CPAP Influence on Readily Available Inflammatory Markers in OSA—A Pilot Study
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. ESR and CRP
3.2. RDW
3.3. MPV
3.4. PLR
3.5. NLR
3.6. WMR
3.7. LCR
4. Materials and Methods
4.1. Study Design
4.2. OSA Diagnosis and Treatment
4.3. Measurements
4.4. Statistical Analysis
4.5. Ethics Statement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The Occurrence of Sleep-Disordered Breathing among Middle-Aged Adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of Sleep-Disordered Breathing in the General Population: The HypnoLaus Study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, Y.; Ouyang, R.; Zeng, Z.; Zhan, Z.; Lu, H.; Cui, Y.; Dai, Z.; Luo, L.; He, C.; et al. The Relationship between Inflammation and Neurocognitive Dysfunction in Obstructive Sleep Apnea Syndrome. J. Neuroinflammation 2020, 17, 229. [Google Scholar] [CrossRef] [PubMed]
- Jullian-Desayes, I.; Joyeux-Faure, M.; Tamisier, R.; Launois, S.; Borel, A.-L.; Levy, P.; Pepin, J.-L. Impact of Obstructive Sleep Apnea Treatment by Continuous Positive Airway Pressure on Cardiometabolic Biomarkers: A Systematic Review from Sham CPAP Randomized Controlled Trials. Sleep Med. Rev. 2015, 21, 23–38. [Google Scholar] [CrossRef]
- Song, S.O.; He, K.; Narla, R.R.; Kang, H.G.; Ryu, H.U.; Boyko, E.J. Metabolic Consequences of Obstructive Sleep Apnea Especially Pertaining to Diabetes Mellitus and Insulin Sensitivity. Diabetes Metab. J. 2019, 43, 144–155. [Google Scholar] [CrossRef]
- Lévy, P.; Kohler, M.; McNicholas, W.T.; Barbé, F.; McEvoy, R.D.; Somers, V.K.; Lavie, L.; Pépin, J.-L. Obstructive Sleep Apnoea Syndrome. Nat. Rev. Dis. Prim. 2015, 1, 15015. [Google Scholar] [CrossRef]
- Li, M.; Li, X.; Lu, Y. Obstructive Sleep Apnea Syndrome and Metabolic Diseases. Endocrinology 2018, 159, 2670–2675. [Google Scholar] [CrossRef] [Green Version]
- Shamsuzzaman, A.; Amin, R.S.; Calvin, A.D.; Davison, D.; Somers, V.K. Severity of Obstructive Sleep Apnea Is Associated with Elevated Plasma Fibrinogen in Otherwise Healthy Patients. Sleep Breath. 2014, 18, 761–766. [Google Scholar] [CrossRef] [Green Version]
- Kheirandish-Gozal, L.; Gozal, D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int. J. Mol. Sci. 2019, 20, 459. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, W.; Gao, M.; Zhang, F.; Gu, C.; Yu, Y.; Wei, Y. Impact of Obstructive Sleep Apnea Syndrome on Endothelial Function, Arterial Stiffening, and Serum Inflammatory Markers: An Updated Meta-Analysis and Metaregression of 18 Studies. J. Am. Heart Assoc. 2015, 4, e002454. [Google Scholar] [CrossRef]
- Paulsen, F.P.; Steven, P.; Tsokos, M.; Jungmann, K.; Müller, A.; Verse, T.; Pirsig, W. Upper Airway Epithelial Structural Changes in Obstructive Sleep-Disordered Breathing. Am. J. Respir. Crit. Care Med. 2002, 166, 501–509. [Google Scholar] [CrossRef]
- Llorente Arenas, E.M.; Vicente González, E.A.; Marín Trigo, J.M.; Naya Gálvez, M.J. Histologic changes in soft palate in patients with obstructive sleep apnea. An. Otorrinolaringol. Ibero-Am. 2001, 28, 467–476. [Google Scholar]
- Boyd, J.H.; Petrof, B.J.; Hamid, Q.; Fraser, R.; Kimoff, R.J. Upper Airway Muscle Inflammation and Denervation Changes in Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2004, 170, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Chua, A.-P.; Aboussouan, L.S.; Minai, O.A.; Paschke, K.; Laskowski, D.; Dweik, R.A. Long-Term Continuous Positive Airway Pressure Therapy Normalizes High Exhaled Nitric Oxide Levels in Obstructive Sleep Apnea. J. Clin. Sleep Med. 2013, 9, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Ozsu, S.; Abul, Y.; Gulsoy, A.; Bulbul, Y.; Yaman, S.; Ozlu, T. Red Cell Distribution Width in Patients with Obstructive Sleep Apnea Syndrome. Lung 2012, 190, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-D. Red Blood Cell Distribution Width: A Promising Index for Estimating Activity of Autoimmune Disease. J. Lab. Precis. Med. 2016, 1, 1–6. [Google Scholar] [CrossRef]
- León Subías, E.; Gómara de la Cal, S.; Marin Trigo, J.M. Ancho de distribución eritrocitaria en apnea obstructiva del sueño. Arch. Bronconeumol. 2017, 53, 114–119. [Google Scholar] [CrossRef]
- Wael Alkhiary, A.M.Y. The Severity of Obstructive Sleep Apnea Syndrome Is Related to Red Cell Distribution Width and Hematocrit Values. J. Sleep Disord. Ther. 2015, 4, 192. [Google Scholar] [CrossRef] [Green Version]
- Lisman, T. Platelet-Neutrophil Interactions as Drivers of Inflammatory and Thrombotic Disease. Cell Tissue Res. 2018, 371, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Łochowski, M.; Chałubińska-Fendler, J.; Zawadzka, I.; Łochowska, B.; Rębowski, M.; Brzeziński, D.; Kozak, J. The Prognostic Significance of Preoperative Platelet-to-Lymphocyte and Neutrophil-to-Lymphocyte Ratios in Patients Operated for Non-Small Cell Lung Cancer. CMAR 2021, 13, 7795–7802. [Google Scholar] [CrossRef]
- Nora, I.; Shridhar, R.; Huston, J.; Meredith, K. The Accuracy of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio as a Marker for Gastrointestinal Malignancies. J. Gastrointest. Oncol. 2018, 9, 972–978. [Google Scholar] [CrossRef]
- Li, M.; Xie, L. Correlation between NLR, PLR, and LMR and Disease Activity, Efficacy Assessment in Rheumatoid Arthritis. Evid.-Based Complement. Altern. Med. 2021, 2021, 4433141. [Google Scholar] [CrossRef] [PubMed]
- El-Gazzar, A.G.; Kamel, M.H.; Elbahnasy, O.K.M.; El-Naggar, M.E.-S. Prognostic Value of Platelet and Neutrophil to Lymphocyte Ratio in COPD Patients. Expert Rev. Respir. Med. 2020, 14, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Meshaal, M.S.; Nagi, A.; Eldamaty, A.; Elnaggar, W.; Gaber, M.; Rizk, H. Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) as Independent Predictors of Outcome in Infective Endocarditis (IE). Egypt Heart J. 2019, 71, 13. [Google Scholar] [CrossRef] [PubMed]
- Ashry, M.; Hafez, R.; Atef, E.M. Predictive Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Decompensated Heart Failure. Egypt J. Intern. Med. 2019, 31, 353–359. [Google Scholar] [CrossRef]
- Chen, C.; Gu, L.; Chen, L.; Hu, W.; Feng, X.; Qiu, F.; Fan, Z.; Chen, Q.; Qiu, J.; Shao, B. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Potential Predictors of Prognosis in Acute Ischemic Stroke. Front. Neurol. 2020, 11, 525621. [Google Scholar] [CrossRef] [PubMed]
- Man, M.-A.; Davidescu, L.; Motoc, N.-S.; Rajnoveanu, R.-M.; Bondor, C.-I.; Pop, C.-M.; Toma, C. Diagnostic Value of the Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) in Various Respiratory Diseases: A Retrospective Analysis. Diagnostics 2021, 12, 81. [Google Scholar] [CrossRef]
- Giles, H.; Smith, R.E.; Martin, J.F. Platelet Glycoprotein IIb-IIIa and Size Are Increased in Acute Myocardial Infarction. Eur. J. Clin. Investig. 1994, 24, 69–72. [Google Scholar] [CrossRef]
- Varol, E.; Ozturk, O.; Gonca, T.; Has, M.; Ozaydin, M.; Erdogan, D.; Akkaya, A. Mean Platelet Volume Is Increased in Patients with Severe Obstructive Sleep Apnea. Scand. J. Clin. Lab. Investig. 2010, 70, 497–502. [Google Scholar] [CrossRef]
- Nena, E.; Papanas, N.; Steiropoulos, P.; Zikidou, P.; Zarogoulidis, P.; Pita, E.; Constantinidis, T.C.; Maltezos, E.; Mikhailidis, D.P.; Bouros, D. Mean Platelet Volume and Platelet Distribution Width in Non-Diabetic Subjects with Obstructive Sleep Apnoea Syndrome: New Indices of Severity? Platelets 2012, 23, 447–454. [Google Scholar] [CrossRef]
- Varol, E.; Ozturk, O.; Yucel, H.; Gonca, T.; Has, M.; Dogan, A.; Akkaya, A. The Effects of Continuous Positive Airway Pressure Therapy on Mean Platelet Volume in Patients with Obstructive Sleep Apnea. Platelets 2011, 22, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Fava, C.; Dorigoni, S. Dalle Ved Effect of CPAP on Blood Pressure in Patients with OSA/Hypopnea a Systematic Review and Meta-Analysis. Chest 2014, 145, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Vural, M.G.; Çetin, S.; Keser, N.; Firat, H.; Akdemir, R.; Gunduz, H. Left Ventricular Torsion in Patients with Obstructive Sleep Apnoea before and after Continuous Positive Airway Pressure Therapy: Assessment by Two-Dimensional Speckle Tracking Echocardiography. Acta Cardiol. 2017, 72, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Shim, C.Y.; Cho, Y.-J.; Park, S.; Lee, C.J.; Park, J.H.; Cho, H.J.; Ha, J.-W.; Hong, G.-R. Continuous Positive Airway Pressure Therapy Restores Cardiac Mechanical Function in Patients With Severe Obstructive Sleep Apnea: A Randomized, Sham-Controlled Study. J. Am. Soc. Echocardiogr. 2019, 32, 826–835. [Google Scholar] [CrossRef]
- Qureshi, W.T.; Nasir, U.B.; Alqalyoobi, S.; O’Neal, W.T.; Mawri, S.; Sabbagh, S.; Soliman, E.Z.; Al-Mallah, M.H. Meta-Analysis of Continuous Positive Airway Pressure as a Therapy of Atrial Fibrillation in Obstructive Sleep Apnea. Am. J. Cardiol. 2015, 116, 1767–1773. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z.; Yang, H.; Luo, Q. Effects of Continuous Positive Airway Pressure on Glycemic Control and Insulin Resistance in Patients with Obstructive Sleep Apnea: A Meta-Analysis. Sleep Breath. 2013, 17, 33–38. [Google Scholar] [CrossRef]
- Robinson, G.V. Circulating Cardiovascular Risk Factors in Obstructive Sleep Apnoea: Data from Randomised Controlled Trials. Thorax 2004, 59, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.L.; Yee, B.J.; Marshall, N.S.; Liu, P.Y.; Sullivan, D.R.; Grunstein, R.R. Continuous Positive Airway Pressure Reduces Postprandial Lipidemia in Obstructive Sleep Apnea: A Randomized, Placebo-Controlled Crossover Trial. Am. J. Respir. Crit. Care Med. 2011, 184, 355–361. [Google Scholar] [CrossRef]
- Vicente, E.; Marin, J.M.; Carrizo, S.J.; Osuna, C.S.; González, R.; Marin-Oto, M.; Forner, M.; Vicente, P.; Cubero, P.; Gil, A.V.; et al. Upper Airway and Systemic Inflammation in Obstructive Sleep Apnoea. Eur. Respir. J. 2016, 48, 1108–1117. [Google Scholar] [CrossRef] [Green Version]
- Chirinos, J.A.; Gurubhagavatula, I.; Teff, K.; Rader, D.J.; Wadden, T.A.; Townsend, R.; Foster, G.D.; Maislin, G.; Saif, H.; Broderick, P.; et al. CPAP, Weight Loss, or Both for Obstructive Sleep Apnea. N. Engl. J. Med. 2014, 370, 2265–2275. [Google Scholar] [CrossRef] [Green Version]
- Stradling, J.R.; Craig, S.E.; Kohler, M.; Nicoll, D.; Ayers, L.; Nunn, A.J.; Bratton, D.J. Markers of Inflammation: Data from the MOSAIC Randomised Trial of CPAP for Minimally Symptomatic OSA. Thorax 2015, 70, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Kohler, M.; Ayers, L.; Pepperell, J.C.T.; Packwood, K.L.; Ferry, B.; Crosthwaite, N.; Craig, S.; Siccoli, M.M.; Davies, R.J.O.; Stradling, J.R. Effects of Continuous Positive Airway Pressure on Systemic Inflammation in Patients with Moderate to Severe Obstructive Sleep Apnoea: A Randomised Controlled Trial. Thorax 2008, 64, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Sökücü, S.N.; Özdemir, C.; Dalar, L.; Karasulu, L.; Aydın, Ş.; Altın, S. Complete Blood Count Alterations after Six Months of Continuous Positive Airway Pressure Treatment in Patients with Severe Obstructive Sleep Apnea. JCSM 2014, 10, 873–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dediu, G.N.; Diaconu, C.C.; Dumitrache Rujinski, S.; Iancu, M.A.; Balaceanu, L.A.; Dina, I.; Bogdan, M. May Inflammatory Markers Be Used for Monitoring the Continuous Positive Airway Pressure Effect in Patients with Obstructive Sleep Apnea and Arrhythmias? Med. Hypotheses 2018, 115, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Baessler, A.; Nadeem, R.; Harvey, M.; Madbouly, E.; Younus, A.; Sajid, H.; Naseem, J.; Asif, A.; Bawaadam, H. Treatment for Sleep Apnea by Continuous Positive Airway Pressure Improves Levels of Inflammatory Markers-a Meta-Analysis. J. Inflamm. 2013, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Pan, L.; Ren, D.; Xie, X. Impact of Continuous Positive Airway Pressure on C-Reactive Protein in Patients with Obstructive Sleep Apnea: A Meta-Analysis. Sleep Breath. 2013, 17, 495–503. [Google Scholar] [CrossRef]
- Xie, X.; Pan, L.; Ren, D.; Du, C.; Guo, Y. Effects of Continuous Positive Airway Pressure Therapy on Systemic Inflammation in Obstructive Sleep Apnea: A Meta-Analysis. Sleep Med. 2013, 14, 1139–1150. [Google Scholar] [CrossRef]
- Erikssen, G.; Liestøl, K.; Bjørnholt, J.V.; Stormorken, H.; Thaulow, E.; Erikssen, J. Erythrocyte Sedimentation Rate: A Possible Marker of Atherosclerosis and a Strong Predictor of Coronary Heart Disease Mortality. Eur. Heart J. 2000, 21, 1614–1620. [Google Scholar] [CrossRef]
- Andresdottir, M.B.; Sigfusson, N.; Sigvaldason, H.; Gudnason, V. Erythrocyte Sedimentation Rate, an Independent Predictor of Coronary Heart Disease in Men and Women: The Reykjavik Study. Am. J. Epidemiol. 2003, 158, 844–851. [Google Scholar] [CrossRef]
- Strang, F.; Schunkert, H. C-Reactive Protein and Coronary Heart Disease: All Said—Is Not It? Mediat. Inflamm. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Arias, M.A.; García-Río, F.; Alonso-Fernández, A.; Hernanz, A.; Hidalgo, R.; Martínez-Mateo, V.; Bartolomé, S.; Rodríguez-Padial, L. CPAP Decreases Plasma Levels of Soluble Tumour Necrosis Factor-Alpha Receptor 1 in Obstructive Sleep Apnoea. Eur. Respir. J. 2008, 32, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Kritikou, I.; Basta, M.; Vgontzas, A.N.; Pejovic, S.; Liao, D.; Tsaoussoglou, M.; Bixler, E.O.; Stefanakis, Z.; Chrousos, G.P. Sleep Apnoea, Sleepiness, Inflammation and Insulin Resistance in Middle-Aged Males and Females. Eur. Respir. J. 2014, 43, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Wee, J.H.; Rhee, C.-S.; Yoon, I.-Y.; Kim, J.-W. Erythrocyte Sedimentation Rate May Help Predict Severity of Obstructive Sleep Apnea. Sleep Breath. 2016, 20, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Sunbul, M.; Sunbul, E.A.; Kanar, B.; Yanartas, O.; Aydin, S.; Bacak, A.; Gulec, H.; Sari, I. The Association of Neutrophil to Lymphocyte Ratio with Presence and Severity of Obstructive Sleep Apnea. BLL 2015, 116, 654–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurt, O.K.; Yildiz, N. The Importance of Laboratory Parameters in Patients with Obstructive Sleep Apnea Syndrome. Blood Coagul. Fibrinolysis 2013, 24, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, A.; Linhas, R.; Marçôa, R.; Cysneiros, A.; Martinho, C.; Reis, R.P.; Penque, D.; Pinto, P.; Bárbara, C. Hematological Evaluation in Males with Obstructive Sleep Apnea before and after Positive Airway Pressure. Rev. Port. Pneumol. 2017, 23, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, D.Y.; Güneş, A. Is There a Relationship between Hematological Parameters and Duration of Respiratory Events in Severe OSA. Aging Male 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Sunnetcioglu, A.; Gunbatar, H.; Yıldız, H. Red Cell Distribution Width and Uric Acid in Patients with Obstructive Sleep Apnea. Clin. Respir. J. 2018, 12, 1046–1052. [Google Scholar] [CrossRef]
- Shen, C.-X.; Tan, M.; Song, X.-L.; Xie, S.-S.; Zhang, G.-L.; Wang, C.-H. Evaluation of the Predictive Value of Red Blood Cell Distribution Width for Onset of Cerebral Infarction in the Patients with Obstructive Sleep Apnea Hypopnea Syndrome. Medicine 2017, 96, e7320. [Google Scholar] [CrossRef]
- Kıvanc, T.; Kulaksızoglu, S.; Lakadamyalı, H.; Eyuboglu, F. Importance of Laboratory Parameters in Patients with Obstructive Sleep Apnea and Their Relationship with Cardiovascular Diseases. J. Clin. Lab. Anal. 2018, 32, e22199. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Zhou, L.; Zhu, D.; Lai, T.; Chen, Z.; Shen, H. Hematological Indices as Simple, Inexpensive and Practical Severity Markers of Obstructive Sleep Apnea Syndrome: A Meta-Analysis. J. Thorac. Dis. 2018, 10, 6509–6521. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, C.; Sökücü, S.; Aydın, Ş.; Önür, S.T.; Kara, K. Response of Blood Parameters to CPAP Treatment in Patients with Obstructive Sleep Apnea. Arch. Neuropsychiatry 2018. [Google Scholar] [CrossRef] [PubMed]
- Bülbül, Y.; Aydın Özgür, E.; Örem, A. Platelet Indices in Obstructive Sleep Apnea: The Role of Mean Platelet Volume, Platelet Distribution Widht and Plateletcrit. Tuberk Toraks 2016, 64, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Topçuoğlu, Ö.B.; Afşar, G.Ç.; Saraç, S.; Oruç, Ö.; Kuyucu, T. In the Absence of Co-Morbidities Mean Platelet Volume Is Not A Severity Indicator in OSAS. Electron. J. Gen. Med. 2016, 13. [Google Scholar] [CrossRef]
- Geiser, T.; Buck, F.; Meyer, B.J.; Bassetti, C.; Haeberli, A.; Gugger, M. In Vivo Platelet Activation Is Increased during Sleep in Patients with Obstructive Sleep Apnea Syndrome. Respiration 2002, 69, 229–234. [Google Scholar] [CrossRef]
- Hui, D.S.; Ko, F.W.; Fok, J.P.; Chan, M.C.; Li, T.S.; Tomlinson, B.; Cheng, G. The Effects of Nasal Continuous Positive Airway Pressure on Platelet Activation in Obstructive Sleep Apnea Syndrome. Chest 2004, 125, 1768–1775. [Google Scholar] [CrossRef] [Green Version]
- Minoguchi, K.; Yokoe, T.; Tazaki, T.; Minoguchi, H.; Oda, N.; Tanaka, A.; Yamamoto, M.; Ohta, S.; O’Donnell, C.P.; Adachi, M. Silent Brain Infarction and Platelet Activation in Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2007, 175, 612–617. [Google Scholar] [CrossRef]
- Berger, J.S.; Eraso, L.H.; Xie, D.; Sha, D.; Mohler, E.R. Mean Platelet Volume and Prevalence of Peripheral Artery Disease, the National Health and Nutrition Examination Survey, 1999-2004. Atherosclerosis 2010, 213, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Uysal, H.B.; Dağlı, B.; Akgüllü, C.; Avcil, M.; Zencir, C.; Ayhan, M.; Sönmez, H.M. Blood Count Parameters Can Predict the Severity of Coronary Artery Disease. Korean J. Intern. Med. 2016, 31, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Kanbay, A.; Tutar, N.; Kaya, E.; Buyukoglan, H.; Ozdogan, N.; Oymak, F.S.; Gulmez, I.; Demir, R. Mean Platelet Volume in Patients with Obstructive Sleep Apnea Syndrome and Its Relationship with Cardiovascular Diseases. Blood Coagul. Fibrinolysis 2013, 24, 532–536. [Google Scholar] [CrossRef]
- Karakaş, M.S.; Altekin, R.E.; Baktır, A.O.; Küçük, M.; Cilli, A.; Yalçınkaya, S. Association between Mean Platelet Volume and Severity of Disease in Patients with Obstructive Sleep Apnea Syndrome without Risk Factors for Cardiovascular Disease. Turk. Kardiyol. Dern. Ars. 2013, 41, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Archontogeorgis, K.; Voulgaris, A.; Papanas, N.; Nena, E.; Froudarakis, M.; Mikhailidis, D.P.; Steiropoulos, P. Mean Platelet Volume and Platelet Distribution Width in Patients with Obstructive Sleep Apnea Syndrome and Concurrent Chronic Obstructive Pulmonary Disease. Clin. Appl. Thromb. Hemost. 2018, 24, 1216–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarioglu, N.; Demirpolat, G.; Erel, F.; Kose, M. Which Is the Ideal Marker for Early Atherosclerosis in Obstructive Sleep Apnea (OSA)–Carotid Intima-Media Thickness or Mean Platelet Volume? Med. Sci. Monit. 2017, 23, 1674–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortuk, M.; Simsek, G.; Kiraz, K.; Haytoglu, S.; Zitouni, B.; Bayar Muluk, N.; Arikan, O.K. Effect of CPAP Treatment on Mean Platelet Volume (MPV) and Platelet Distribution Width (PDW) in Patients with Sleep Apnea Syndrome. Eurasian J. Pulmonol. 2016. [Google Scholar] [CrossRef]
- Song, Y.-J.; Kwon, J.H.; Kim, J.Y.; Kim, B.Y.; Cho, K.I. The Platelet-to-Lymphocyte Ratio Reflects the Severity of Obstructive Sleep Apnea Syndrome and Concurrent Hypertension. Clin. Hypertens. 2015, 22, 1. [Google Scholar] [CrossRef] [Green Version]
- Zorlu, D.; Ozyurt, S.; Bırcan, H.A.; Erturk, A. Do Complete Blood Count Parameters Predict Diagnosis and Disease Severity in Obstructive Sleep Apnea Syndrome? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4027–4036. [Google Scholar] [CrossRef]
- Koseoglu, S.; Ozcan, K.M.; Ikinciogullari, A.; Cetin, M.A.; Yildirim, E.; Dere, H. Relationship Between Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio and Obstructive Sleep Apnea Syndrome. Adv. Clin. Exp. Med. 2015, 24, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.; Taylor, C.T.; McNicholas, W.T. Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome. Circulation 2005, 112, 2660–2667. [Google Scholar] [CrossRef] [Green Version]
- Uygur, F.; Tanriverdi, H.; Aktop, Z.; Erboy, F.; Altinsoy, B.; Damar, M.; Atalay, F. The Neutrophil-to-Lymphocyte Ratio in Patients with Obstructive Sleep Apnoea Syndrome and Its Relationship with Cardiovascular Disease. Heart Lung 2016, 45, 121–125. [Google Scholar] [CrossRef]
- Lee, U.K.; Liu, S.Y.; Zeidler, M.R.; Tran, H.-A.; Chang, T.I.; Friedlander, A.H. Severe Obstructive Sleep Apnea with Imaged Carotid Plaque Is Significantly Associated with Systemic Inflammation. J. Oral Maxillofac. Surg. 2019, 77, 1636–1642. [Google Scholar] [CrossRef]
- Oyama, J.; Nagatomo, D.; Yoshioka, G.; Yamasaki, A.; Kodama, K.; Sato, M.; Komoda, H.; Nishikido, T.; Shiraki, A.; Node, K. The Relationship between Neutrophil to Lymphocyte Ratio, Endothelial Function, and Severity in Patients with Obstructive Sleep Apnea. J. Cardiol. 2016, 67, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Chen, Q.; Su, W.; Wu, D. Neutrophil-to-Lymphocyte Ratio Facilitates Identification of Obstructive Sleep Apnea in Patients with Type B Aortic Dissection. Can. Respir. J. 2021, 2021, 8492468. [Google Scholar] [CrossRef]
- Altintas, N.; Çetinoğlu, E.; Yuceege, M.; Acet, A.N.; Ursavas, A.; Firat, H.; Karadag, M. Neutrophil-to-Lymphocyte Ratio in Obstructive Sleep Apnea; a Multi Center, Retrospective Study. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3234–3240. [Google Scholar] [PubMed]
- Rha, M.-S.; Kim, C.-H.; Yoon, J.-H.; Cho, H.-J. Association between the Neutrophil-to-Lymphocyte Ratio and Obstructive Sleep Apnea: A Meta-Analysis. Sci. Rep. 2020, 10, 10862. [Google Scholar] [CrossRef] [PubMed]
- Yenigun, A.; Karamanli, H. Investigation of the Relationship between Neutrophil-to-Lymphocyte Ratio and Obstructive Sleep Apnoea Syndrome. J. Laryngol. Otol. 2015, 129, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Al-Halawani, M.; Naik, S.; Chan, M.; Kreinin, I.; Meiers, J.; Kryger, M. Neutrophil-to-Lymphocyte Ratio Decreases in Obstructive Sleep Apnea Treated with Mandibular Advancement Devices. Sleep Breath. 2018, 22, 989–995. [Google Scholar] [CrossRef]
- Al-Halawani, M.; Kyung, C.; Liang, F.; Kaplan, I.; Moon, J.; Clerger, G.; Sabin, B.; Barnes, A.; Al-Ajam, M. Treatment of Obstructive Sleep Apnea with CPAP Improves Chronic Inflammation Measured by Neutrophil-to-Lymphocyte Ratio. J. Clin. Sleep Med. 2020, 16, 251–257. [Google Scholar] [CrossRef]
- Bozkus, F.; Dikmen, N.; Samur, A. Does the Neutrophil-to-Lymphocyte Ratio Have Any Importance between Subjects with Obstructive Sleep Apnea Syndrome with Obesity and without Obesity? Tuberk Toraks 2018, 66, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Koseoglu, S.; Unal, Y.; Saruhan, E.; Bek, V.; Kutlu, G. The Role of the Lymphocyte-to-C-Reactive Protein Ratio in Obstructive Sleep Apnea. Neurol. Sci. Neurophysiol. 2020, 37, 124. [Google Scholar] [CrossRef]
- Thunström, E.; Glantz, H.; Yucel-Lindberg, T.; Lindberg, K.; Saygin, M.; Peker, Y. CPAP Does Not Reduce Inflammatory Biomarkers in Patients with Coronary Artery Disease and Nonsleepy Obstructive Sleep Apnea: A Randomized Controlled Trial. Sleep 2017, 40, zsx157. [Google Scholar] [CrossRef] [Green Version]
- Sateia, M.J. International Classification of Sleep Disorders-Third Edition: Highlights and Modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Engleman, H.M.; Wild, M.R. Improving CPAP Use by Patients with the Sleep Apnoea/Hypopnoea Syndrome (SAHS). Sleep Med. Rev. 2003, 7, 81–99. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [PubMed]
Parameters | Control Group (n = 31) | Mild OSA (n = 33) | p* Value | Moderate OSA (n = 22) | p% Value | Severe OSA (n = 37) | p^ Value |
---|---|---|---|---|---|---|---|
BMI | 32.11 ± 5.16 | 32.34 ± 5.44 | 0.894 | 32.65 ± 6.16 | 0.762 | 35.41 ± 5.63 | 0.035 |
Age, y | 49.55 ± 14.01 | 54.06 ± 15.37 | 0.225 | 57.68 ± 9.18 | 0.021 | 58.49 ± 9.49 | 0.003 |
Males | 16 (51.6%) | 20 (60.6%) | 0.476 | 16 (72.6%) | 0.126 | 26 (70.3%) | 0.118 |
Active smokers | 5 (16.1%) | 4 (12.1%) | 0.645 | 1 (4.5%) | 0.190 | 6 (16.2%) | 0.992 |
Diabetes mellitus | 6 (19.4%) | 9 (27.3%) | 0.453 | 9 (40.9%) | 0.085 | 10 (27.0%) | 0.459 |
HFrEF | 2 (6.45%) | 1 (3.03%) | 0.515 | 0 (0%) | 0.226 | 2 (5.4%) | 0.857 |
Statin therapy | 19 (61.3%) | 31 (93.9%) | 0.001 | 22 (100%) | 0.009 | 28 (75.57%) | 0.200 |
WBC | 6637.10 ± 1473.39 | 6920.30 ± 1731.96 | 0.485 | 6322.73 ± 1719.62 | 0.478 | 6883.24 ± 1858.72 | 0.553 |
RDW | 12.94 ± 1.24 | 12.86 ± 2.73 | 0.887 | 13.53 ± 1.03 | 0.071 | 13.94 ± 1.35 | 0.002 |
MPV | 10.35 ± 1.55 | 10.37 ± 1.06 | 0.957 | 9.03 ± 0.80 | 0.001 | 9.62 ± 0.96 | 0.019 |
Neutrophil | 3755.81 ± 1160.16 | 3900.91 ± 1099.94 | 0.609 | 3729.55 ± 1274.41 | 0.938 | 4191.35 ± 1527.75 | 0.197 |
Lymphocyte | 2010.97 ± 472.13 | 2146.97 ± 704.42 | 0.371 | 1877.27 ± 640.81 | 0.386 | 1955.14 ± 650.49 | 0.692 |
CRP | 0.44 ± 0.47 | 0.51 ± 0.42 | 0.544 | 0.61 ± 0.43 | 0.003 | 0.98 ± 1.30 | 0.010 |
ESR | 13.86 ± 11.28 | 15.25 ± 10.00 | 0.650 | 12.55 ± 8.51 | 0.668 | 20.17 ± 18.48 | 0.163 |
NLR | 1.93 ± 0.68 | 1.90 ± 0.54 | 0.837 | 2.10 ± 0.75 | 0.400 | 2.34 ± 1.13 | 0.087 |
WMR | 650.40 ± 161.36 | 673.22 ± 176.66 | 0.592 | 703.43 ± 201.47 | 0.293 | 713.61 ± 162.66 | 0.114 |
LCR | 4370.48 ± 8375.09 | 1632.83 ± 1421.37 | 0.078 | 11,318.78 ± 32,732.56 | 0.269 | 17,090.79 ± 53,940.05 | 0.206 |
PLR | 123.88 ± 40.46 | 123.97 ± 36.05 | 0.993 | 127.79 ± 41.69 | 0.733 | 134.45 ± 58.31 | 0.398 |
All Patients—Controls and OSA (n = 123) | Control Group (n = 31) | Mild OSA (n = 22) | Moderate OSA (n = 22) | Severe OSA (n = 37) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AHI | ||||||||||
r | p Value | r | p Value | r | p Value | r | p Value | r | p Value | |
NLR | 0.199 | 0.027 | 0.009 | 0.963 | −0.290 | 0.101 | 0.383 | 0.079 | −0.006 | 0.970 |
WMR | 0.260 | 0.003 | 0.022 | 0.908 | 0.124 | 0.493 | 0.247 | 0.268 | 0.603 | <0.001 |
LCR | 0.166 | 0.073 | −0.474 | 0.008 | −0.037 | 0.842 | 0.042 | 0.854 | 0.011 | 0.948 |
ESR | 0.220 | 0.022 | −0.051 | 0.826 | −0.133 | 0.501 | −0.049 | 0.829 | 0.154 | 0.362 |
CRP | −0.199 | 0.030 | 0.221 | 0.240 | 0.242 | 0.191 | 0.077 | 0.733 | 0.389 | 0.019 |
PLR | −0.025 | 0.780 | 0.701 | <0.001 | 0.607 | <0.001 | −0.048 | 0.831 | −0.386 | 0.018 |
RDW | 0.201 | 0.011 | 0.191 | 0.324 | −0.183 | 0.308 | 0.136 | 0.547 | 0.041 | 0.809 |
MPV | −0.158 | 0.019 | 0.092 | 0.624 | 0.131 | 0.468 | −0.107 | 0.637 | 0.050 | 0.767 |
Parameters | Baseline (n = 59) | Follow-Up (n = 59) | p Value |
---|---|---|---|
Anthropometric parameters | |||
Weight, kg | 101.22 ± 17.32 | 99.13 ± 17.05 | <0.001 |
BMI, kg/m2 | 34.37 ± 5.89 | 33.84 ± 5.77 | 0.001 |
Inflammatory parameters | |||
RDW | 13.79 ± 1.25 | 13.98 ± 1.58 | 0.171 |
MPV | 9.40 ± 0.94 | 9.30 ± 0.90 | 0.166 |
WBC | 6674.24 ± 1813.78 | 6654.24 ± 1795.14 | 0.932 |
ESR | 17.41 ± 15.72 | 17.52 ± 13.54 | 0.804 |
CRP | 0.84 ± 1.06 | 0.82 ± 0.77 | 0.902 |
NLR | 2.24 ± 1 | 2.31 ± 0.86 | 0.561 |
PLR | 131.96 ± 52.44 | 136.73 ± 49.54 | 0.325 |
WMR | 709.81 ± 176.47 | 718.32 ± 193.77 | 0.641 |
LCR | 14,863 ± 46,651.03 | 8635.75 ± 22,383.65 | 0.373 |
CPAP Non-Adherent (n = 25) | CPAP-Adherent (n = 34) | |||||
---|---|---|---|---|---|---|
Parameters | Baseline | Follow-Up | p | Baseline | Follow-Up | p |
Anthropometric parameters | ||||||
Weight, kg | 108.88 ± 17.30 | 106.14 ± 17.68 | <0.001 | 95.59 ± 15.25 | 93.82 ± 14.68 | 0.001 |
BMI, kg/m2 | 36.46 ± 7.05 | 35.81 ± 6.94 | 0.007 | 32.84 ± 4.36 | 32.25 ± 4.24 | <0.001 |
Inflammatory parameters | ||||||
RDW | 13.66 ± 1.25 | 13.83 ± 1.63 | 0.684 | 13.89 ± 1.26 | 14.09 ± 1.56 | 0.293 |
MPV | 9.75 ± 0.96 | 9.43 ± 0.92 | 0.229 | 9.14 ± 0.85 | 9.21 ± 0.88 | 0.342 |
ESR | 15.60 ± 12.65 | 15.36 ± 10.90 | 0.831 | 18.74 ± 17.71 | 18.15 ± 15.20 | 0.339 |
CRP | 0.91 ± 0.83 | 0.65 ± 0.51 | 0.05 | 0.79 ± 1.20 | 0.95 ± 0.91 | 0.05 |
NLR | 2.35 ± 1.24 | 2.27 ± 0.95 | 0.856 | 2.18 ± 0.81 | 2.35 ± 0.81 | 0.176 |
PLR | 113.26 ± 44.33 | 116.34 ± 30.02 | 0.770 | 145.72 ± 54.27 | 151.73 ± 55.79 | 0.93 |
WMR | 763.45 ± 20.6.23 | 757.62 ± 195.90 | 0.090 | 670.38 ± 141.50 | 689.43 ± 189.89 | 0.42 |
LCR | 15,103.61 ± 54,917.14 | 12,161.84 ± 32,819.72 | 0.83 | 14,289.96 ± 39,952.93 | 6071.33 ± 9300.65 | 0.171 |
CPAP Adherence. Variables | B | Std. Error | Wald | df | Sig. | Exp (B) | 95% Confidence Interval for Exp (B) | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
AHI | −0.004 | 0.017 | 0.056 | 1 | 0.812 | 0.996 | 0.964 | 1.029 |
NLR | −0.981 | 0.450 | 4.754 | 1 | 0.029 | 0.375 | 0.155 | 0.906 |
PLR | 0.021 | 0.010 | 4.127 | 1 | 0.042 | 1.021 | 1.001 | 1.042 |
WMR | 0.001 | 0.002 | 0.077 | 1 | 0.782 | 1.001 | 0.996 | 1.005 |
LCR | 0.000 | 0.000 | 0.012 | 1 | 0.913 | 1.000 | 1.000 | 1.000 |
Age | 0.097 | 0.044 | 4.793 | 1 | 0.029 | 1.102 | 1.010 | 1.203 |
BMI | −0.013 | 0.067 | 0.037 | 1 | 0.846 | 0.987 | 0.865 | 1.126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zota, I.M.; Adam, C.A.; Marcu, D.T.M.; Stătescu, C.; Sascău, R.; Anghel, L.; Boișteanu, D.; Roca, M.; Cozma, C.L.D.; Maștaleru, A.; et al. CPAP Influence on Readily Available Inflammatory Markers in OSA—A Pilot Study. Int. J. Mol. Sci. 2022, 23, 12431. https://doi.org/10.3390/ijms232012431
Zota IM, Adam CA, Marcu DTM, Stătescu C, Sascău R, Anghel L, Boișteanu D, Roca M, Cozma CLD, Maștaleru A, et al. CPAP Influence on Readily Available Inflammatory Markers in OSA—A Pilot Study. International Journal of Molecular Sciences. 2022; 23(20):12431. https://doi.org/10.3390/ijms232012431
Chicago/Turabian StyleZota, Ioana Madalina, Cristina Andreea Adam, Dragoș Traian Marius Marcu, Cristian Stătescu, Radu Sascău, Larisa Anghel, Daniela Boișteanu, Mihai Roca, Corina Lucia Dima Cozma, Alexandra Maștaleru, and et al. 2022. "CPAP Influence on Readily Available Inflammatory Markers in OSA—A Pilot Study" International Journal of Molecular Sciences 23, no. 20: 12431. https://doi.org/10.3390/ijms232012431
APA StyleZota, I. M., Adam, C. A., Marcu, D. T. M., Stătescu, C., Sascău, R., Anghel, L., Boișteanu, D., Roca, M., Cozma, C. L. D., Maștaleru, A., Constantin, M. M. L., Moaleș, E. A., & Mitu, F. (2022). CPAP Influence on Readily Available Inflammatory Markers in OSA—A Pilot Study. International Journal of Molecular Sciences, 23(20), 12431. https://doi.org/10.3390/ijms232012431