Transport in the Brain Extracellular Space: Diffusion, but Which Kind?
Abstract
:1. Introduction
2. ECS Transport Assessment
2.1. MRI-Based Diffusion Studies
2.2. Single Particle Tracking
3. Physics of Diffusion: What Can Be Searched for in Brain’s ECS?
3.1. Gaussian (Fickian) Diffusion and Point-Source Paradigm
3.2. Non-Gaussianity in Diffusion
3.2.1. Ito versus Hänggi–Klimontovich Interpretation
3.2.2. Subdiffusion
3.2.3. Brownian Yet Non-Gaussian Diffusion: Diffusing Diffusivity and Quenched Spacial Heterogeneity
4. Evidence of Non-Classical Diffusion in Brain
4.1. Where Can It Be Caught
4.2. MRI Results: Brownian Yet Non-Gaussian Diffusion?
4.3. SPT Results: Anomalous Diffusion of Transient Processes?
5. Time-Dependent Diffusivity in the Physiological Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | Apparent diffusion coefficient |
BnG | Brownian yet non-Gaussian diffusion |
CSF | Cerebral spinal fluid |
CTRW | Continuous-time random walk |
DW-MRI | Diffusion-weighed MRI Magnetic resonance imaging |
ECS | Extracellular space |
ISF | Interstitial fluid |
MRI | Magnetic resonance imaging |
MSD | mean-squared displacement |
SPT | Single-particle tracking |
References
- Mokri, B. The Monro–Kellie hypothesis: Applications in CSF volume depletion. Neurology 2001, 56, 1746–1748. [Google Scholar] [CrossRef]
- Ma, Q.; Ries, M.; Decker, Y.; Müller, A.; Riner, C.; Bücker, A.; Fassbender, K.; Detmar, M.; Proulx, S.T. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 2019, 137, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Min Rivas, F.; Liu, J.; Martell, B.C.; Du, T.; Mestre, H.; Nedergaard, M.; Tithof, J.; Thomas, J.H.; Kelley, D.H. Surface periarterial spaces of the mouse brain are open, not porous. J. R. Soc. Interface 2020, 17, 20200593. [Google Scholar] [CrossRef]
- Weed, L.H. The absorption of cerebrospinal fluid into the venous system. Am. J. Anat. 1923, 31, 191–221. [Google Scholar] [CrossRef]
- Cserr, H.F.; DePasquale, M.; Patlak, C.S. Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am. J.-Physiol.-Ren. Physiol. 1987, 253, F522–F529. [Google Scholar] [CrossRef] [PubMed]
- Flexner, L.B. Some problems of the origin, circulation and absorption of the cerebrospinal fluid. Q. Rev. Biol. 1933, 8, 397–422. [Google Scholar] [CrossRef]
- Schley, D.; Carare-Nnadi, R.; Please, C.; Perry, V.; Weller, R. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 2006, 238, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep drives metabolite clearance from the adult brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef] [Green Version]
- Iliff, J.J.; Wang, M.; Zeppenfeld, D.M.; Venkataraman, A.; Plog, B.A.; Liao, Y.; Deane, R.; Nedergaard, M. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J. Neurosci. 2013, 33, 18190–18199. [Google Scholar] [CrossRef]
- Iliff, J.J.; Lee, H.; Yu, M.; Feng, T.; Logan, J.; Nedergaard, M.; Benveniste, H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Investig. 2013, 123, 1299–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, N.J.; Pizzo, M.E.; Preston, J.E.; Janigro, D.; Thorne, R.G. The role of brain barriers in fluid movement in the CNS: Is there a ‘glymphatic’system? Acta Neuropathol. 2018, 135, 387–407. [Google Scholar] [CrossRef] [Green Version]
- Jin, B.J.; Smith, A.J.; Verkman, A.S. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J. Gen. Physiol. 2016, 148, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.J.; Yao, X.; Dix, J.A.; Jin, B.J.; Verkman, A.S. Test of the’glymphatic’hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 2017, 6, e27679. [Google Scholar] [CrossRef] [PubMed]
- Wolak, D.J.; Thorne, R.G. Diffusion of macromolecules in the brain: Implications for drug delivery. Mol. Pharm. 2013, 10, 1492–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holter, K.E.; Kehlet, B.; Devor, A.; Sejnowski, T.J.; Dale, A.M.; Omholt, S.W.; Ottersen, O.P.; Nagelhus, E.A.; Mardal, K.A.; Pettersen, K.H. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl. Acad. Sci. USA 2017, 114, 9894–9899. [Google Scholar] [CrossRef] [Green Version]
- Asgari, M.; De Zélicourt, D.; Kurtcuoglu, V. How astrocyte networks may contribute to cerebral metabolite clearance. Sci. Rep. 2015, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.J.; Verkman, A.S. The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: Game changer or unproven speculation? FASEB J. 2018, 32, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Hladky, S.B.; Barrand, M.A. The glymphatic hypothesis: The theory and the evidence. Fluids Barriers CNS 2022, 19, 9. [Google Scholar] [CrossRef]
- Kelley, D.H.; Bohr, T.; Hjorth, P.G.; Holst, S.C.; Hrabětová, S.; Kiviniemi, V.; Lilius, T.; Lundgaard, I.; Mardal, K.A.; Martens, E.A.; et al. The glymphatic system: Current understanding and modeling. iScience 2022, 25, 104987. [Google Scholar]
- Nicholson, C.; Syková, E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 1998, 21, 207–215. [Google Scholar] [CrossRef]
- Nicholson, C. Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 2001, 64, 815–884. [Google Scholar] [CrossRef]
- Hrabětová, S.; Nicholson, C. Contribution of dead-space microdomains to tortuosity of brain extracellular space. Neurochem. Int. 2004, 45, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Thorne, R.G.; Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. USA 2006, 103, 5567–5572. [Google Scholar] [CrossRef] [Green Version]
- Syková, E.; Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 2008, 88, 1277–1340. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, C.; Kamali-Zare, P.; Tao, L. Brain extracellular space as a diffusion barrier. Comput. Vis. Sci. 2011, 14, 309–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, C.; Hrabětová, S. Brain Extracellular Space: The Final Frontier of Neuroscience. Biophys. J. 2017, 113, 2133–2142. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, C. The secret world in the gaps between brain cells. Phys. Today 2022, 75, 26–32. [Google Scholar] [CrossRef]
- Metzler, R. Superstatistics and non-Gaussian diffusion. Eur. Phys. J. Spec. Top. 2020, 229, 711–728. [Google Scholar] [CrossRef] [Green Version]
- Tønnesen, J.; Inavalli, V.V.G.K.; Nägerl, U.V. Super-Resolution Imaging of the Extracellular Space in Living Brain Tissue. Cell 2018, 172, 1108–1121. [Google Scholar] [CrossRef] [Green Version]
- Soria, F.N.; Miguelez, C.; Pe nagarikano, O.; Tønnesen, J. Current techniques for investigating the brain extracellular space. Front. Neurosci. 2020, 14, 570750. [Google Scholar] [CrossRef] [PubMed]
- Yokel, R.A. Nanoparticle brain delivery: A guide to verification methods. Nanomedicine 2020, 15, 409–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselev, V.G. Fundamentals of diffusion MRI physics. NMR Biomed. 2017, 30, e3602. [Google Scholar] [CrossRef] [PubMed]
- Novikov, D.S.; Fieremans, E.; Jespersen, S.N.; Kiselev, V.G. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR Biomed. 2019, 32, e3998. [Google Scholar] [CrossRef] [PubMed]
- Assaf, Y.; Barazanyc, D. Chapter Diffusion as a Probe of Tissue Microstructure. In Advances in Magnetic Resonance Technology and Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 157–173. [Google Scholar] [CrossRef]
- Stikov, N.; Alexander, D.C.; Pike, G.B. Neuroimage special issue on microstructure—Editorial. NeuroImage 2018, 182, 1–2. [Google Scholar] [CrossRef]
- Marty, B.; Djemaï, B.; Robic, C.; Port, M.; Robert, P.; Valette, J.; Boumezbeur, F.; Le Bihan, D.; Lethimonnier, F.; Mériaux, S. Hindered diffusion of MRI contrast agents in rat brain extracellular micro-environment assessed by acquisition of dynamic T1 and T2 maps. Contrast Media Mol. Imaging 2013, 8, 12–19. [Google Scholar] [CrossRef]
- Han, H.; Shi, C.; Fu, Y.; Zuo, L.; Lee, K.; He, Q.; Han, H. A Novel MRI Tracer-Based Method for Measuring Water Diffusion in the Extracellular Space of the Rat Brain. IEEE J. Biomed. Health Inform. 2014, 18, 978–983. [Google Scholar] [CrossRef]
- Mériaux, S.; Conti, A.; Larrat, B. Assessing Diffusion in the Extra-Cellular Space of Brain Tissue by Dynamic MRI Mapping of Contrast Agent Concentrations. Front. Phys. 2018, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Conti, A.; Magnin, R.; Gerstenmayer, M.; Tsapis, N.; Dumont, E.; Tillement, O.; Lux, F.; Le Bihan, D.; Mériaux, S.; Della Penna, S.; et al. Empirical and Theoretical Characterization of the Diffusion Process of Different Gadolinium-Based Nanoparticles within the Brain Tissue after Ultrasound-Induced Permeabilization of the Blood-Brain Barrier. Contrast Media Mol. Imaging 2019, 2019, 6341545. [Google Scholar] [CrossRef]
- Manzo, C.; Garcia-Parajo, M.F. A review of progress in single particle tracking: From methods to biophysical insights. Rep. Prog. Phys. 2015, 78, 124601. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Tauzin, L.J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C.F. Single particle tracking: From theory to biophysical applications. Chem. Rev. 2017, 117, 7331–7376. [Google Scholar] [CrossRef]
- Hrabetova, S.; Cognet, L.; Rusakov, D.A.; Nägerl, U.V. Unveiling the extracellular space of the brain: From super-resolved microstructure to in vivo function. J. Neurosci. 2018, 38, 9355–9363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z. Advances in surface-coated single-walled carbon nanotubes as near-infrared photoluminescence emitters for single-particle tracking applications in biological environments. Polym. J. 2018, 50, 589–601. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, L.; Lamb, D.C.; Chen, H.J.; Hu, Y.; Wang, H.P.; Pang, D.W.; Liu, S.L. Real-time dissecting the dynamics of drug transportation in the live brain. Nano Lett. 2020, 21, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Kisley, L. Super-resolution fluorescence imaging of extracellular environments. Spectrochim. Acta Mol. Biomol. Spectrosc. 2021, 257, 119767. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.; Shackelford, D.; Ferreira Pontes, H.; Ball, B.; Nance, E. Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age. ACS Nano 2021, 15, 8559–8573. [Google Scholar] [CrossRef] [PubMed]
- Paviolo, C.; Soria, F.N.; Ferreira, J.S.; Lee, A.; Groc, L.; Bezard, E.; Cognet, L. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods 2020, 174, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Soria, F.N.; Paviolo, C.; Doudnikoff, E.; Arotcarena, M.L.; Lee, A.; Danné, N.; Mandal, A.K.; Gosset, P.; Dehay, B.; Groc, L.; et al. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nat. Commun. 2020, 11, 3440. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ge, X.; Xiong, H.; Qin, Z. Toward dynamic, anisotropic, high-resolution, and functional measurement in the brain extracellular space. Neurophotonics 2022, 9, 032210. [Google Scholar] [CrossRef]
- Godin, A.G.; Varela, J.A.; Gao, Z.; Danné, N.; Dupuis, J.P.; Lounis, B.; Groc, L.; Cognet, L. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 2017, 12, 238–243. [Google Scholar] [CrossRef]
- Postnikov, E.B.; Sokolov, I.M. Reconstruction of substrate’s diffusion landscape by the wavelet analysis of single particle diffusion tracks. Phys. A 2019, 533, 122102. [Google Scholar] [CrossRef] [Green Version]
- Meroz, Y.; Sokolov, I.M. A toolbox for determining subdiffusive mechanisms. Phys. Rep. 2015, 573, 1–29. [Google Scholar] [CrossRef]
- Rusakov, D.A.; Kullmann, D.M. Geometric and viscous components of the tortuosity of the extracellular space in the brain. Proc. Natl. Acad. Sci. USA 1998, 95, 8975–8980. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Schwartz, D.K. Nanoparticle tracking to probe transport in porous media. Accounts Chem. Res. 2020, 53, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.T.Q.S.; do Rocio Cardoso, M.; Veronese, C.M.P.; Mazer, W. Tortuosity: A brief review. Mater. Today Proc. 2022, 58, 1344–1349. [Google Scholar] [CrossRef]
- Axpe, E.; Orive, G.; Franze, K.; Appel, E.A. Towards brain-tissue-like biomaterials. Nat. Commun. 2020, 11, 3423. [Google Scholar] [CrossRef]
- Rauti, R.; Renous, N.; Maoz, B.M. Mimicking the Brain Extracellular Matrix in Vitro: A Review of Current Methodologies and Challenges. Israel J. Chem. 2020, 60, 1141–1151. [Google Scholar] [CrossRef]
- Kajtez, J.; Nilsson, F.; Fiorenzano, A.; Parmar, M.; Emnéus, J. 3D biomaterial models of human brain disease. Neurochem. Int. 2021, 147, 105043. [Google Scholar] [CrossRef] [PubMed]
- Postnikov, E.B.; Namykin, A.A.; Semyachkina-Glushkovskaya, O.V.; Postnov, D.E. Diffusion assessment through image processing: Beyond the point-source paradigm. Eur. Phys. J. Plus 2021, 136, 480. [Google Scholar] [CrossRef]
- Xiao, F.; Hrabe, J.; Hrabetova, S. Anomalous Extracellular Diffusion in Rat Cerebellum. Biophys. J. 2015, 108, 2384–2395. [Google Scholar] [CrossRef]
- O’Shaughnessy, B.; Procaccia, I. Analytical Solutions for Diffusion on Fractal Objects. Phys. Rev. Lett. 1985, 54, 455. [Google Scholar] [CrossRef] [PubMed]
- Postnikov, E.B.; Postnov, D.E. An image processing method for characterizing diffusivity in brain’s parenchyma: A case study of significantly non-uniform structures. In Proceedings of the 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Shanghai, China, 21–24 November 2019; pp. 21–22. [Google Scholar] [CrossRef]
- Metzler, R.; Chechkin, A.V. Non-Gaussianity in stochastic transport: Phenomenology and modelling. arXiv 2022, arXiv:2204.01048. [Google Scholar]
- Van Milligen, B.P.; Bons, P.D.; Carreras, B.A.; Sanchez, R. On the applicability of Fick’s law to diffusion in inhomogeneous systems. Eur. J. Phys. 2005, 26, 913. [Google Scholar] [CrossRef]
- Bauman, M.A.; Gillies, G.T.; Raghavan, R.; Brady, M.L.; Pedain, C. Physical characterization of neurocatheter performance in a brain phantom gelatin with nanoscale porosity: Steady-state and oscillatory flows. Nanotechnology 2004, 15, 92–97. [Google Scholar] [CrossRef]
- Navarro-Lozoya, M.; Kennedy, M.S.; Dean, D.; Rodriguez-Devora, J.I. Development of phantom material that resembles compression properties of human brain tissue for training models. Materialia 2019, 8, 100438. [Google Scholar] [CrossRef]
- Higgins, M.; Leung, S.; Radacsi, N. 3D Printing Surgical Phantoms and their Role in the Visualization of Medical Procedures. Ann. 3D Print. Med. 2022, 6, 100057. [Google Scholar] [CrossRef]
- Postnikov, E.B.; Chechkin, A.; Sokolov, I.M. Brownian yet non-Gaussian diffusion in heterogeneous media: From superstatistics to homogenization. New J. Phys. 2020, 22, 063046. [Google Scholar] [CrossRef]
- Sokolov, I.M. Itô, Stratonovich, Hänggi and all the rest: The thermodynamics of interpretation. Chem. Phys. 2010, 375, 359–363. [Google Scholar] [CrossRef]
- Mu noz-Gil, G.; Volpe, G.; Garcia-March, M.A.; Aghion, E.; Argun, A.; Hong, C.B.; Bland, T.; Bo, S.; Conejero, J.A.; Firbas, N.; et al. Objective comparison of methods to decode anomalous diffusion. Nat. Commun. 2021, 12, 6253. [Google Scholar] [CrossRef]
- Mogre, S.S.; Brown, A.I.; Koslover, E.F. Getting around the cell: Physical transport in the intracellular world. Phys. Biol. 2020, 17, 061003. [Google Scholar] [CrossRef]
- Wang, W.; Metzler, R.; Cherstvy, A.G. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: Overview of related experimental observations and models. Phys. Chem. Chem. Phys. 2022, 24, 18482–18504. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Simo, G.M.; Gao, T.; Alhindi, N.; Xu, N.; Graham, D.J.; Gamble, L.J.; Nance, E. Surfactants influence polymer nanoparticle fate within the brain. Biomaterials 2021, 277, 121086. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Klafter, J.; Sokolov, I.M. First Steps in Random Walks: From Tools to Applications; Oxford University Press: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Sokolov, I.M. Models of anomalous diffusion in crowded environments. Soft Matter 2012, 8, 9043–9052. [Google Scholar] [CrossRef]
- Wang, B.; Kuo, J.; Bae, S.C.; Granick, S. When Brownian diffusion is not Gaussian. Nat. Mater. 2012, 11, 481–485. [Google Scholar] [CrossRef]
- Beck, C.; Cohen, E.G.D. Superstatistics. Physica A 2003, 322, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Chubynsky, M.V.; Slater, G.W. Diffusing diffusivity: A model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett. 2014, 113, 098302. [Google Scholar] [CrossRef] [Green Version]
- Chechkin, A.V.; Seno, F.; Metzler, R.; Sokolov, I.M. Brownian yet non-Gaussian diffusion: From superstatistics to subordination of diffusing diffusivities. Phys. Rev. X 2017, 7, 021002. [Google Scholar] [CrossRef] [Green Version]
- Manzo, C.; Torreno-Pina, J.A.; Massignan, P.; Lapeyre Jr, G.J.; Lewenstein, M.; Parajo, M.F.G. Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity. Phys. Rev. X 2015, 5, 011021. [Google Scholar] [CrossRef]
- Ślȩzak, J.; Burov, S. From diffusion in compartmentalized media to non-Gaussian random walks. Sci. Rep. 2021, 11, 5101. [Google Scholar] [CrossRef]
- Wolak, D.J.; Pizzo, M.E.; Thorne, R.G. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging. J. Control. Release 2015, 197, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco-Pozo, A.; Sokolov, I.M. Convergence to a Gaussian by narrowing of central peak in Brownian yet non-Gaussian diffusion in disordered environments. Phys. Rev. Lett. 2021, 127, 120601. [Google Scholar] [CrossRef]
- Hagberg, G.E.; Mamedov, I.; Power, A.; Beyerlein, M.; Merkle, H.; Kiselev, V.G.; Dhingra, K.; Kubìček, V.; Angelovski, G.; Logothetis, N.K. Diffusion properties of conventional and calcium-sensitive MRI contrast agents in the rat cerebral cortex. Contrast Media Mol. Imaging 2014, 9, 71–82. [Google Scholar] [CrossRef]
- Pastore, R.; Ciarlo, A.; Pesce, G.; Greco, F.; Sasso, A. Rapid Fickian yet non-Gaussian diffusion after subdiffusion. Phys. Rev. Lett. 2021, 126, 158003. [Google Scholar] [CrossRef]
- Weiss, G.H.; Havlin, S. Some properties of a random walk on a comb structure. Physica A 1986, 134, 474–482. [Google Scholar] [CrossRef]
- Arkhincheev, V.E.; Baskin, E.M. Anomalous diffusion and drift in a comb model of percolation clusters. Sov. Phys. JETP 1991, 73, 161–300. [Google Scholar]
- Metzler, R.; Jeon, J.H.; Cherstvy, A.G.; Barkai, E. Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 2014, 16, 24128–24164. [Google Scholar] [CrossRef] [Green Version]
- Ernst, M.; John, T.; Guenther, M.; Wagner, C.; Schaefer, U.F.; Lehr, C.M. A Model for the Transient Subdiffusive Behavior of Particles in Mucus. Biophys. J. 2017, 112, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Alcázar-Cano, N.; Delgado-Buscalioni, R. A general phenomenological relation for the subdiffusive exponent of anomalous diffusion in disordered media. Soft Matter 2018, 14, 9937–9949. [Google Scholar] [CrossRef]
- Linarès-Loyez, J.; Ferreira, J.S.; Rossier, O.; Lounis, B.; Giannone, G.; Groc, L.; Cognet, L.; Bon, P. Self-interference (SELFI) microscopy for live super-resolution imaging and single particle tracking in 3D. Front. Phys. 2019, 7, 68. [Google Scholar] [CrossRef]
- Demiral, Ş.B.; Tomasi, D.; Sarlls, J.; Lee, H.; Wiers, C.E.; Zehra, A.; Srivastava, T.; Ke, K.; Shokri-Kojori, E.; Freeman, C.R.; et al. Apparent diffusion coefficient changes in human brain during sleep—Does it inform on the existence of a glymphatic system? NeuroImage 2019, 185, 263–273. [Google Scholar] [CrossRef]
- Cooper, J.M.; Halter, K.A.; Prosser, R.A. Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol. Sleep Circadian Rhythm. 2018, 5, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; O’Donnell, J.; Xu, Q.; Kang, N.; Goldman, N.; Nedergaard, M. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 2016, 352, 550–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.H.; Du, H.; Cai, Y.; Liu, C.; Xie, Z.; Chen, K.C. Time-resolved quantification of the dynamic extracellular space in the brain: Study of cortical spreading depression. J. Neurophysiol. 2019, 121, 1735–1747. [Google Scholar] [CrossRef]
- Colbourn, R.; Naik, A.; Hrabetova, S. ECS dynamism and its influence on neuronal excitability and seizures. Neurochem. Res. 2019, 44, 1020–1036. [Google Scholar] [CrossRef]
- Colbourn, R.; Hrabe, J.; Nicholson, C.; Perkins, M.; Goodman, J.H.; Hrabetova, S. Rapid volume pulsation of the extracellular space coincides with epileptiform activity in mice and depends on the NBCe1 transporter. J. Physiol. 2021, 599, 3195–3220. [Google Scholar] [CrossRef] [PubMed]
- Hrabetova, S. Brain extracellular space changes dynamically during physiological and pathological neuronal activity. Biophys. J. 2022, 121, 28a. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Cooper-White, J.; Janmey, P.A.; Mooney, D.J.; Shenoy, V.B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020, 584, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Cacopardo, L.; Guazzelli, N.; Ahluwalia, A. Characterizing and engineering biomimetic materials for viscoelastic mechanotransduction studies. Tissue Eng. B Rev. 2022, 28, 912–925. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postnikov, E.B.; Lavrova, A.I.; Postnov, D.E. Transport in the Brain Extracellular Space: Diffusion, but Which Kind? Int. J. Mol. Sci. 2022, 23, 12401. https://doi.org/10.3390/ijms232012401
Postnikov EB, Lavrova AI, Postnov DE. Transport in the Brain Extracellular Space: Diffusion, but Which Kind? International Journal of Molecular Sciences. 2022; 23(20):12401. https://doi.org/10.3390/ijms232012401
Chicago/Turabian StylePostnikov, Eugene B., Anastasia I. Lavrova, and Dmitry E. Postnov. 2022. "Transport in the Brain Extracellular Space: Diffusion, but Which Kind?" International Journal of Molecular Sciences 23, no. 20: 12401. https://doi.org/10.3390/ijms232012401
APA StylePostnikov, E. B., Lavrova, A. I., & Postnov, D. E. (2022). Transport in the Brain Extracellular Space: Diffusion, but Which Kind? International Journal of Molecular Sciences, 23(20), 12401. https://doi.org/10.3390/ijms232012401