The Role of Cryoprotective Agents in Liposome Stabilization and Preservation
Abstract
:1. Introduction
2. Application of Liposomes in Drug Delivery
2.1. Liposome-Cell Interaction
2.2. Applications of Liposome
3. Phospholipid Bilayer Interactions with CPAs and Their Thermotropic Behavior
4. Liposomal Response to Freezing and Lyophilization
4.1. Effect of Frezzing
4.2. Effect of Drying
5. Applicable Cryoprotectants in Liposomal Freezing
5.1. Dimethyl Sulfoxide (DMSO)
5.2. Glycerol
5.3. Sugars and Disaccharides
5.4. Polyampholytes
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pegg, D.E. Principles of cryopreservation. In Cryopreservation and Freeze-Drying Protocols; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–19. [Google Scholar]
- Yang, J.; Cai, N.; Zhai, H.; Zhang, J.; Zhu, Y.; Zhang, L. Natural zwitterionic betaine enables cells to survive ultrarapid cryopreservation. Sci. Rep. 2016, 6, 37458. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Fu, J. Microfluidics for cryopreservation. Biotechnol. Adv. 2017, 35, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, G.D.; Wang, S.; Fuller, B.J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 2017, 76, 74–91. [Google Scholar] [CrossRef] [PubMed]
- Noireaux, V.; Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA 2004, 101, 17669–17674. [Google Scholar] [CrossRef] [Green Version]
- Magar, K.T.; Boafo, G.F.; Li, X.; Chen, Z.; He, W. Liposome-based delivery of biological drugs. Chin. Chem. Lett. 2022, 33, 587–596. [Google Scholar] [CrossRef]
- Gladkikh, D.V.; Sen’kova, A.V.; Chernikov, I.V.; Kabilova, T.O.; Popova, N.A.; Nikolin, V.P.; Shmendel, E.V.; Maslov, M.A.; Vlassov, V.V.; Zenkova, M.A. Folate-equipped cationic liposomes deliver anti-mdr1-sirna to the tumor and increase the efficiency of chemotherapy. Pharmaceutics 2021, 13, 1252. [Google Scholar] [CrossRef]
- Zhou, X.; Hao, Y.; Yuan, L.; Pradhan, S.; Shrestha, K.; Pradhan, O.; Liu, H.; Li, W. Nano-formulations for transdermal drug delivery: A review. Chin. Chem. Lett. 2018, 29, 1713–1724. [Google Scholar] [CrossRef]
- Nikam, N.R.; Patil, P.R.; Vakhariya, R.; Magdum, C. Liposomes: A Novel Drug Delivery System: An Overview. Asian J. Pharm. Res. 2020, 10, 23–28. [Google Scholar] [CrossRef]
- López-Cano, J.J.; González-Cela-Casamayor, M.A.; Andrés-Guerrero, V.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin. Drug Deliv. 2021, 18, 819–847. [Google Scholar] [CrossRef]
- Allahou, L.W.; Madani, S.Y.; Seifalian, A. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. Int. J. Biomater. 2021, 2021, 3041969. [Google Scholar] [CrossRef]
- Machy, P.; Leserman, L.D. Freezing of liposomes. In Liposome Technology; CRC Press: Boca Raton, FL, USA, 2019; pp. 221–233. [Google Scholar]
- Wang, Y.; Grainger, D.W. Lyophilized liposome-based parenteral drug development: Reviewing complex product design strategies and current regulatory environments. Adv. Drug Deliv. Rev. 2019, 151, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Stark, B.; Pabst, G.; Prassl, R. Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: Effects of cryoprotectants on structure. Eur. J. Pharm. Sci. 2010, 41, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Franzé, S.; Selmin, F.; Samaritani, E.; Minghetti, P.; Cilurzo, F. Lyophilization of liposomal formulations: Still necessary, still challenging. Pharmaceutics 2018, 10, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Komatsu, H. Effects of glucose and its oligomers on the stability of freeze-dried liposomes. Biochim. Biophys. Acta (BBA)-Biomembr. 1996, 1278, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Guan, P.; Lu, Y.; Qi, J.; Niu, M.; Lian, R.; Wu, W. Solidification of liposomes by freeze-drying: The importance of incorporating gelatin as interior support on enhanced physical stability. Int. J. Pharm. 2015, 478, 655–664. [Google Scholar] [CrossRef]
- Morandi, M.I.; Sommer, M.; Kluzek, M.; Thalmann, F.; Schroder, A.P.; Marques, C.M. DPPC bilayers in solutions of high sucrose content. Biophys. J. 2018, 114, 2165–2173. [Google Scholar] [CrossRef] [Green Version]
- Hinrichs, W.; Sanders, N.; De Smedt, S.; Demeester, J.; Frijlink, H. Inulin is a promising cryo-and lyoprotectant for PEGylated lipoplexes. J. Control. Release 2005, 103, 465–479. [Google Scholar] [CrossRef]
- Sydykov, B.; Oldenhof, H.; de Oliveira Barros, L.; Sieme, H.; Wolkers, W.F. Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions. Biochim. Biophys. Acta (BBA)-Biomembr. 2018, 1860, 467–474. [Google Scholar] [CrossRef]
- Shi, Z.; Li, Q.; Mei, L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett. 2020, 31, 1345–1356. [Google Scholar] [CrossRef]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252. [Google Scholar] [CrossRef]
- Mali, A.D.; Bathe, R.S. An updated review on liposome drug delivery system. Asian J. Pharm. Res 2015, 5, 151–157. [Google Scholar] [CrossRef]
- Choudhury, A.; Sonowal, K.; Laskar, R.E.; Deka, D.; Dey, B.K. Liposome: A carrier for effective drug delivery. J. Appl. Pharm. Res. 2020, 8, 22–28. [Google Scholar] [CrossRef]
- Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 2007, 4, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, S.; Garg, V.; Gulati, M.; Kapoor, B.; Singh, S.K.; Mittal, N. Nanovesicles for nanomedicine: Theory and practices. In Pharmaceutical Nanotechnology. Methods in Molecular Biology; Springer: New York, NY, USA, 2019; pp. 1–17. [Google Scholar]
- Zhang, G.; Sun, J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. Int. J. Nanomed. 2021, 16, 7391. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, X.; Zhang, T.; Zhang, L.; Yang, J.; Li, Y.; Shen, J.; Wang, J.; Niu, Y.; Xiao, Z. Cationic and temperature-sensitive liposomes loaded with eugenol for the application to silk. Chin. Chem. Lett. 2020, 31, 3139–3142. [Google Scholar] [CrossRef]
- Catala, A. Liposomes: Advances and Perspectives; InTech Open: Rijeka, Croatia, 2019. [Google Scholar]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Van Rooijen, N.; Sanders, A. Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 1994, 174, 83–93. [Google Scholar] [CrossRef]
- Chaudhari, V.S.; Murty, U.S.; Banerjee, S. Lipidic nanomaterials to deliver natural compounds against cancer: A review. Environ. Chem. Lett. 2020, 18, 1803–1812. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Shakil Ahmed, F.; Hossen, M.N.; Ahmed, M.; Amran, M.S.; Ul-Islam, M. Liposome as a carrier for advanced drug delivery. Pak. J. Biol. Sci. 2006, 9, 1181–1191. [Google Scholar] [CrossRef] [Green Version]
- Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160. [Google Scholar] [CrossRef]
- Sun, L.; Gao, Y.; Wang, Y.; Wei, Q.; Shi, J.; Chen, N.; Li, D.; Fan, C. Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem. Sci. 2018, 9, 5967–5975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoh, Y.; Nagai, M.; Matsushita, K.; Nakanishi, M.; Furuno, T. Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. Eur. J. Pharm. Sci. 2017, 102, 230–236. [Google Scholar] [CrossRef]
- Bae, Y.-U.; Kim, B.-K.; Park, J.-W.; Seu, Y.-B.; Doh, K.-O. Endocytic pathway and resistance to cholesterol depletion of cholesterol derived cationic lipids for gene delivery. Mol. Pharm. 2012, 9, 3579–3585. [Google Scholar] [CrossRef] [PubMed]
- Kolašinac, R.; Kleusch, C.; Braun, T.; Merkel, R.; Csiszár, A. Deciphering the functional composition of fusogenic liposomes. Int. J. Mol. Sci. 2018, 19, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Bahreman, A.; Daudey, G.; Bussmann, J.; Olsthoorn, R.C.; Kros, A. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent. Sci. 2016, 2, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Voak, A.A.; Harris, A.; Coteron-Lopez, J.M.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Croft, S.L.; Seifert, K. Pharmacokinetic/pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis. PLoS Negl. Trop. Dis. 2021, 15, e0009013. [Google Scholar] [CrossRef]
- Stoicea, N.; Fiorda-Diaz, J.; Joseph, N.; Shabsigh, M.; Arias-Morales, C.; Gonzalez-Zacarias, A.A.; Mavarez-Martinez, A.; Marjoribanks, S.; Bergese, S.D. Advanced analgesic drug delivery and nanobiotechnology. Drugs 2017, 77, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Li, T.; He, J.; Horvath, G.; Próchnicki, T.; Latz, E.; Takeoka, S. Lysine-containing cationic liposomes activate the NLRP3 inflammasome: Effect of a spacer between the head group and the hydrophobic moieties of the lipids. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 279–288. [Google Scholar] [CrossRef]
- Tanifum, E.A.; Dasgupta, I.; Srivastava, M.; Bhavane, R.C.; Sun, L.; Berridge, J.; Pourgarzham, H.; Kamath, R.; Espinosa, G.; Cook, S.C. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice. PLoS ONE 2012, 7, e48515. [Google Scholar] [CrossRef]
- He, J.; Li, T.; Próchnicki, T.; Horvath, G.; Latz, E.; Takeoka, S. Membrane fusogenic lysine type lipid assemblies possess enhanced NLRP3 inflammasome activation potency. Biochem. Biophys. Rep. 2019, 18, 100623. [Google Scholar] [CrossRef]
- Ray, A. Liposome in Drug delivery system. Asian J. Res. Pharm. Sci. 2012, 2, 41–44. [Google Scholar]
- Antimisiaris, S.; Marazioti, A.; Kannavou, M.; Natsaridis, E.; Gkartziou, F.; Kogkos, G.; Mourtas, S. Overcoming barriers by local drug delivery with liposomes. Adv. Drug Deliv. Rev. 2021, 174, 53–86. [Google Scholar] [CrossRef] [PubMed]
- Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016, 23, 3319–3329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layek, B.; Gidwani, B.; Tiwari, S.; Joshi, V.; Jain, V.; Vyas, A. Recent advances in lipid-based nanodrug delivery systems in cancer therapy. Curr. Pharm. Des. 2020, 26, 3218–3233. [Google Scholar] [CrossRef]
- Barenholz, Y.C. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Evelyn Roopngam, P. Liposome and polymer-based nanomaterials for vaccine applications. Nanomed. J. 2019, 6, 1–10. [Google Scholar]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Kobarfard, F.; Javed, Z.; Rajabi, S.; Khan, K.; Ashfaq, H.A.; Ahmad, T.; Pezzani, R. Multivesicular liposome (Depofoam) in human diseases. Iran. J. Pharm. Res. IJPR 2020, 19, 9. [Google Scholar]
- Cuddihy, G.; Wasan, E.K.; Di, Y.; Wasan, K.M. The development of oral amphotericin B to treat systemic fungal and parasitic infections: Has the myth been finally realized? Pharmaceutics 2019, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Seema, R.; Chanchal, C.; Ravi, S.; Ankur, R.; Dinesh, K.; Satish, S.; Harish, D. 10. Liposomes: Preparations and Applications. Int. J. Drug Dev. Res. 2012, 4, 108–115. [Google Scholar]
- Fujisawa, T.; Miyai, H.; Hironaka, K.; Tsukamoto, T.; Tahara, K.; Tozuka, Y.; Ito, M.; Takeuchi, H. Liposomal diclofenac eye drop formulations targeting the retina: Formulation stability improvement using surface modification of liposomes. Int. J. Pharm. 2012, 436, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Mukalel, A.J.; Riley, R.S.; Zhang, R.; Mitchell, M.J. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Lett. 2019, 458, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Beg, S.; Almalki, W.H.; Khatoon, F.; Alharbi, K.S.; Alghamdi, S.; Akhter, M.H.; Khalilullah, H.; Baothman, A.A.; Hafeez, A.; Rahman, M. Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discov. Today 2021, 26, 1891–1903. [Google Scholar] [CrossRef] [PubMed]
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 2014, 103, 29–52. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, C.; Fang, E.; Lu, X.; Wang, G.; Tong, Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS ONE 2014, 9, e92924. [Google Scholar]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006, 1, 297. [Google Scholar]
- Moncalvo, F.; Martinez Espinoza, M.I.; Cellesi, F. Nanosized delivery systems for therapeutic proteins: Clinically validated technologies and advanced development strategies. Front. Bioeng. Biotechnol. 2020, 8, 89. [Google Scholar] [CrossRef]
- Wang, A.; Yang, T.; Fan, W.; Yang, Y.; Zhu, Q.; Guo, S.; Zhu, C.; Yuan, Y.; Zhang, T.; Gan, Y. Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv. Healthc. Mater. 2019, 8, 1801123. [Google Scholar] [CrossRef]
- Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine 2013, 8, 1509–1528. [Google Scholar] [CrossRef] [Green Version]
- Gregoriadis, E.G.; Neerunjun, D. Homing of liposomes to target cells. Biochem. Biophys. Res. Commun. 1975, 65, 537–544. [Google Scholar] [CrossRef]
- Leserman, L.D.; Machy, P.; Barbet, J. Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature 1981, 293, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Vartak, A.; Sucheck, S.J. Recent advances in subunit vaccine carriers. Vaccines 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, A.; Gregoriadis, G. Liposomes as immunological adjuvants. Nature 1974, 252, 252. [Google Scholar] [CrossRef]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Heneweer, C.; Gendy, S.E.; Peñate-Medina, O. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther. Deliv. 2012, 3, 645–656. [Google Scholar]
- Pan, X.; Veroniaina, H.; Su, N.; Sha, K.; Jiang, F.; Wu, Z.; Qi, X. Applications and developments of gene therapy drug delivery systems for genetic diseases. Asian J. Pharm. Sci. 2021, 16, 687–703. [Google Scholar] [CrossRef]
- Guimarães, D.; Noro, J.; Silva, C.; Cavaco-Paulo, A.; Nogueira, E. Protective effect of saccharides on freeze-dried liposomes encapsulating drugs. Front. Bioeng. Biotechnol. 2019, 7, 424. [Google Scholar] [CrossRef] [Green Version]
- Gopi, S.; Balakrishnan, P. Liposomal nanostructures: Properties and applications. In Nanoscale Processing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 163–179. [Google Scholar]
- Franzen, U.; Nguyen, T.T.; Vermehren, C.; Gammelgaard, B.; Østergaard, J. Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: Encapsulation and leakage. J. Pharm. Biomed. Anal. 2011, 55, 16–22. [Google Scholar] [CrossRef]
- Timasheff, S.N. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biophys. Chem. 1993, 22, 67–97. [Google Scholar] [CrossRef]
- Arakawa, T.; Carpenter, J.F.; Kita, Y.A.; Crowe, J.H. The basis for toxicity of certain cryoprotectants: A hypothesis. Cryobiology 1990, 27, 401–415. [Google Scholar] [CrossRef]
- Gekko, K.; Timasheff, S.N. Mechanism of protein stabilization by glycerol: Preferential hydration in glycerol-water mixtures. Biochemistry 1981, 20, 4667–4676. [Google Scholar] [CrossRef]
- Kasian, N.; Vashchenko, O.; Budianska, L.; Brodskii, R.Y.; Lisetski, L. Thermodynamics and kinetics of joint action of antiviral agent tilorone and DMSO on model lipid membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2019, 1861, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.D.; Wang, C.; Arleth, L.; Peters, G.H.; Westh, P. Reconciliation of opposing views on membrane–sugar interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1874–1878. [Google Scholar] [CrossRef] [Green Version]
- Arsiccio, A.; McCarty, J.; Pisano, R.; Shea, J.-E. Heightened cold-denaturation of proteins at the ice–water interface. J. Am. Chem. Soc. 2020, 142, 5722–5730. [Google Scholar] [CrossRef] [PubMed]
- Hughes, Z.E.; Mancera, R.L. Molecular dynamics simulations of mixed DOPC–β-sitosterol bilayers and their interactions with DMSO. Soft Matter 2013, 9, 2920–2935. [Google Scholar] [CrossRef] [Green Version]
- Schrader, A.M.; Cheng, C.-Y.; Israelachvili, J.N.; Han, S. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces. J. Chem. Phys. 2016, 145, 041101. [Google Scholar] [CrossRef]
- Nowacka, A.; Douezan, S.; Wadsö, L.; Topgaard, D.; Sparr, E. Small polar molecules like glycerol and urea can preserve the fluidity of lipid bilayers under dry conditions. Soft Matter 2012, 8, 1482–1491. [Google Scholar] [CrossRef]
- Pereira, C.S.; Hünenberger, P.H. The influence of polyhydroxylated compounds on a hydrated phospholipid bilayer: A molecular dynamics study. Mol. Simul. 2008, 34, 403–420. [Google Scholar] [CrossRef]
- Jeong, T.-H.; Oh, S.-G. Lyotropic behaviors of a phospholipid-based lamella liquid crystalline phase hydrated by propylene glycol as a polar solvent: Correlation of DSPC vs. PG concentration. Bull. Korean Chem. Soc. 2007, 28, 108–114. [Google Scholar]
- Malajczuk, C.J.; Hughes, Z.E.; Mancera, R.L. Molecular dynamics simulations of the interactions of DMSO, mono-and polyhydroxylated cryosolvents with a hydrated phospholipid bilayer. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 2041–2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolkers, W.F.; Oldenhof, H.T.; Tang, F.; Han, J.; Bigalk, J.; Sieme, H. Factors affecting the membrane permeability barrier function of cells during preservation technologies. Langmuir 2018, 35, 7520–7528. [Google Scholar] [CrossRef] [PubMed]
- Sydykov, B.; Oldenhof, H.; Sieme, H.; Wolkers, W.F. Storage stability of liposomes stored at elevated subzero temperatures in DMSO/sucrose mixtures. PLoS ONE 2018, 13, e0199867. [Google Scholar] [CrossRef] [PubMed]
- Frank, G. Measurement analysis of glass transition temperature for sucrose and trehalose aqueous solutions. J. Phys. Chem. Ref. Data 2007, 36, 1279–1285. [Google Scholar] [CrossRef]
- Kawai, K.; Hagiwara, T.; Takai, R.; Suzuki, T. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose, and trehalose. Pharm. Res. 2005, 22, 490–495. [Google Scholar] [CrossRef]
- Sun, W.Q.; Wagner, C.T.; Connor, J. The glass transition behaviors of hydroxyethyl starch solutions. Cell Preserv. Technol. 2004, 2, 55–65. [Google Scholar] [CrossRef]
- Sofińska, K.; Lupa, D.; Chachaj-Brekiesz, A.; Czaja, M.; Kobierski, J.; Seweryn, S.; Skirlińska-Nosek, K.; Szymonski, M.; Wilkosz, N.; Wnętrzak, A. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv. Colloid Interface Sci. 2022, 301, 102614. [Google Scholar] [CrossRef]
- Maritim, S.; Boulas, P.; Lin, Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int. J. Pharm. 2021, 592, 120051. [Google Scholar] [CrossRef]
- Matyszewska, D.; Jocek, A. The effect of acyl chain length and saturation on the interactions of pirarubicin with phosphatidylethanolamines in 2D model urothelial cancer cell membranes. J. Mol. Liq. 2021, 323, 114633. [Google Scholar] [CrossRef]
- Cordeiro, R.M. Molecular structure and permeability at the interface between phase-separated membrane domains. J. Phys. Chem. B 2018, 122, 6954–6965. [Google Scholar] [CrossRef]
- Koynova, R.; Caffrey, M. Phases and phase transitions of the phosphatidylcholines. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1998, 1376, 91–145. [Google Scholar] [CrossRef]
- Tardieu, A.; Luzzati, V.; Reman, F. Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. Mol. Biol. 1973, 75, 711–733. [Google Scholar] [CrossRef]
- Jurak, M. Thermodynamic aspects of cholesterol effect on properties of phospholipid monolayers: Langmuir and Langmuir–Blodgett monolayer study. J. Phys. Chem. B 2013, 117, 3496–3502. [Google Scholar] [CrossRef] [PubMed]
- Ghysels, A.; Krämer, A.; Venable, R.M.; Teague, W.E.; Lyman, E.; Gawrisch, K.; Pastor, R.W. Permeability of membranes in the liquid ordered and liquid disordered phases. Nat. Commun. 2019, 10, 5616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, J.M.; Tuttolomondo, M.E.; Díaz, S.B.; Altabef, A.B. Molecular view of the structural reorganization of water in DPPC multilamellar membranes induced by L-cysteine methyl ester. J. Mol. Struct. 2018, 1156, 360–368. [Google Scholar] [CrossRef]
- Hays, L.M.; Crowe, J.H.; Wolkers, W.; Rudenko, S. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology 2001, 42, 88–102. [Google Scholar] [CrossRef]
- Kitayama, H.; Takechi, Y.; Tamai, N.; Matsuki, H.; Yomota, C.; Saito, H. Thermotropic phase behavior of hydrogenated soybean phosphatidylcholine–cholesterol binary liposome membrane. Chem. Pharm. Bull. 2014, 62, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Izutsu, K.-I.; Yomota, C.; Kawanishi, T. Stabilization of liposomes in frozen solutions through control of osmotic flow and internal solution freezing by trehalose. J. Pharm. Sci. 2011, 100, 2935–2944. [Google Scholar] [CrossRef]
- Wolfe, J.; Bryant, G. Freezing, drying, and/or vitrification of membrane–solute–water systems. Cryobiology 1999, 39, 103–129. [Google Scholar] [CrossRef] [Green Version]
- Nakhla, T.; Marek, M.; Kovalcik, T. Issues associated with large-scale production of liposomal formulations. Drug Deliv. Technol 2002, 2, 1–6. [Google Scholar]
- Wessman, P.; Edwards, K.; Mahlin, D. Structural effects caused by spray-and freeze-drying of liposomes and bilayer disks. J. Pharm. Sci. 2010, 99, 2032–2048. [Google Scholar] [CrossRef] [PubMed]
- Susa, F.; Bucca, G.; Limongi, T.; Cauda, V.; Pisano, R. Enhancing the preservation of liposomes: The role of cryoprotectants, lipid formulations and freezing approaches. Cryobiology 2021, 98, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Ingvarsson, P.T.; Yang, M.; Nielsen, H.M.; Rantanen, J.; Foged, C. Stabilization of liposomes during drying. Expert Opin. Drug Deliv. 2011, 8, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, H.; Klose, G.; Heremans, K. FTIR spectroscopy study of the pressure-dependent behaviour of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleolyl-sn-glycero-3-phosphocholine (POPC) at low degrees of hydration. Chem. Phys. Lipids 2013, 170, 33–40. [Google Scholar] [CrossRef]
- Kumar, R.; Dkhar, D.S.; Kumari, R.; Mahapatra, S.; Dubey, V.K.; Chandra, P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J. Drug Deliv. Sci. Technol. 2022, 74, 103526. [Google Scholar] [CrossRef]
- Mansour, H.M.; Zografi, G. The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. J. Pharm. Sci. 2007, 96, 377–396. [Google Scholar] [CrossRef]
- Trenkenschuh, E.; Friess, W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 2021, 165, 345–360. [Google Scholar] [CrossRef]
- Genova, J.; Petrov, M.; Bivas, I.; Rafailov, P.; Naradikian, H.; Katranchev, B. Fourier-transform infrared and Raman characterization of bilayer membranes of the phospholipid SOPC and its mixtures with cholesterol. Colloids Surf. A Physicochem. Eng. Asp. 2018, 557, 85–93. [Google Scholar] [CrossRef]
- Carpenter, J.F.; Chang, B.S. Lyophilization of protein pharmaceuticals. In Biotechnology and Biopharmaceutical Manufacturing, Processing, and Preservation; CRC Press: Boca Raton, FL, USA, 2020; pp. 199–264. [Google Scholar]
- Bhattacharya, S. Cryoprotectants and their usage in cryopreservation process. In Cryopreservation Biotechnology in Biomedical and Biological Sciences; InTech Open: Rijeka, Croatia, 2018; pp. 7–18. [Google Scholar]
- Lynch, A.L.; Chen, R.; Dominowski, P.J.; Shalaev, E.Y.; Yancey Jr, R.J.; Slater, N.K. Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival. Biomaterials 2010, 31, 6096–6103. [Google Scholar] [CrossRef]
- Lynch, A.L.; Chen, R.; Slater, N.K. pH-responsive polymers for trehalose loading and desiccation protection of human red blood cells. Biomaterials 2011, 32, 4443–4449. [Google Scholar] [CrossRef]
- Wowk, B. How cryoprotectants work. Cryonics 2007, 28, 3–7. [Google Scholar]
- Raju, R.; Bryant, S.J.; Wilkinson, B.L.; Bryant, G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2021, 1865, 129749. [Google Scholar] [CrossRef] [PubMed]
- Ianutsevich, E.A.; Danilova, O.A.; Bondarenko, S.A.; Tereshina, V.M. Membrane lipid and osmolyte readjustment in the alkaliphilic micromycete Sodiomyces tronii under cold, heat and osmotic shocks. Microbiology 2021, 167, 001112. [Google Scholar] [CrossRef] [PubMed]
- Tirgar, P.; Sarmadi, F.; Najafi, M.; Kazemi, P.; AzizMohseni, S.; Fayazi, S.; Zandi, G.; Ziaie, N.; Shoushtari Zadeh Naseri, A.; Ehrlicher, A. Toward embryo cryopreservation-on-a-chip: A standalone microfluidic platform for gradual loading of cryoprotectants to minimize cryoinjuries. Biomicrofluidics 2021, 15, 034104. [Google Scholar] [CrossRef]
- Lovelock, J.; Bishop, M. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 1959, 183, 1394–1395. [Google Scholar] [CrossRef]
- Klbik, I.; Maťko, I.; Šauša, O.; Čechová, K.; Melicherčík, M. Effect of dimethyl sulfoxide on phase behaviour of liposomes as a model for cryopreservation of biological cells studied by calorimetry, positron annihilation and molecular dynamics simulations. Book Contrib. 2020, 72. [Google Scholar]
- Gironi, B.; Paolantoni, M.; Morresi, A.; Foggi, P.; Sassi, P. Influence of dimethyl sulfoxide on the low-temperature behavior of cholesterol-loaded palmitoyl-oleyl-phosphatidylcholine membranes. J. Phys. Chem. B 2018, 122, 6396–6402. [Google Scholar] [CrossRef]
- Camp, J.E.; Nyamini, S.B.; Scott, F.J. Cyrene™ is a green alternative to DMSO as a solvent for antibacterial drug discovery against ESKAPE pathogens. RSC Med. Chem. 2020, 11, 111–117. [Google Scholar] [CrossRef]
- Pal, R.; Mamidi, M.K.; Das, A.K.; Bhonde, R. Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch. Toxicol. 2012, 86, 651–661. [Google Scholar] [CrossRef]
- Yao, X.; Matosevic, S. Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs 2021, 35, 529–545. [Google Scholar] [CrossRef]
- Pop, O.L.; Diaconeasa, Z.; Brandau, T.; Ciuzan, O.; Pamfil, D.; Vodnar, D.C.; Socaciu, C. Effect of glycerol, as cryoprotectant in the encapsulation and freeze drying of microspheres containing probiotic cells. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2015, 72, 27–32. [Google Scholar] [CrossRef]
- Smits, J.; Albrecht, B.; Lipoid Kosmetik, A. Glycerol-based Liposomal Systems. Available online: http://cosmeticsciencetechnology.com/articles/samples/3151.pdf (accessed on 24 August 2022).
- Marín-Peñalver, D.; Alemán, A.; Gómez-Guillén, M.; Montero, P. Carboxymethyl cellulose films containing nanoliposomes loaded with an angiotensin-converting enzyme inhibitory collagen hydrolysate. Food Hydrocoll. 2019, 94, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Crowe, J.H.; Hoekstra, F.A.; Nguyen, K.H.; Crowe, L.M. Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochim. Biophys. Acta (BBA)-Biomembr. 1996, 1280, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.Y.; Chuesiang, P.; Shin, G.H.; Park, H.J. Post-processing techniques for the improvement of liposome stability. Pharmaceutics 2021, 13, 1023. [Google Scholar] [CrossRef]
- Koster, K.L.; Webb, M.S.; Bryant, G.; Lynch, D.V. Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: Vitrification of sugars alters the phase behavior of the phospholipid. Biochim. Biophys. Acta (BBA)-Biomembr. 1994, 1193, 143–150. [Google Scholar] [CrossRef]
- Toniolo, S.P.; Afkhami, S.; Mahmood, A.; Fradin, C.; Lichty, B.D.; Miller, M.S.; Xing, Z.; Cranston, E.D.; Thompson, M.R. Excipient selection for thermally stable enveloped and non-enveloped viral vaccine platforms in dry powders. Int. J. Pharm. 2019, 561, 66–73. [Google Scholar] [CrossRef]
- Kannan, V.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Effect of sucrose as a lyoprotectant on the integrity of paclitaxel-loaded liposomes during lyophilization. J. Liposome Res. 2015, 25, 270–278. [Google Scholar] [CrossRef]
- Khatib, I.; Ke, W.-R.; Cipolla, D.; Chan, H.-K. Storage stability of inhalable, controlled-release powder formulations of ciprofloxacin nanocrystal-containing liposomes. Int. J. Pharm. 2021, 605, 120809. [Google Scholar] [CrossRef]
- Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential. J. Control. Release 2010, 142, 299–311. [Google Scholar] [CrossRef]
- Strauss, G.; Schurtenberger, P.; Hauser, H. The interaction of saccharides with lipid bilayer vesicles: Stabilization during freeze-thawing and freeze-drying. Biochim. Biophys. Acta (BBA)-Biomembr. 1986, 858, 169–180. [Google Scholar] [CrossRef]
- Crowe, L.M.; Crowe, J.H. Solution effects on the thermotropic phase transition of unilamellar liposomes. Biochim. Biophys. Acta (BBA)-Biomembr. 1991, 1064, 267–274. [Google Scholar] [CrossRef]
- Peer, D.; Florentin, A.; Margalit, R. Hyaluronan is a key component in cryoprotection and formulation of targeted unilamellar liposomes. Biochim. Biophys. Acta (BBA)-Biomembr. 2003, 1612, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Wolkers, W.F.; Oldenhof, H.; Tablin, F.; Crowe, J.H. Preservation of dried liposomes in the presence of sugar and phosphate. Biochim. Biophys. Acta (BBA)-Biomembr. 2004, 1661, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Crowe, J.H.; Oliver, A.E.; Hoekstra, F.A.; Crowe, L.M. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: The role of vitrification. Cryobiology 1997, 35, 20–30. [Google Scholar] [CrossRef]
- Lu, Z. Lyophilized Liposome Composition Encapsulating a Water-Soluble Drug and Preparation Process Thereof. US20130315987A1, 28 November 2013. [Google Scholar]
- Stubbs, C.; Murray, K.A.; Ishibe, T.; Mathers, R.T.; Gibson, M.I. Combinatorial biomaterials discovery strategy to identify new macromolecular cryoprotectants. ACS Macro Lett. 2020, 9, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Stubbs, C.; Murray, K.; Tomás, R.M.; Otten, L.; Gibson, M.I. Synthetically scalable poly (ampholyte) which dramatically enhances cellular cryopreservation. Biomacromolecules 2019, 20, 3104–3114. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Hayashi, F.; Nagashima, T.; Matsumura, K. Toward a molecular understanding of the mechanism of cryopreservation by polyampholytes: Cell membrane interactions and hydrophobicity. Biomacromolecules 2016, 17, 1882–1893. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Jain, M.; Matsumura, K. Cryoprotective properties of completely synthetic polyampholytes via reversible addition-fragmentation chain transfer (RAFT) polymerization and the effects of hydrophobicity. J. Biomater. Sci. Polym. Ed. 2013, 24, 1767–1780. [Google Scholar] [CrossRef]
- Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 2006, 58, 1688–1713. [Google Scholar] [CrossRef]
- Zaghloul, N.; El Hoffy, N.M.; Mahmoud, A.A.; Elkasabgy, N.A. Cyclodextrin stabilized freeze-dried silica/chitosan nanoparticles for improved terconazole ocular bioavailability. Pharmaceutics 2022, 14, 470. [Google Scholar] [CrossRef]
- Yang, J.; Pan, C.; Zhang, J.; Sui, X.; Zhu, Y.; Wen, C.; Zhang, L. Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl. Mater. Interfaces 2017, 9, 42516–42524. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, L.; Tian, Y.; Chen, P.; Yang, J.; Zhang, L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater. 2021, 131, 97–116. [Google Scholar] [CrossRef] [PubMed]
Active Product | Trade Name | Lipid Composition | Formulation Type | Targeted Disease | Company |
---|---|---|---|---|---|
Amphotericin B | Ambisome | HSPC:DSPG, chol 2:0.8:1 M | Freeze dried | Fungal and protozoal infection | Gilead Sciences |
Amphotericin B | Amphotec | Cholesteryl sulphate:Amphotericin B 1:1 M | Freeze dried | Severe fungal infections | Ben Venue |
Amphotericin B | Abelcet | DMPC:DMPG 7:3 M | Aqueous dispersion | Invasive severe fungal infections | Enzon |
Amykacin | Arikayce | DPPC:chol | Aqueous dispersion | Mycobacterium avium lung disease | Insmed |
Cytarabine | Depocyte | DOPC:DPPG | Aqueous dispersion | Malignant lymphomatous meningitis | Pacira (formerly Skye Pharma) |
Daunorubicin | DaunoXome | DSPC:chol 2:1 M | Aqueous dispersion | HIV-related Kaposi’s sarcoma | Gilead Sciences |
Daunorubicin/Cytarabine | Vyxeos | DSPC:DSPG:chol 7:2:1 | Freeze dried | Therapy-related acute myeloid leukemia (t-AML) or AML with myelodysplasia-related changes (AML-MRC) | Jazz |
Doxorubicin | Myocet | EPC:chol 55:45 M | Freeze dried | Combination therapy with cyclophosphamide in metastatic breast cancer | Zeneus |
Glycoprotein E based vaccine | Shingrix | AS01b:MPL-L; QS-21 (n), DOPC, chol | Aqueous dispersion | Vaccine for the prevention of shingles (herpes zoster) | GSK |
Inactivated hepatitis A virus | Epaxal | DOPC:DOPE 75:25 M | Aqueous dispersion | Hepatitis A | Berna Biotech |
Inactivated hemagglutinin of Influenza virus strains A and B | Inflexal V | DOPC:DOPE 75:25 M | Aqueous dispersion | Influenza | Berna Biotech |
Irinotecan | Onivyde | DSPC:MPEG-2000:DSPE 3:2:0.015 M | Combination therapy with fluorouracil and leucovorin in metastatic adenocarcinoma of the pancreas | Merrimack Pharmaceuticals | |
Morphine Sulphate | DepoDur | DOPC, DPPG, Cholesterol and Triolein | Pain management | SkyPharma | |
Paclitaxel | Abraxane | Freeze dried | Non-small-cell lung cancer (NSCLC), metastatic breast cancer and pancreatic cancer | Abraxis BioScience | |
PEG-doxorubicin | Doxil/Caelyx | HSPC:chol:DSPE-PEG 56:39:5 M | Aqueous dispersion | Metastatic ovarian cancer, AIDS-related Kaposi’s Sarcoma, multiple myeloma | Ortho Biotech, Schering-Plough |
Verteporfin | Visudyne | EPG:DMPC 3:5 M | Freeze dried | Ocular histoplasmosis, age-related macular degeneration, pathologic myopia | QLT, Novartis |
Phospholipids | Pre-Transition Temperature (Tp/°C) | Transition Temperature (Tm/°C) | Acyl Chains | Ref. |
---|---|---|---|---|
DPPC | 35.5 | 40.5 | 16:0/16:0 | [100] |
DOPC | 9.0 | −18.0 | 18:1 | [96] |
DSPC | 54.5 | 49.1 | 18:0 | [96] |
DMPC | 22.0 | 24.0 | 14:0/14:0 | [96] |
DLPC | - | −1.0 | 12:0/12:0 | [96,101] |
EPC | - | −15.0 to −20.0 | Mixed chains | [96] |
HSPC | 47.8 | 53.6 | 16:0/18:0 | [102] |
Phospholipids | CPAs | CPA Ratio | Transition Temperature (Tm/°C) |
---|---|---|---|
DPPC | DMSO | 0.05 molar | 42.5–44.5 |
DMSO | 0.9 molar | 57.8, 58.3 | |
GLY | 5% wt | 41.7 | |
EG | 20% w/v | 40.7 | |
EG | 55% w/v | 42 | |
acetone | 50% v/v | 37.3 | |
DSPC | DMSO | 14% w/v | 55.5 |
PG | 70% w/v, anhydrous | 48.5 | |
DMPC | DMSO | 35% wt | 29.9 |
GLY | 40% wt | 24.6 | |
DMPE | DMSO | 0.15 molar | 56.5 |
GLY | 0.17 molar | 60 | |
DOPA | EG | 50% v/v | −11 |
DOPC | EG | 50% v/v | −14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boafo, G.F.; Magar, K.T.; Ekpo, M.D.; Qian, W.; Tan, S.; Chen, C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Int. J. Mol. Sci. 2022, 23, 12487. https://doi.org/10.3390/ijms232012487
Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. International Journal of Molecular Sciences. 2022; 23(20):12487. https://doi.org/10.3390/ijms232012487
Chicago/Turabian StyleBoafo, George Frimpong, Kosheli Thapa Magar, Marlene Davis Ekpo, Wang Qian, Songwen Tan, and Chuanpin Chen. 2022. "The Role of Cryoprotective Agents in Liposome Stabilization and Preservation" International Journal of Molecular Sciences 23, no. 20: 12487. https://doi.org/10.3390/ijms232012487
APA StyleBoafo, G. F., Magar, K. T., Ekpo, M. D., Qian, W., Tan, S., & Chen, C. (2022). The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. International Journal of Molecular Sciences, 23(20), 12487. https://doi.org/10.3390/ijms232012487