Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Plasma Preparation and Affymetrix Gene Chip microRNA (miRNA) Array
4.3. Real Time PCR Analysis
4.4. Statistical Analysis
4.5. Interactome Construction and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease. N. Engl. J. Med. 2019, 380, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
- Byrne, L.M.; Rodrigues, F.B.; Blennow, K.; Durr, A.; Leavitt, B.R.; Roos, R.A.C.; I Scahill, R.; Tabrizi, S.J.; Zetterberg, H.; Langbehn, D.; et al. Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: A retrospective cohort analysis. Lancet Neurol. 2017, 16, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Gaetani, L.; Parnetti, L.; Calabresi, P.; Di Filippo, M. Tracing Neurological Diseases in the Presymptomatic Phase: Insights From Neurofilament Light Chain. Front. Neurosci. 2021, 15, 549. [Google Scholar] [CrossRef] [PubMed]
- Scahill, R.; Zeun, P.; Osborne-Crowley, K.; Johnson, E.B.; Gregory, S.; Parker, C.; Lowe, J.; Nair, A.; O’Callaghan, C.; Langley, C.; et al. Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington’s disease Young Adult Study (HD-YAS): A cross-sectional analysis. Lancet Neurol. 2020, 19, 502–512. [Google Scholar] [CrossRef]
- Scarabino, D.; Veneziano, L.; Peconi, M.; Frontali, M.; Mantuano, E.; Corbo, R.M. Leukocyte telomere shortening in Huntington’s disease. J. Neurol. Sci. 2018, 396, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, I.; De Rosa, M.; Romano, A.; Zuchegna, C.; Squitieri, F.; Mechelli, R.; Peluso, S.; Borrelli, C.; Del Mondo, A.; Salvatore, E.; et al. DNA damage signatures in peripheral blood cells as biomarkers in prodromal huntington disease. Ann. Neurol. 2018, 85, 296–301. [Google Scholar] [CrossRef]
- Weiss, A.; Träger, U.; Wild, E.; Grueninger, S.; Farmer, R.; Landles, C.; Scahill, R.; Lahiri, N.; Haider, S.; Macdonald, D.; et al. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J. Clin. Investig. 2012, 122, 3731–3736. [Google Scholar] [CrossRef]
- Mastrokolias, A.; Ariyurek, Y.; Goeman, J.; Van Duijn, E.; Roos, R.A.; Van Der Mast, R.C.; van Ommen, G.B.; Dunnen, J.T.D.; Hoen, P.; Mc Van Roon-Mom, W. Huntington’s disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. Eur. J. Hum. Genet. 2015, 23, 1349–1356. [Google Scholar] [CrossRef]
- Przybyl, L.; Wozna-Wysocka, M.; Kozlowska, E.; Fiszer, A. What, When and How to Measure—Peripheral Biomarkers in Therapy of Huntington’s Disease. Int. J. Mol. Sci. 2021, 22, 1561. [Google Scholar] [CrossRef]
- Díez-Planelles, C.; Sánchez-Lozano, P.; Crespo, M.D.C.; Gil Zamorano, J.; Ribacoba, R.; González, N.; Suárez, E.; Martínez-Descals, A.; Camblor, P.M.; Álvarez, V.; et al. Circulating microRNAs in Huntington’s disease: Emerging mediators in metabolic impairment. Pharmacol. Res. 2016, 108, 102–110. [Google Scholar] [CrossRef]
- Gaughwin, P.M.; Ciesla, M.; Lahiri, N.; Tabrizi, S.J.; Brundin, P.; Björkqvist, M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum. Mol. Genet. 2011, 20, 2225–2237. [Google Scholar] [CrossRef]
- Hoss, A.G.; Bs, V.N.L.; Frank, S.; Hadzi, T.C.; Myers, R.H.; Dsc, J.C.L. Latourelle, Study of plasma-derived miRNAs mimic differences in Huntington’s disease brain. Mov. Disord. 2015, 30, 1961–1964. [Google Scholar] [CrossRef] [Green Version]
- Ferraldeschi, M.; Romano, S.; Giglio, S.; Romano, C.; Morena, E.; Mechelli, R.; Annibali, V.; Ubaldi, M.; Buscarinu, M.C.; Umeton, R.; et al. Circulating hsa-miR-323b-3p in Huntington’s Disease: A Pilot Study. Front. Neurol. 2021, 12, 657973. [Google Scholar] [CrossRef]
- Stepanov, G.A.; Filippova, J.A.; Komissarov, A.B.; Kuligina, E.V.; Richter, V.A.; Semenov, D.V. Regulatory Role of Small Nucleolar RNAs in Human Diseases. BioMed Res. Int. 2015, 2015, 206849. [Google Scholar] [CrossRef] [Green Version]
- Cavaille, J.; Hadjiolov, A.A.; Bachellerie, J.-P. Processing of mammalian rRNA precursors at the 3’ end of 18S rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar RNA. Eur. J. Biochem. 1996, 242, 206–213. [Google Scholar] [CrossRef]
- Kang, J.; Tang, Q.; He, J.; Li, L.; Yang, N.; Yu, S.; Wang, M.; Zhang, Y.; Lin, J.; Cui, T.; et al. RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility. Nucleic Acids Res. 2021, 50, D326–D332. [Google Scholar] [CrossRef]
- Bouchard-Bourelle, P.; Desjardins-Henri, C.; Mathurin-St-Pierre, D.; Deschamps-Francoeur, G.; Fafard-Couture, É.; Garant, J.-M.; Elela, S.A.; Scott, M.S. snoDB: An interactive database of human snoRNA sequences, abundance and interactions. Nucleic Acids Res. 2019, 48, D220–D225. [Google Scholar] [CrossRef]
- Lang, B.; Armaos, A.; Tartaglia, G.G. RNAct: Protein–RNA interaction predictions for model organisms with supporting experimental data. Nucleic Acids Res. 2018, 47, D601–D606. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. Electronic address: [email protected] and Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium, CAG Repeat Not Polyglutamine Length Determines Timing of Huntington’s Disease Onset. Cell 2019, 178, 887–900.e14. [Google Scholar] [CrossRef]
- Martí, E. RNA toxicity induced by expanded CAG repeats in Huntington’s disease. Brain Pathol. 2016, 26, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, H.; Lau, T.C.-K.; Tsang, S.-Y.; Lau, K.-F.; Chan, H.Y.E. CAG expansion induces nucleolar stress in polyglutamine diseases. Proc. Natl. Acad. Sci. USA 2012, 109, 13428–13433. [Google Scholar] [CrossRef] [Green Version]
- Nalavade, R.; Griesche, N.; Ryan, D.; Hildebrand, S.; Krauß, S. Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis. 2013, 4, e752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoi, H.; Chan, H.Y.E. Roles of the nucleolus in the CAG RNA-mediated toxicity. Biochim. Biophys. Acta 2014, 1842, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalita, K.; Makonchuk, D.; Gomes, C.; Zheng, J.-J.; Hetman, M. Inhibition of nucleolar transcription as a trigger for neuronal apoptosis. J. Neurochem. 2008, 105, 2286–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosanna, P.; Grzegorz, K.; Gitta, E.; Claus, R.; Stefanie, S.; Ella, S.; Stefan, B.; Ingrid, G.; Günther, S. Activation of an Endogenous Suicide Response after Perturbation of rRNA Synthesis Leads to Neurodegeneration in Mice. J. Neurosci. 2008, 28, 12759–12764. [Google Scholar]
- Bordi, I.; Umeton, R.; Ricigliano, V.A.G.; Annibali, V.; Mechelli, R.; Ristori, G.; Grassi, F.; Salvetti, M.; Sutera, A. A mechanistic, stochastic model helps understand multiple sclerosis course and pathogenesis. Int. J. Genom. 2013, 2013, 910321. [Google Scholar] [CrossRef] [Green Version]
- Adak, D.; Majumder, A.; Bairagi, N. Mathematical perspective of COVID-19 pandemic: Disease extinction criteria in deterministic and stochastic models. Chaos Solitons Fractals 2020, 142, 110381. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Schobel, S.; Gantman, E.C.; Mansbach, A.; Borowsky, B.; Konstantinova, P.; A Mestre, T.; Panagoulias, J.; A Ross, C.; Zauderer, M.; et al. A biological classification of Huntington’s disease: The Integrated Staging System. Lancet Neurol. 2022, 21, 632–644. [Google Scholar] [CrossRef]
- Byrne, L.M.; Rodrigues, F.B.; Johnson, E.B.; Wijeratne, P.A.; De Vita, E.; Alexander, D.C.; Palermo, G.; Czech, C.; Schobel, S.; Scahill, R.I.; et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci. Transl. Med. 2018, 10, eaat7108. [Google Scholar] [CrossRef] [Green Version]
- Kroh, E.M.; Parkin, R.K.; Mitchell, P.S.; Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010, 50, 298–301. [Google Scholar] [CrossRef]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [Green Version]
- Goksuluk, D.; Korkmaz, S.; Zararsiz, G.; Karaagaoglu, E.A. easyROC: An Interactive Web-tool for ROC Curve Analysis Using R Language Environment. R J. 2016, 8, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
Healthy Subjects n = 22 | Pre-Manifest mHTT Carriers n = 15 | HD Patients n = 23 | Psychiatric Patients n = 24 | AD Patients n = 28 | |
---|---|---|---|---|---|
Age (years) | 50.3 ± 13.4 (range 26–76) | 36.4 ± 12.4 (range 21–59) | 53.2 ± 11.4 (range 28–75) | 48.1 ± 13.1 (range 20–67) | 67.6 ± 5.3 (range 56–76) |
Sex (males, %) | 40.9 | 26.6 | 69.6 | 66.7 | 63 |
CAG Median (range) | / | 42.8 (40–49) | 42.8 (40–47) | / | / |
UHDRS-TMS | / | 1.1 ± 2.1 | 30.2 ± 16.0 | / | / |
TFC | / | 13 | 9.1 ± 2.7 | / | / |
SDMT | / | 55.8 ±17.7 | 18.6± 10.2 | / | / |
Disease duration | / | / | 6.2 ± 3.7 years (range 1–14) | / | 3.8 ± 1.7 years (range 1–7) |
Group (n) | SNORD13 Relative Quantitation (Median, 1st and 3rd Quartiles) | p-Value vs. HS | Covariate Analysis | ||
---|---|---|---|---|---|
SNORD13/Age (p-Value) | SNORD13/Sex (p-Value) | SNORD13/CAG Number (p-Value) | |||
HS (22) | 0.29 (0.19–0.41) | / | 0.21 | 0.04 | |
pre-HD (15) | 0.40 (0.21–0.54) | 0.1 | 0.48 | 0.44 | 0.37 |
HD (23) | 0.96 (0.66–1.14) | <0.0001 | 0.53 | 0.33 | 0.77 |
PP (24) | 0.32 (0.25–0.47) | 0.24 | 0.99 | 0.9 | / |
AD (28) | 0.34 (0.15–0.52) | 0.55 | 0.19 | 0.84 | / |
Controls vs. mHTT Carriers | Pre-HD vs. HD | |
---|---|---|
CSF mHTT | 1.000 | 0.778 |
CSF NfL | 0.933 | 0.914 |
Plasma NfL | 0.914 | 0.931 |
Plasma SNORD13 | 0.811 | 0.963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, S.; Romano, C.; Peconi, M.; Fiore, A.; Bellucci, G.; Morena, E.; Troili, F.; Cipollini, V.; Annibali, V.; Giglio, S.; et al. Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study. Int. J. Mol. Sci. 2022, 23, 12440. https://doi.org/10.3390/ijms232012440
Romano S, Romano C, Peconi M, Fiore A, Bellucci G, Morena E, Troili F, Cipollini V, Annibali V, Giglio S, et al. Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study. International Journal of Molecular Sciences. 2022; 23(20):12440. https://doi.org/10.3390/ijms232012440
Chicago/Turabian StyleRomano, Silvia, Carmela Romano, Martina Peconi, Alessia Fiore, Gianmarco Bellucci, Emanuele Morena, Fernanda Troili, Virginia Cipollini, Viviana Annibali, Simona Giglio, and et al. 2022. "Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study" International Journal of Molecular Sciences 23, no. 20: 12440. https://doi.org/10.3390/ijms232012440
APA StyleRomano, S., Romano, C., Peconi, M., Fiore, A., Bellucci, G., Morena, E., Troili, F., Cipollini, V., Annibali, V., Giglio, S., Mechelli, R., Ferraldeschi, M., Veneziano, L., Mantuano, E., Sani, G., Vecchione, A., Umeton, R., Giubilei, F., Salvetti, M., ... Ristori, G. (2022). Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study. International Journal of Molecular Sciences, 23(20), 12440. https://doi.org/10.3390/ijms232012440