Methylation in the CHH Context Allows to Predict Recombination in Rice
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Recombination Rates
3.2. Plant Material and Growth Conditions for Methylation Experiment
3.3. Whole-Genome Bisulfite Sequencing and Data Analysis
3.4. Comparison between Recombination Rates and Methylation Patterns
3.5. Functional Evaluation
3.6. Machine Learning Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodgers-Melnick, E.; Bradbury, P.J.; Elshire, R.J.; Glaubitz, J.C.; Acharya, C.B.; Mitchell, S.E.; Li, C.; Li, Y.; Buckler, E.S. Recombination in Diverse Maize Is Stable, Predictable, and Associated with Genetic Load. Proc. Natl. Acad. Sci. USA 2015, 112, 3823–3828. [Google Scholar] [CrossRef] [Green Version]
- Lambing, C.; Franklin, F.C.H.; Wang, C.-J.R. Understanding and Manipulating Meiotic Recombination in Plants. Plant Physiol. 2017, 173, 1530–1542. [Google Scholar] [CrossRef] [Green Version]
- Henderson, I.R. Control of Meiotic Recombination Frequency in Plant Genomes. Curr. Opin. Plant Biol. 2012, 15, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Perrella, G.; Consiglio, M.F.; Aiese-Cigliano, R.; Cremona, G.; Sanchez-Moran, E.; Barra, L.; Errico, A.; Bressan, R.A.; Franklin, F.C.H.; Conicella, C. Histone Hyperacetylation Affects Meiotic Recombination and Chromosome Segregation in Arabidopsis: Histone Acetylation in At Meiosis. Plant J. 2010, 62, 796–806. [Google Scholar] [CrossRef]
- Melamed-Bessudo, C.; Levy, A.A. Deficiency in DNA Methylation Increases Meiotic Crossover Rates in Euchromatic but Not in Heterochromatic Regions in Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, E981–E988. [Google Scholar] [CrossRef] [Green Version]
- Mirouze, M.; Lieberman-Lazarovich, M.; Aversano, R.; Bucher, E.; Nicolet, J.; Reinders, J.; Paszkowski, J. Loss of DNA Methylation Affects the Recombination Landscape in Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, 5880–5885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bräutigam, K.; Cronk, Q. DNA Methylation and the Evolution of Developmental Complexity in Plants. Front. Plant Sci. 2018, 9, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Lang, Z.; Zhu, J.-K. Dynamics and Function of DNA Methylation in Plants. Nat. Rev. Mol. Cell Biol. 2018, 19, 489–506. [Google Scholar] [CrossRef]
- Kawashima, T.; Berger, F. Epigenetic Reprogramming in Plant Sexual Reproduction. Nat. Rev. Genet. 2014, 15, 613–624. [Google Scholar] [CrossRef]
- Lanciano, S.; Mirouze, M. DNA Methylation in Rice and Relevance for Breeding. Epigenomes 2017, 1, 10. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.; Jin, X.; Wang, X.; Liu, B. IRSpot-DACC: A Computational Predictor for Recombination Hot/Cold Spots Identification Based on Dinucleotide-Based Auto-Cross Covariance. Sci. Rep. 2016, 6, 33483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirci, S.; Peters, S.A.; de Ridder, D.; van Dijk, A.D.J. DNA Sequence and Shape Are Predictive for Meiotic Crossovers throughout the Plant Kingdom. Plant J. 2018, 95, 686–699. [Google Scholar] [CrossRef] [Green Version]
- Adrion, J.R.; Galloway, J.G.; Kern, A.D. Predicting the Landscape of Recombination Using Deep Learning. Mol. Biol. Evol. 2020, 37, 1790–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Buell, C.R.; Wing, R.A.; Gu, M.; Jiang, J. Toward a Cytological Characterization of the Rice Genome. Genome Res. 2001, 11, 2133–2141. [Google Scholar] [CrossRef] [Green Version]
- Habu, Y.; Ando, T.; Ito, S.; Nagaki, K.; Kishimoto, N.; Taguchi-Shiobara, F.; Numa, H.; Yamaguchi, K.; Shigenobu, S.; Murata, M.; et al. Epigenomic Modification in Rice Controls Meiotic Recombination and Segregation Distortion. Mol. Breed. 2015, 35, 103. [Google Scholar] [CrossRef]
- Choi, J.Y.; Purugganan, M.D. Evolutionary Epigenomics of Retrotransposon-Mediated Methylation Spreading in Rice. Mol. Biol. Evol. 2018, 35, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Kikuchi, S.; Neumann, P.; Zhang, W.; Wu, Y.; Chen, F.; Jiang, J. Genome-Wide Mapping of Cytosine Methylation Revealed Dynamic DNA Methylation Patterns Associated with Genes and Centromeres in Rice: Genome-Wide Methylation of Rice. Plant J. 2010, 63, 353–365. [Google Scholar] [CrossRef]
- Yan, H.; Jin, W.; Nagaki, K.; Tian, S.; Ouyang, S.; Buell, C.R.; Talbert, P.B.; Henikoff, S.; Jiang, J. Transcription and Histone Modifications in the Recombination-Free Region Spanning a Rice Centromere. Plant Cell 2005, 17, 3227–3238. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhu, J.; Hu, F.; Ge, S.; Ye, M.; Xiang, H.; Zhang, G.; Zheng, X.; Zhang, H.; Zhang, S.; et al. Single-Base Resolution Maps of Cultivated and Wild Rice Methylomes and Regulatory Roles of DNA Methylation in Plant Gene Expression. BMC Genom. 2012, 13, 300. [Google Scholar] [CrossRef] [Green Version]
- Daccord, N.; Celton, J.-M.; Linsmith, G.; Becker, C.; Choisne, N.; Schijlen, E.; van de Geest, H.; Bianco, L.; Micheletti, D.; Velasco, R.; et al. High-Quality de Novo Assembly of the Apple Genome and Methylome Dynamics of Early Fruit Development. Nat. Genet. 2017, 49, 1099–1106. [Google Scholar] [CrossRef]
- Zakrzewski, F.; Schmidt, M.; Van Lijsebettens, M.; Schmidt, T. DNA Methylation of Retrotransposons, DNA Transposons and Genes in Sugar Beet (Beta vulgaris L.). Plant J. 2017, 90, 1156–1175. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zheng, K.; Zeng, L.; Xu, D.; Zhu, T.; Yin, Y.; Zhan, H.; Wu, Y.; Yang, D.-L. Reinforcement of CHH Methylation through RNA-Directed DNA Methylation Ensures Sexual Reproduction in Rice. Plant Physiol. 2022, 188, 1189–1209. [Google Scholar] [CrossRef] [PubMed]
- Kent, T.V.; Uzunović, J.; Wright, S.I. Coevolution between Transposable Elements and Recombination. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160458. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.K.; Lai, A.; Stack, S.M.; Rizzon, C.; Gaut, B.S. Uneven Distribution of Expressed Sequence Tag Loci on Maize Pachytene Chromosomes. Genome Res. 2006, 16, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.; Rizzon, C.; Du, J.; Zhu, L.; Bennetzen, J.L.; Jackson, S.A.; Gaut, B.S.; Ma, J. Do Genetic Recombination and Gene Density Shape the Pattern of DNA Elimination in Rice Long Terminal Repeat Retrotransposons? Genome Res. 2009, 19, 2221–2230. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Sarazin, A.; Bowler, C.; Colot, V.; Quesneville, H. Genome-Wide Evidence for Local DNA Methylation Spreading from Small RNA-Targeted Sequences in Arabidopsis. Nucleic Acids Res. 2011, 39, 6919–6931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo-Franco, J.J.; Ghneim-Herrera, T.; Tobar-Tosse, F.; Romero, M.; Chaura, J.; Quimbaya, M. Whole-genome DNA Methylation Patterns of Oryza sativa (L.) and Oryza glumaepatula (Steud) Genotypes Associated with Aluminum Response. Plant Direct 2022, 6, e430. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.T.; Seymour, D.K.; Gaut, B.S. CHH Methylation Islands: A Nonconserved Feature of Grass Genomes That Is Positively Associated with Transposable Elements but Negatively Associated with Gene-Body Methylation. Genome Biol. Evol. 2021, 13, evab144. [Google Scholar] [CrossRef]
- Maropola, M.K.A.; Ramond, J.-B.; Trindade, M. Impact of Metagenomic DNA Extraction Procedures on the Identifiable Endophytic Bacterial Diversity in Sorghum Bicolor (L. Moench). J. Microbiol. Methods 2015, 112, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Krueger, F.; Andrews, S.R. Bismark: A Flexible Aligner and Methylation Caller for Bisulfite-Seq Applications. Bioinformatics 2011, 27, 1571–1572. [Google Scholar] [CrossRef] [Green Version]
Chromosome | IR64 | Azucena | ||||
---|---|---|---|---|---|---|
R2 | Correlation | MSE | R2 | Correlation | MSE | |
1 | 0.00 | 0.63 | 0.03 | 0.44 | 0.67 | 0.02 |
2 | 0.04 | 0.66 | 0.03 | 0.53 | 0.73 | 0.01 |
3 | 0.37 | 0.70 | 0.02 | 0.49 | 0.72 | 0.02 |
4 | 0.44 | 0.72 | 0.02 | 0.60 | 0.81 | 0.01 |
5 | 0.59 | 0.81 | 0.02 | 0.67 | 0.84 | 0.01 |
6 | 0.44 | 0.78 | 0.02 | 0.68 | 0.82 | 0.01 |
7 | 0.16 | 0.53 | 0.04 | 0.50 | 0.73 | 0.02 |
8 | 0.71 | 0.85 | 0.01 | 0.67 | 0.88 | 0.02 |
9 | 0.32 | 0.65 | 0.03 | 0.50 | 0.75 | 0.02 |
10 | 0.41 | 0.70 | 0.02 | 0.28 | 0.69 | 0.03 |
11 | 0.30 | 0.70 | 0.02 | 0.52 | 0.77 | 0.01 |
12 | 0.54 | 0.77 | 0.01 | 0.35 | 0.85 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñuela, M.; Gallo-Franco, J.J.; Finke, J.; Rocha, C.; Gkanogiannis, A.; Ghneim-Herrera, T.; Lorieux, M. Methylation in the CHH Context Allows to Predict Recombination in Rice. Int. J. Mol. Sci. 2022, 23, 12505. https://doi.org/10.3390/ijms232012505
Peñuela M, Gallo-Franco JJ, Finke J, Rocha C, Gkanogiannis A, Ghneim-Herrera T, Lorieux M. Methylation in the CHH Context Allows to Predict Recombination in Rice. International Journal of Molecular Sciences. 2022; 23(20):12505. https://doi.org/10.3390/ijms232012505
Chicago/Turabian StylePeñuela, Mauricio, Jenny Johana Gallo-Franco, Jorge Finke, Camilo Rocha, Anestis Gkanogiannis, Thaura Ghneim-Herrera, and Mathias Lorieux. 2022. "Methylation in the CHH Context Allows to Predict Recombination in Rice" International Journal of Molecular Sciences 23, no. 20: 12505. https://doi.org/10.3390/ijms232012505
APA StylePeñuela, M., Gallo-Franco, J. J., Finke, J., Rocha, C., Gkanogiannis, A., Ghneim-Herrera, T., & Lorieux, M. (2022). Methylation in the CHH Context Allows to Predict Recombination in Rice. International Journal of Molecular Sciences, 23(20), 12505. https://doi.org/10.3390/ijms232012505