR_7808 | Transport | dTDP[c] + dUDP[m] <==> dUDP[c] + dTDP[m] | −1.13 | Reverse |
HMR_4687 | Tyrosine metabolism | phenylacetate[m] + NADPH[m] + H+[m] <==> phenylacetaldehyde[m] + NADP+[m] + H2O[m] | −1.51 | Forward |
HMR_4143 | Central carbon metabolism | pyruvate[m] + HCO3-[m] + ATP[m] + H+[m] --> OAA[m] + Pi[m] + ADP[m] | −1.51 | Forward |
HMR_5470 | Transport | threonine[s] + glycine[c] <==> threonine[c] + glycine[s] | −1.52 | Reverse |
HMR_7892 | Nucleotide metabolism | dATP[n] + ADP[n] <==> dADP[n] + ATP[n] | −1.63 | Reverse |
HMR_6004 | Transport | acetoacetate[s] + L-lactate[c] <==> acetoacetate[c] + L-lactate[s] | −1.66 | Forward |
HMR_4776 | Arginine and proline metabolism | AKG[c] + proline[c] + O2[c] --> trans-4-hydroxy-L-proline[c] + succinate[c] + CO2[c] | −1.70 | - |
HMR_4652 | Tricarboxylic acid cycle | fumarate[m] + ubiquinol (UQH2) [m] <==> ubiquinone (UQ)[m] + succinate[m] | −1.73 | - |
HMR_6025 | Transport | acetoacetate[s] + AKG[c] <==> acetoacetate[c] + AKG[s] | −1.74 | Reverse |
HMR_8464 | Nucleotide metabolism | CDP[n] + GDP[n] <==> GTP[n] + CMP[n] | −1.76 | Forward |
HMR_4787 | Arginine and proline metabolism | 4-hydroxy-2-oxoglutarate[m] --> glyoxalate[m] + pyruvate[m] | −1.89 | - |
HMR_6918 | Electron transport chain | 2 ferricytochrome C[m] + ubiquinol[m] + 2 H+[m] --> 2 ferrocytochrome C[m] + ubiquinone[m] + 4 H+[c] | −1.91 | Forward |
HMR_8743 | Tricarboxylic acid cycle | fumarate[m] + FADH2[m] <==> succinate[m] + FAD[m] | −2.08 | - |
HMR_5092 | Transport | isoleucine[c] <==> isoleucine[s] | −2.12 | Reverse |
HMR_4785 | Arginine and proline metabolism | L-1-pyrroline-3-hydroxy-5-carboxylate[m] + NADP+[m] + 2 H2O[m] --> L-erythro-4-hydroxyglutamate[m] + NADPH[m] + H+[m] | −2.23 | Forward |
HMR_4242 | Aromatic amino acid metabolism | glutaryl-CoA[m] + ubiquinone[m] --> crotonyl-CoA[m] + ubiquinol[m] + CO2[m] | −2.29 | Reverse |
HMR_3804 | Alanine aspartate and glutamate metabolism | AKG[m] + NH3[m] + NADPH[m] + H+[m] <==> glutamate[m] + NADP+[m] + H2O[m] | −2.38 | Reverse |
HMR_6053 | Transport | (R)-3-hydroxybutanoate[c] + retinoate[s] <==> (R)-3-hydroxybutanoate[s] + retinoate[c] | −2.39 | Forward |
HMR_6916 | Electron transport chain | Pi[m] + ADP[m] + 4 H+[c] --> ATP[m] + 4 H+[m] + H2O[m] | −2.41 | Forward |
HMR_4243 | Phenylalanine, tyrosine and tryptophan biosynthesis | glutaryl-CoA[m] + FAD[m] --> crotonyl-CoA[m] + FADH2[m] + CO2[m] | −2.59 | Reverse |
HMR_4139 | Tricarboxylic acid cycle | OAA[c] + NADH[c] + H+[c] <==> malate[c] + NAD+[c] | −2.68 | Forward |
HMR_5580 | Transport | histidine[c] + lysine[s] <==> histidine[s] + lysine[c] | −2.78 | Forward |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Liu, Y.; Ruan, Y.; Ge, L.; Zhang, Q. Reconstructed Genome-Scale Metabolic Model Characterizes Adaptive Metabolic Flux Changes in Peripheral Blood Mononuclear Cells in Severe COVID-19 Patients. Int. J. Mol. Sci. 2022, 23, 12400. https://doi.org/10.3390/ijms232012400
Tang H, Liu Y, Ruan Y, Ge L, Zhang Q. Reconstructed Genome-Scale Metabolic Model Characterizes Adaptive Metabolic Flux Changes in Peripheral Blood Mononuclear Cells in Severe COVID-19 Patients. International Journal of Molecular Sciences. 2022; 23(20):12400. https://doi.org/10.3390/ijms232012400
Chicago/Turabian StyleTang, Hao, Yanguang Liu, Yao Ruan, Lingqiao Ge, and Qingye Zhang. 2022. "Reconstructed Genome-Scale Metabolic Model Characterizes Adaptive Metabolic Flux Changes in Peripheral Blood Mononuclear Cells in Severe COVID-19 Patients" International Journal of Molecular Sciences 23, no. 20: 12400. https://doi.org/10.3390/ijms232012400
APA StyleTang, H., Liu, Y., Ruan, Y., Ge, L., & Zhang, Q. (2022). Reconstructed Genome-Scale Metabolic Model Characterizes Adaptive Metabolic Flux Changes in Peripheral Blood Mononuclear Cells in Severe COVID-19 Patients. International Journal of Molecular Sciences, 23(20), 12400. https://doi.org/10.3390/ijms232012400