FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. The CD40L-CD40 System
1.2. Molecular Mechanisms of CD40 Activation
2. CD40 as Therapeutic Target
2.1. Inhibitory Antibody Targeting of CD40
2.2. Stimulatory Antibody Targeting of CD40
2.2.1. Agonism of Complexes of Anti-CD40 Antibodies and FcγRs
2.2.2. Problems and Limitations of CD40 Engagement by FcγR-Interacting Anti-CD40 Antibodies
2.2.3. Anti-CD40 Antibodies with Intrinsic Thus FcγR-Independent Agonism
3. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Siegmund, D.; Lang, I.; Wajant, H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J. 2017, 284, 1131–1159. [Google Scholar] [CrossRef] [PubMed]
- Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal. 2013, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Fotin-Mleczek, M.; Henkler, F.; Hausser, A.; Glauner, H.; Samel, D.; Graness, A.; Scheurich, P.; Mauri, D.; Wajant, H. Tumor necrosis factor receptor-associated factor (TRAF) 1 regulates CD40-induced TRAF2-mediated NF-kappaB activation. J. Biol. Chem. 2004, 279, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.M.; O’Rourke, K.; Boguski, M.S.; Dixit, V.M. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J. Biol. Chem. 1994, 269, 30069–30072. [Google Scholar] [CrossRef]
- Ishida, T.; Mizushima, S.; Azuma, S.; Kobayashi, N.; Tojo, T.; Suzuki, K.; Aizawa, S.; Watanabe, T.; Mosialos, G.; Kieff, E.; et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J. Biol. Chem. 1996, 271, 28745–28748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, T.K.; Tojo, T.; Aoki, T.; Kobayashi, N.; Ohishi, T.; Watanabe, T.; Yamamoto, T.; Inoue, J. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl. Acad. Sci. USA 1996, 93, 9437–9442. [Google Scholar] [CrossRef] [Green Version]
- Rothe, M.; Sarma, V.; Dixit, V.M.; Goeddel, D.V. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science 1995, 269, 1424–1427. [Google Scholar] [CrossRef]
- Aloui, C.; Prigent, A.; Sut, C.; Tariket, S.; Hamzeh-Cognasse, H.; Pozzetto, B.; Richard, Y.; Cognasse, F.; Laradi, S.; Garraud, O. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Int. J. Mol. Sci. 2014, 15, 22342–22364. [Google Scholar] [CrossRef] [Green Version]
- Laman, J.D.; Claassen, E.; Noelle, R.J. Functions of CD40 and Its Ligand, gp39 (CD40L). Crit. Rev. Immunol. 2017, 37, 371–420. [Google Scholar] [CrossRef]
- Karpusas, M.; Hsu, Y.M.; Wang, J.H.; Thompson, J.; Lederman, S.; Chess, L.; Thomas, D. 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure 1995, 3, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Takada, Y.K.; Yu, J.; Shimoda, M.; Takada, Y. Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling. J. Immunol. 2019, 203, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Termini, J.M.; Rivas, Y.; Otero, M.; Raffa, F.N.; Bhat, V.; Farooq, A.; Stone, G.W. A multi-trimeric fusion of CD40L and gp100 tumor antigen activates dendritic cells and enhances survival in a B16-F10 melanoma DNA vaccine model. Vaccine 2015, 33, 4798–4806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haswell, L.E.; Glennie, M.J.; Al-Shamkhani, A. Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur. J. Immunol. 2001, 31, 3094–3100. [Google Scholar] [CrossRef]
- Holler, N.; Tardivel, A.; Kovacsovics-Bankowski, M.; Hertig, S.; Gaide, O.; Martinon, F.; Tinel, A.; Deperthes, D.; Calderara, S.; Schulthess, T.; et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol. Cell Biol. 2003, 23, 1428–1440. [Google Scholar] [CrossRef] [Green Version]
- Lai, N.; Min, Q.; Xiong, E.; Liu, J.; Zhang, L.; Yasuda, S.; Wang, J.Y. A tetrameric form of CD40 ligand with potent biological activities in both mouse and human primary B cells. Mol. Immunol. 2019, 105, 173–180. [Google Scholar] [CrossRef]
- Merz, C.; Sykora, J.; Marschall, V.; Richards, D.M.; Heinonen, K.; Redondo Müller, M.; Thiemann, M.; Schnyder, T.; Fricke, H.; Hill, O.; et al. The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J. Immunother. 2018, 41, 385–398. [Google Scholar] [CrossRef]
- Wyzgol, A.; Müller, N.; Fick, A.; Munkel, S.; Grigoleit, G.U.; Pfizenmaier, K.; Wajant, H. Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J. Immunol. 2009, 183, 1851–1861. [Google Scholar] [CrossRef] [Green Version]
- Kucka, K.; Wajant, H. Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily. Front. Cell. Dev. Biol. 2020, 8, 615141. [Google Scholar] [CrossRef]
- Mackay, F.; Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 2009, 9, 491–502. [Google Scholar] [CrossRef]
- Vanamee, É.S.; Faustman, D.L. On the TRAIL of Better Therapies: Understanding TNFRSF Structure-Function. Cells 2020, 9, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Park, Y.C.; Kreishman, M.; Kieff, E.; Wu, H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol. Cell 1999, 4, 321–330. [Google Scholar] [CrossRef]
- Mace, P.D.; Smits, C.; Vaux, D.L.; Silke, J.; Day, C.L. Asymmetric recruitment of cIAPs by TRAF2. J. Mol. Biol. 2010, 400, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Kabaleeswaran, V.; Wang, Y.; Cheng, G.; Wu, H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: Affinity, specificity, and regulation. Mol. Cell 2010, 38, 101–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.; Middleton, A.J.; Padala, P.; Ledgerwood, E.C.; Mace, P.D.; Day, C.L. The Structure and Ubiquitin Binding Properties of TRAF RING Heterodimers. J. Mol. Biol. 2021, 433, 166844. [Google Scholar] [CrossRef] [PubMed]
- Middleton, A.J.; Budhidarmo, R.; Das, A.; Zhu, J.; Foglizzo, M.; Mace, P.D.; Day, C.L. The activity of TRAF RING homo- and heterodimers is regulated by zinc finger 1. Nat. Commun. 2017, 8, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Q.; Lin, S.C.; Lamothe, B.; Lu, M.; Lo, Y.C.; Hura, G.; Zheng, L.; Rich, R.L.; Campos, A.D.; Myszka, D.G.; et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 2009, 16, 658–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, F.K.; Chun, H.J.; Zheng, L.; Siegel, R.M.; Bui, K.L.; Lenardo, M.J. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000, 288, 2351–2354. [Google Scholar] [CrossRef]
- Smulski, C.R.; Beyrath, J.; Decossas, M.; Chekkat, N.; Wolff, P.; Estieu-Gionnet, K.; Guichard, G.; Speiser, D.; Schneider, P.; Fournel, S. Cysteine-rich domain 1 of CD40 mediates receptor self-assembly. J. Biol. Chem. 2013, 288, 10914–10922. [Google Scholar] [CrossRef] [Green Version]
- Brunekreeft, K.L.; Strohm, C.; Gooden, M.J.; Rybczynska, A.A.; Nijman, H.W.; Grigoleit, G.U.; Helfrich, W.; Bremer, E.; Siegmund, D.; Wajant, H.; et al. Targeted delivery of CD40L promotes restricted activation of antigen-presenting cells and induction of cancer cell death. Mol. Cancer 2014, 13, 85. [Google Scholar] [CrossRef]
- Lai, J.H.; Luo, S.F.; Ho, L.J. Targeting the CD40-CD154 Signaling Pathway for Treatment of Autoimmune Arthritis. Cells 2019, 8, 927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanujam, M.; Steffgen, J.; Visvanathan, S.; Mohan, C.; Fine, J.S.; Putterman, C. Phoenix from the flames: Rediscovering the role of the CD40-CD40L pathway in systemic lupus erythematosus and lupus nephritis. Autoimmun. Rev. 2020, 19, 102668. [Google Scholar] [CrossRef] [PubMed]
- Samy, K.P.; Butler, J.R.; Li, P.; Cooper, D.K.C.; Ekser, B. The Role of Costimulation Blockade in Solid Organ and Islet Xenotransplantation. J. Immunol. Res. 2017, 2017, 8415205. [Google Scholar] [CrossRef]
- Schroder, P.M.; Fitch, Z.W.; Schmitz, R.; Choi, A.Y.; Kwun, J.; Knechtle, S.J. The past, present, and future of costimulation blockade in organ transplantation. Curr. Opin. Organ Transplant. 2019, 24, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Cairing, J.; Barr, T.; Heath, A.W. Adjuvanticity of anti-cD40 in vaccine development. Curr. Opin. Mol. Ther. 2005, 7, 73–77. [Google Scholar]
- Vonderheide, R.H. CD40 Agonist Antibodies in Cancer Immunotherapy. Annu. Rev. Med. 2020, 71, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonderheide, R.H.; Glennie, M.J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 2013, 19, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Boumpas, D.T.; Furie, R.; Manzi, S.; Illei, G.G.; Wallace, D.J.; Balow, J.E.; Vaishnaw, A. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 2003, 48, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Brams, P.; Black, A.; Padlan, E.A.; Hariharan, K.; Leonard, J.; Chambers-Slater, K.; Noelle, R.J.; Newman, R. A humanized anti-human CD154 monoclonal antibody blocks CD154-CD40 mediated human B cell activation. Int. Immunopharmacol. 2001, 1, 277–294. [Google Scholar] [CrossRef]
- Kalunian, K.C.; Davis, J.C., Jr.; Merrill, J.T.; Totoritis, M.C.; Wofsy, D. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: A randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002, 46, 3251–3258. [Google Scholar] [CrossRef]
- Kawai, T.; Andrews, D.; Colvin, R.B.; Sachs, D.H.; Cosimi, A.B. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat. Med. 2000, 6, 114. [Google Scholar] [CrossRef] [PubMed]
- Koyama, I.; Kawai, T.; Andrews, D.; Boskovic, S.; Nadazdin, O.; Wee, S.L.; Sogawa, H.; Wu, D.L.; Smith, R.N.; Colvin, R.B.; et al. Thrombophilia associated with anti-CD154 monoclonal antibody treatment and its prophylaxis in nonhuman primates. Transplantation 2004, 77, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Schuler, W.; Bigaud, M.; Brinkmann, V.; Di Padova, F.; Geisse, S.; Gram, H.; Hungerford, V.; Kleuser, B.; Kristofic, C.; Menninger, K.; et al. Efficacy and safety of ABI793, a novel human anti-human CD154 monoclonal antibody, in cynomolgus monkey renal allotransplantation. Transplantation 2004, 77, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Langer, F.; Ingersoll, S.B.; Amirkhosravi, A.; Meyer, T.; Siddiqui, F.A.; Ahmad, S.; Walker, J.M.; Amaya, M.; Desai, H.; Francis, J.L. The role of CD40 in CD40L- and antibody-mediated platelet activation. Thromb. Haemost. 2005, 93, 1137–1146. [Google Scholar] [PubMed]
- Mirabet, M.; Barrabés, J.A.; Quiroga, A.; Garcia-Dorado, D. Platelet pro-aggregatory effects of CD40L monoclonal antibody. Mol. Immunol. 2008, 45, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Robles-Carrillo, L.; Meyer, T.; Hatfield, M.; Desai, H.; Dávila, M.; Langer, F.; Amaya, M.; Garber, E.; Francis, J.L.; Hsu, Y.M.; et al. Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. J. Immunol. 2010, 185, 1577–1583. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.H.; Yamniuk, A.P.; Borowski, V.; Kuhn, R.; Susulic, V.; Rex-Rabe, S.; Yang, X.; Zhou, X.; Zhang, Y.; Gillooly, K.; et al. Engineering of a novel anti-CD40L domain antibody for treatment of autoimmune diseases. J. Immunol. 2014, 192, 4083–4092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shock, A.; Burkly, L.; Wakefield, I.; Peters, C.; Garber, E.; Ferrant, J.; Taylor, F.R.; Su, L.; Hsu, Y.M.; Hutto, D.; et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: An in vivo study. Arthritis Res. Ther. 2015, 17, 234. [Google Scholar] [CrossRef] [Green Version]
- Cordoba, F.; Wieczorek, G.; Audet, M.; Roth, L.; Schneider, M.A.; Kunkler, A.; Stuber, N.; Erard, M.; Ceci, M.; Baumgartner, R.; et al. A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion. Am. J. Transplant. 2015, 15, 2825–2836. [Google Scholar] [CrossRef]
- Ristov, J.; Espie, P.; Ulrich, P.; Sickert, D.; Flandre, T.; Dimitrova, M.; Müller-Ristig, D.; Weider, D.; Robert, G.; Schmutz, P.; et al. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am. J. Transplant. 2018, 18, 2895–2904. [Google Scholar] [CrossRef] [Green Version]
- Schwabe, C.; Rosenstock, B.; Doan, T.; Hamilton, P.; Dunbar, P.R.; Eleftheraki, A.G.; Joseph, D.; Hilbert, J.; Schoelch, C.; Padula, S.J.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of Multiple Rising Doses of BI 655064, an Antagonistic Anti-CD40 Antibody, in Healthy Subjects: A Potential Novel Treatment for Autoimmune Diseases. J. Clin. Pharmacol. 2018, 58, 1566–1577. [Google Scholar] [CrossRef] [PubMed]
- Espié, P.; He, Y.; Koo, P.; Sickert, D.; Dupuy, C.; Chokoté, E.; Schuler, R.; Mergentaler, H.; Ristov, J.; Milojevic, J.; et al. First-in-human clinical trial to assess pharmacokinetics, pharmacodynamics, safety, and tolerability of iscalimab, an anti-CD40 monoclonal antibody. Am. J. Transplant. 2020, 20, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Stan, M.N.; Frommer, L.; Gergely, P.; Colin, L.; Amer, A.; Schuhmann, I.; Espie, P.; Rush, J.S.; Basson, C.; et al. A Novel Anti-CD40 Monoclonal Antibody, Iscalimab, for Control of Graves Hyperthyroidism-A Proof-of-Concept Trial. J. Clin. Endocrinol. Metab. 2020, 105, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Klintmalm, G.; Yang, H.; Ram Peddi, V.; Blahunka, P.; Conkle, A.; Santos, V.; Holman, J. A randomized, phase 1b study of the pharmacokinetics, pharmacodynamics, safety, and tolerability of bleselumab, a fully human, anti-CD40 monoclonal antibody, in kidney transplantation. Am. J. Transplant. 2020, 20, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Harland, R.C.; Klintmalm, G.; Jensik, S.; Yang, H.; Bromberg, J.; Holman, J.; Kumar, M.S.A.; Santos, V.; Larson, T.J.; Wang, X. Efficacy and safety of bleselumab in kidney transplant recipients: A phase 2, randomized, open-label, noninferiority study. Am. J. Transplant. 2020, 20, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Bensinger, W.; Maziarz, R.T.; Jagannath, S.; Spencer, A.; Durrant, S.; Becker, P.S.; Ewald, B.; Bilic, S.; Rediske, J.; Baeck, J.; et al. A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 2012, 159, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Kipps, T.J.; Flinn, I.W.; Cooper, M.; Odenike, O.; Bendiske, J.; Rediske, J.; Bilic, S.; Dey, J.; Baeck, J.; et al. Phase I study of the anti-CD40 humanized monoclonal antibody lucatumumab (HCD122) in relapsed chronic lymphocytic leukemia. Leuk. Lymphoma 2012, 53, 2136–2142. [Google Scholar] [CrossRef] [Green Version]
- Fanale, M.; Assouline, S.; Kuruvilla, J.; Solal-Céligny, P.; Heo, D.S.; Verhoef, G.; Corradini, P.; Abramson, J.S.; Offner, F.; Engert, A.; et al. Phase IA/II, multicentre, open-label study of the CD40 antagonistic monoclonal antibody lucatumumab in adult patients with advanced non-Hodgkin or Hodgkin lymphoma. Br. J. Haematol. 2014, 164, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Li, X.; Tong, X.; Santos, D.; Otsuki, T.; Catley, L.; Tournilhac, O.; Podar, K.; Hideshima, T.; Schlossman, R.; et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res. 2005, 65, 5898–5906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, P.; Flandre, T.; Espie, P.; Sickert, D.; Rubic-Schneider, T.; Shaw, D.A.; Rush, J.S. Nonclinical Safety Assessment of CFZ533, a Fc-Silent Anti-CD40 Antibody, in Cynomolgus Monkeys. Toxicol. Sci. 2018, 166, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.; Badell, I.R.; Thompson, P.; Martin, B.; Leopardi, F.; Strobert, E.; Price, A.A.; Abdulkerim, H.S.; Wang, R.; Iwakoshi, N.N.; et al. A novel monoclonal antibody to CD40 prolongs islet allograft survival. Am. J. Transplant. 2012, 12, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, M.M.; Singh, A.K.; Corcoran, P.C.; Thomas Iii, M.L.; Clark, T.; Lewis, B.G.; Hoyt, R.F.; Eckhaus, M.; Pierson Iii, R.N.; Belli, A.J.; et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat. Commun. 2016, 7, 11138. [Google Scholar] [CrossRef]
- Marken, J.; Muralidharan, S.; Giltiay, N.V. Anti-CD40 antibody KPL-404 inhibits T cell-mediated activation of B cells from healthy donors and autoimmune patients. Arthritis Res. Ther. 2021, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Muralidharan, S.; Njenga, M.; Garron, T.; Bondensgaard, K.; Paolini, J.F. Preclinical Immunopharmacologic Assessment of KPL-404, a Novel, Humanized, Non-Depleting Antagonistic Anti-CD40 Monoclonal Antibody. J. Pharmacol. Exp. Ther. 2022, 381, 12–21. [Google Scholar] [CrossRef]
- Bedian, V.; Donovan, C.; Gardner, J.; Natoli, E.; Paradis, T.; Alpert, R.; Wang, H.; Shepard, R.; Wentland, J.; Gladue, R. In vitro characterization and pre-clinical pharmacokinetics of CP-870,893, a human anti-CD40 agonist antibody. J. Clin. Oncol. 2006, 24 (Suppl. S18), 2539. [Google Scholar] [CrossRef]
- Richman, L.P.; Vonderheide, R.H. Role of crosslinking for agonistic CD40 monoclonal antibodies as immune therapy of cancer. Cancer Immunol. Res. 2014, 2, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Vonderheide, R.H.; Flaherty, K.T.; Khalil, M.; Stumacher, M.S.; Bajor, D.L.; Hutnick, N.A.; Sullivan, P.; Mahany, J.J.; Gallagher, M.; Kramer, A.; et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 2007, 25, 876–883. [Google Scholar] [CrossRef]
- Dahan, R.; Barnhart, B.C.; Li, F.; Yamniuk, A.P.; Korman, A.J.; Ravetch, J.V. Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement. Cancer Cell 2016, 29, 820–831. [Google Scholar] [CrossRef] [Green Version]
- Garris, C.S.; Wong, J.L.; Ravetch, J.V.; Knorr, D.A. Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer. Sci. Transl. Med. 2021, 13, eabd1346. [Google Scholar] [CrossRef]
- Argiriadi, M.A.; Benatuil, L.; Dubrovska, I.; Egan, D.A.; Gao, L.; Greischar, A.; Hardman, J.; Harlan, J.; Iyer, R.B.; Judge, R.A.; et al. CD40/anti-CD40 antibody complexes which illustrate agonist and antagonist structural switches. BMC Mol. Cell Biol. 2019, 20, 29. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Chan, H.T.C.; Fisher, H.; Penfold, C.A.; Kim, J.; Inzhelevskaya, T.; Mockridge, C.I.; French, R.R.; Duriez, P.J.; Douglas, L.R.; et al. Isotype Switching Converts Anti-CD40 Antagonism to Agonism to Elicit Potent Antitumor Activity. Cancer Cell 2020, 37, 850–866.e7. [Google Scholar] [CrossRef] [PubMed]
- Filbert, E.L.; Björck, P.K.; Srivastava, M.K.; Bahjat, F.R.; Yang, X. APX005M, a CD40 agonist antibody with unique epitope specificity and Fc receptor binding profile for optimal therapeutic application. Cancer Immunol. Immunother. 2021, 70, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.A.; Djureinovic, D.; Jessel, S.; Krykbaeva, I.; Zhang, L.; Jilaveanu, L.; Ralabate, A.; Johnson, B.; Levit, N.S.; Anderson, G.; et al. A Phase I Study of APX005M and Cabiralizumab with or without Nivolumab in Patients with Melanoma, Kidney Cancer, or Non-Small Cell Lung Cancer Resistant to Anti-PD-1/PD-L1. Clin. Cancer Res. 2021, 27, 4757–4767. [Google Scholar] [CrossRef]
- Vitale, L.A.; Thomas, L.J.; He, L.Z.; O’Neill, T.; Widger, J.; Crocker, A.; Sundarapandiyan, K.; Storey, J.R.; Forsberg, E.M.; Weidlick, J.; et al. Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol. Immunother. 2019, 68, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Horton, H.M.; Bernett, M.J.; Peipp, M.; Pong, E.; Karki, S.; Chu, S.Y.; Richards, J.O.; Chen, H.; Repp, R.; Desjarlais, J.R.; et al. Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood 2010, 116, 3004–3012. [Google Scholar] [CrossRef] [Green Version]
- Irenaeus, S.M.M.; Nielsen, D.; Ellmark, P.; Yachnin, J.; Deronic, A.; Nilsson, A.; Norlén, P.; Veitonmäki, N.; Wennersten, C.S.; Ullenhag, G.J. First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int. J. Cancer 2019, 145, 1189–1199. [Google Scholar] [CrossRef]
- Mangsbo, S.M.; Broos, S.; Fletcher, E.; Veitonmäki, N.; Furebring, C.; Dahlén, E.; Norlén, P.; Lindstedt, M.; Tötterman, T.H.; Ellmark, P. The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T-cell-dependent tumor immunity. Clin. Cancer Res. 2015, 21, 1115–1126. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.H.; Ralph, K.L.; Sepuldeva, E.; Hansen, G.; Li, H.; Huang, Z.F.; Liu, D.; Dziegelewski, M.; Ahlberg, J.; Frego, L.; et al. An optimally designed anti-human CD40 antibody with potent B cell suppression for the treatment of autoimmune diseases. Int. J. Pharm. 2021, 609, 121162. [Google Scholar] [CrossRef]
- Chowdhury, F.; Johnson, P.W.; Glennie, M.J.; Williams, A.P. Ex vivo assays of dendritic cell activation and cytokine profiles as predictors of in vivo effects in an anti-human CD40 monoclonal antibody ChiLob 7/4 phase I trial. Cancer Immunol. Res. 2014, 2, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Challis, R.; Chowdhury, F.; Gao, Y.; Harvey, M.; Geldart, T.; Kerr, P.; Chan, C.; Smith, A.; Steven, N.; et al. Clinical and biological effects of an agonist anti-CD40 antibody: A Cancer Research UK phase I study. Clin. Cancer Res. 2015, 21, 1321–1328. [Google Scholar] [CrossRef] [Green Version]
- Francisco, J.A.; Donaldson, K.L.; Chace, D.; Siegall, C.B.; Wahl, A.F. Agonistic properties and in vivo antitumor activity of the anti-CD40 antibody SGN-14. Cancer Res. 2000, 60, 3225–3231. [Google Scholar] [PubMed]
- de Vos, S.; Forero-Torres, A.; Ansell, S.M.; Kahl, B.; Cheson, B.D.; Bartlett, N.L.; Furman, R.R.; Winter, J.N.; Kaplan, H.; Timmerman, J.; et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol. Oncol. 2014, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Oflazoglu, E.; Stone, I.J.; Brown, L.; Gordon, K.A.; van Rooijen, N.; Jonas, M.; Law, C.L.; Grewal, I.S.; Gerber, H.P. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br. J. Cancer 2009, 100, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Catley, L.P.; Mitsiades, C.S.; Burger, R.; Podar, K.; Shringpaure, R.; Hideshima, T.; Chauhan, D.; Hamasaki, M.; Ishitsuka, K.; et al. Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: Clinical implications. Cancer Res. 2004, 64, 2846–2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwekkeboom, J.; De Boer, M.; Tager, J.M.; De Groot, C. CD40 plays an essential role in the activation of human B cells by murine EL4B5 cells. Immunology 1993, 79, 439–444. [Google Scholar]
- Bankert, K.C.; Oxley, K.L.; Smith, S.M.; Graham, J.P.; de Boer, M.; Thewissen, M.; Simons, P.J.; Bishop, G.A. Induction of an altered CD40 signaling complex by an antagonistic human monoclonal antibody to CD40. J. Immunol. 2015, 194, 4319–4327. [Google Scholar] [CrossRef] [Green Version]
- Badell, I.R.; Thompson, P.W.; Turner, A.P.; Russell, M.C.; Avila, J.G.; Cano, J.A.; Robertson, J.M.; Leopardi, F.V.; Strobert, E.A.; Iwakoshi, N.N.; et al. Nondepleting anti-CD40-based therapy prolongs allograft survival in nonhuman primates. Am. J. Transplant. 2012, 12, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.H.; Wang, J.F.; Wang, Y.D.; Qiu, Y.H.; Pan, J.Z.; Xie, W.; Jiang, L.Y.; Klein, B.; Zhang, X.G. An agonist anti-human CD40 monoclonal antibody that induces dendritic cell formation and maturation and inhibits proliferation of a myeloma cell line. Hybridoma 1999, 18, 471–478. [Google Scholar]
- Ellmark, P.; Andersson, H.; Abayneh, S.; Fenyö, E.M.; Borrebaeck, C.A. Identification of a strongly activating human anti-CD40 antibody that suppresses HIV type 1 infection. AIDS. Res. Hum. Retrovir. 2008, 24, 367–373. [Google Scholar] [CrossRef]
- Zhuang, Y.; Huang, J.; Zhou, Z.; Ge, Y.; Fan, Y.; Qi, C.; Zhen, L.; Monchatre, E.; Edelman, L.; Zhang, X. A novel blocking monoclonal antibody recognizing a distinct epitope of human CD40 molecule. Tissue Antigens 2005, 65, 81–87. [Google Scholar] [CrossRef]
- Björck, P.; Braesch-Andersen, S.; Paulie, S. Antibodies to distinct epitopes on the CD40 molecule co-operate in stimulation and can be used for the detection of soluble CD40. Immunology 1994, 83, 430–437. [Google Scholar] [PubMed]
- Clark, E.A.; Ledbetter, J.A. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Natl. Acad. Sci. USA 1986, 83, 4494–4498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, E.A.; Yip, T.C.; Ledbetter, J.A.; Yukawa, H.; Kikutani, H.; Kishimoto, T.; Ng, M.H. CDw40 and BLCa-specific monoclonal antibodies detect two distinct molecules which transmit progression signals to human B lymphocytes. Eur. J. Immunol. 1988, 18, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Ledbetter, J.A.; Grosmaire, L.S.; Hollenbaugh, D.; Aruffo, A.; Nadler, S.G. Agonistic and antagonistic properties of CD40 mAb G28-5 are dependent on binding valency. Circ. Shock 1994, 44, 67–72. [Google Scholar]
- Adams, A.B.; Shirasugi, N.; Jones, T.R.; Durham, M.M.; Strobert, E.A.; Cowan, S.; Rees, P.; Hendrix, R.; Price, K.; Kenyon, N.S.; et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J. Immunol. 2005, 174, 542–550. [Google Scholar] [CrossRef] [Green Version]
- Pearson, T.C.; Trambley, J.; Odom, K.; Anderson, D.C.; Cowan, S.; Bray, R.; Lin, A.; Hollenbaugh, D.; Aruffo, A.; Siadak, A.W.; et al. Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation 2002, 74, 933–940. [Google Scholar] [CrossRef]
- Gruber, M.F.; Bjorndahl, J.M.; Nakamura, S.; Fu, S.M. Anti-CD45 inhibition of human B cell proliferation depends on the nature of activation signals and the state of B cell activation. A study with anti-IgM and anti-CDw40 antibodies. J. Immunol. 1989, 142, 4144–4152. [Google Scholar]
- Jabara, H.H.; Fu, S.M.; Geha, R.S.; Vercelli, D. CD40 and IgE: Synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells. J. Exp. Med. 1990, 172, 1861–1864. [Google Scholar] [CrossRef]
- Vallé, A.; Zuber, C.E.; Defrance, T.; Djossou, O.; De Rie, M.; Banchereau, J. Activation of human B lymphocytes through CD40 and interleukin 4. Eur. J. Immunol. 1989, 19, 1463–1467. [Google Scholar] [CrossRef]
- Paulie, S.; Rosén, A.; Ehlin-Henriksson, B.; Braesch-Andersen, S.; Jakobson, E.; Koho, H.; Perlmann, P. The human B lymphocyte and carcinoma antigen, CDw40, is a phosphoprotein involved in growth signal transduction. J. Immunol. 1989, 142, 590–595. [Google Scholar]
- Li, D.K.; Wang, W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies. Oncol. Lett. 2020, 20, 176. [Google Scholar] [CrossRef] [PubMed]
- Bonnans, C.; Thomas, G.; He, W.; Jung, B.; Chen, W.; Liao, M.; Heyen, J.; Buetow, B.; Pillai, S.; Matsumoto, D.; et al. CD40 agonist-induced IL-12p40 potentiates hepatotoxicity. J. Immunother. Cancer 2020, 8, e000624. [Google Scholar] [CrossRef] [PubMed]
- Medina-Echeverz, J.; Ma, C.; Duffy, A.G.; Eggert, T.; Hawk, N.; Kleiner, D.E.; Korangy, F.; Greten, T.F. Systemic Agonistic Anti-CD40 Treatment of Tumor-Bearing Mice Modulates Hepatic Myeloid-Suppressive Cells and Causes Immune-Mediated Liver Damage. Cancer Immunol. Res. 2015, 3, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siwicki, M.; Gort-Freitas, N.A.; Messemaker, M.; Bill, R.; Gungabeesoon, J.; Engblom, C.; Zilionis, R.; Garris, C.; Gerhard, G.M.; Kohl, A.; et al. Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Sci. Immunol. 2021, 6, eabi7083. [Google Scholar] [CrossRef] [PubMed]
- Fransen, M.F.; Sluijter, M.; Morreau, H.; Arens, R.; Melief, C.J. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin. Cancer Res. 2011, 17, 2270–2280. [Google Scholar] [CrossRef] [Green Version]
- Jackaman, C.; Lew, A.M.; Zhan, Y.; Allan, J.E.; Koloska, B.; Graham, P.T.; Robinson, B.W.; Nelson, D.J. Deliberately provoking local inflammation drives tumors to become their own protective vaccine site. Int. Immunol. 2008, 20, 1467–1479. [Google Scholar] [CrossRef]
- Knorr, D.A.; Dahan, R.; Ravetch, J.V. Toxicity of an Fc-engineered anti-CD40 antibody is abrogated by intratumoral injection and results in durable antitumor immunity. Proc. Natl. Acad. Sci. USA 2018, 115, 11048–11053. [Google Scholar] [CrossRef] [Green Version]
- Sandin, L.C.; Orlova, A.; Gustafsson, E.; Ellmark, P.; Tolmachev, V.; Tötterman, T.H.; Mangsbo, S.M. Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer. Cancer Immunol. Res. 2014, 2, 80–90. [Google Scholar] [CrossRef] [Green Version]
- van Mierlo, G.J.; den Boer, A.T.; Medema, J.P.; van der Voort, E.I.; Fransen, M.F.; Offringa, R.; Melief, C.J.; Toes, R.E. CD40 stimulation leads to effective therapy of CD40(−) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc. Natl. Acad. Sci. USA 2002, 99, 5561–5566. [Google Scholar] [CrossRef] [Green Version]
- Stone, M.L.; Lee, J.; Herrera, V.M.; Graham, K.; Lee, J.W.; Huffman, A.; Coho, H.; Tooker, E.; Myers, M.I.; Giannone, M.; et al. TNF blockade uncouples toxicity from antitumor efficacy induced with CD40 chemoimmunotherapy. JCI Insight 2021, 6, e146314. [Google Scholar] [CrossRef]
- Geldart, T.; Illidge, T. Anti-CD 40 monoclonal antibody. Leuk. Lymphoma 2005, 46, 1105–1113. [Google Scholar] [CrossRef]
- Andersen, N.S.; Larsen, J.K.; Christiansen, J.; Pedersen, L.B.; Christophersen, N.S.; Geisler, C.H.; Jurlander, J. Soluble CD40 ligand induces selective proliferation of lymphoma cells in primary mantle cell lymphoma cell cultures. Blood 2000, 96, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Ghia, P.; Boussiotis, V.A.; Schultze, J.L.; Cardoso, A.A.; Dorfman, D.M.; Gribben, J.G.; Freedman, A.S.; Nadler, L.M. Unbalanced expression of bcl-2 family proteins in follicular lymphoma: Contribution of CD40 signaling in promoting survival. Blood 1998, 91, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Bishop, G.A.; Hostager, B.S. Signaling by CD40 and its mimics in B cell activation. Immunol. Res. 2001, 24, 97–109. [Google Scholar] [CrossRef]
- Cleary, A.M.; Fortune, S.M.; Yellin, M.J.; Chess, L.; Lederman, S. Opposing roles of CD95 (Fas/APO-1) and CD40 in the death and rescue of human low density tonsillar B cells. J. Immunol. 1995, 155, 3329–3337. [Google Scholar]
- Lagresle, C.; Mondière, P.; Bella, C.; Krammer, P.H.; Defrance, T. Concurrent engagement of CD40 and the antigen receptor protects naive and memory human B cells from APO-1/Fas-mediated apoptosis. J. Exp. Med. 1996, 183, 1377–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsubata, T.; Wu, J.; Honjo, T. B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature 1993, 364, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, A.G.; Davies, C.; Knox, P.G.; Gallagher, N.J.; Afford, S.C.; Adams, D.H.; Young, L.S. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol. Cell Biol. 2000, 20, 5503–5515. [Google Scholar] [CrossRef] [Green Version]
- Garrone, P.; Neidhardt, E.M.; Garcia, E.; Galibert, L.; van Kooten, C.; Banchereau, J. Fas ligation induces apoptosis of CD40-activated human B lymphocytes. J. Exp. Med. 1995, 182, 1265–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagresle, C.; Bella, C.; Daniel, P.T.; Krammer, P.H.; Defrance, T. Regulation of germinal center B cell differentiation. Role of the human APO-1/Fas (CD95) molecule. J. Immunol. 1995, 154, 5746–5756. [Google Scholar] [PubMed]
- Ribeiro, P.; Renard, N.; Warzocha, K.; Charlot, C.; Jeandenant, L.; Callet-Bauchu, E.; Coiffier, B.; Salles, G. CD40 regulation of death domains containing receptors and their ligands on lymphoma B cells. Br. J. Haematol. 1998, 103, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Schattner, E.J.; Elkon, K.B.; Yoo, D.H.; Tumang, J.; Krammer, P.H.; Crow, M.K.; Friedman, S.M. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J. Exp. Med. 1995, 182, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Ravetch, J.V. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 2011, 333, 1030–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luqman, M.; Klabunde, S.; Lin, K.; Georgakis, G.V.; Cherukuri, A.; Holash, J.; Goldbeck, C.; Xu, X.; Kadel, E.E., 3rd; Lee, S.H.; et al. The antileukemia activity of a human anti-CD40 antagonist antibody, HCD122, on human chronic lymphocytic leukemia cells. Blood 2008, 112, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceglia, V.; Zurawski, S.; Montes, M.; Kroll, M.; Bouteau, A.; Wang, Z.; Ellis, J.; Igyártó, B.Z.; Lévy, Y.; Zurawski, G. Anti-CD40 Antibody Fused to CD40 Ligand Is a Superagonist Platform for Adjuvant Intrinsic DC-Targeting Vaccines. Front. Immunol. 2021, 12, 786144. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, R.F.; Hess, S.; Johnson, J.P.; Engelmann, H. Modulation of soluble CD40 ligand bioactivity with anti-CD40 antibodies. Hybridoma 1997, 16, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.S.; Yang, B.; Yang, A.; Loeser, S.; Marsters, S.; Lawrence, D.; Li, Y.; Pitti, R.; Totpal, K.; Yee, S.; et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 2011, 19, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Chan, H.T.C.; Orr, C.M.; Dadas, O.; Booth, S.G.; Dahal, L.N.; Penfold, C.A.; O’Brien, L.; Mockridge, C.I.; French, R.R.; et al. Complex Interplay between Epitope Specificity and Isotype Dictates the Biological Activity of Anti-human CD40 Antibodies. Cancer Cell 2018, 33, 664–675.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelke, J.; Medler, J.; Weisenberger, D.; Beilhack, A.; Wajant, H. CD40- and CD95-specific antibody single chain-Baff fusion proteins display BaffR-, TACI- and BCMA-restricted agonism. MAbs 2020, 12, 1807721. [Google Scholar] [CrossRef]
- Bournazos, S.; Gupta, A.; Ravetch, J.V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 2020, 20, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Nimmerjahn, F.; Gordan, S.; Lux, A. FcγR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol. 2015, 36, 325–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medler, J.; Kucka, K.; Melo, V.; Zhang, T.; von Rotenhan, S.; Ulrich, J.; Bremer, E.; Hudecek, M.; Beilhack, A.; Wajant, H. CD40- and 41BB-specific antibody fusion proteins with PDL1 blockade-restricted agonism. Theranostics 2022, 12, 1486–1499. [Google Scholar] [CrossRef] [PubMed]
- Medler, J.; Nelke, J.; Weisenberger, D.; Steinfatt, T.; Rothaug, M.; Berr, S.; Hünig, T.; Beilhack, A.; Wajant, H. TNFRSF receptor-specific antibody fusion proteins with targeting controlled FcγR-independent agonistic activity. Cell Death Dis. 2019, 10, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sum, E.; Rapp, M.; Fröbel, P.; Le Clech, M.; Dürr, H.; Giusti, A.M.; Perro, M.; Speziale, D.; Kunz, L.; Menietti, E.; et al. Fibroblast Activation Protein α-Targeted CD40 Agonism Abrogates Systemic Toxicity and Enables Administration of High Doses to Induce Effective Antitumor Immunity. Clin. Cancer Res. 2021, 27, 4036–4053. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Cohen, D.; Belmar, N.A.; Choi, D.; Tan, S.S.; Sho, M.; Akamatsu, Y.; Kim, H.; Iyer, R.; Cabel, J.; et al. A Bispecific Molecule Targeting CD40 and Tumor Antigen Mesothelin Enhances Tumor-Specific Immunity. Cancer Immunol. Res. 2019, 7, 1864–1875. [Google Scholar] [CrossRef] [Green Version]
- White, A.L.; Chan, H.T.; French, R.R.; Willoughby, J.; Mockridge, C.I.; Roghanian, A.; Penfold, C.A.; Booth, S.G.; Dodhy, A.; Polak, M.E.; et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell 2015, 27, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, T.M.; Ricci, M.S.; Vezina, C.; Flynn, G.C.; Liu, Y.D.; Rehder, D.S.; Plant, M.; Henkle, B.; Li, Y.; Deechongkit, S.; et al. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J. Biol. Chem. 2008, 283, 16206–16215. [Google Scholar] [CrossRef] [PubMed]
- Martinez, T.; Guo, A.; Allen, M.J.; Han, M.; Pace, D.; Jones, J.; Gillespie, R.; Ketchem, R.R.; Zhang, Y.; Balland, A. Disulfide connectivity of human immunoglobulin G2 structural isoforms. Biochemistry 2008, 47, 7496–7508. [Google Scholar] [CrossRef]
- Ryazantsev, S.; Tischenko, V.; Nguyen, C.; Abramov, V.; Zav’yalov, V. Three-dimensional structure of the human myeloma IgG2. PLoS ONE 2013, 8, e64076. [Google Scholar] [CrossRef] [PubMed]
- Wypych, J.; Li, M.; Guo, A.; Zhang, Z.; Martinez, T.; Allen, M.J.; Fodor, S.; Kelner, D.N.; Flynn, G.C.; Liu, Y.D.; et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J. Biol. Chem. 2008, 283, 16194–16205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; James, S.; Felce, J.H.; Kellermayer, B.; Johnston, D.A.; Chan, H.T.C.; Penfold, C.A.; Kim, J.; Inzhelevskaya, T.; Mockridge, C.I.; et al. TNF receptor agonists induce distinct receptor clusters to mediate differential agonistic activity. Commun. Biol. 2021, 4, 772. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, Y.; Ye, K.; Cai, M.; Zhuang, G.; Wang, J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front. Pharmacol. 2022, 13, 924197. [Google Scholar] [CrossRef] [PubMed]
Antibody | Isotype | Effect on CD40L Binding | Intended Applications | Activity on/with FcγR+ Cells | FcγR-Independent Agonism | Remarks | Ref. |
---|---|---|---|---|---|---|---|
Lucatumumab HCD122 CHIR-12.12 | Fully human IgG1 | Blocking | Tumor therapy | ADCC | No | B-cell depletion Improved renalallograft survival (app. 50 days) MTD: 4.5 mg/kg (MM) MTD: 3 mg/kg (CLL) MTD: 4 mg/kg (NHL + HL) | [49,56,57,58,59] |
Iscalimab CFZ533 HCD122(N297A) | IgG1 with N297A mutation | Blocking | RA, GD, Transplantation | No | No | Improved renalallograft survival (>100 days) Suppression of GC development 3–30 mg/kg, all doses safe and well tolerated (healty, RA, GD) | [49,52,53,60] |
2C10R1 and 2C10R4 | IgG1 (2C10R1) IgG4 (2C10R4) | Blocking | No agonism | No | Improved islet graft survival Prolonged cardiac xenoplant survival | [61,62] | |
KPL-404 (humanized 2C10R4) | IgG4 with S228P mutation | Blocking | No agonism | No | 10 mg/kg i.v. no obvious safty findings in cynomolgus but inhibition of CD40 signaling | [63,64] | |
Selicrelumab CP-870,893 | IgG2 | Non blocking | Tumor therapy | Agonistic on DCs | Yes | MTD: 0.2 mg/kg (solid cancer) | [65,66,67] |
2141-V11 (FcγR2B-enhanced CP-870,893) | IgG1 with G237D-P238D-H268D-P271G-A330R mutations | Tumor tharapy | Agonistic | Not tested | Better antitumor activity than CP-870-893 in hCD40/hFcγR mice Intratumoral injection, systemic caused liver damage | [68,69] | |
Ravagalimab ABBV-323 (enhanced FcRn binding) | IgG1 with L234A-L235A-T250Q-M428L mutations | Blocking | Ulcerative colitis Sjogren’s syndrome | No | No | IgG2 variant of Abbv-323 transform it to an agonist | [70,71] |
Sotigalimab APX005M (preferential FcγR2B binding) | IgG1 with S267E mutation | Blocking | Tumor therapy | High agonism but no ADCC | No | Recommended dose 0.3 mg/kg | [72,73] |
CDX-1140 | IgG2 | Non blocking | Tumor therapy | Agonistic on DCs and B-cells | Yes but synergisitic with soluble CD40L | [74] | |
XmAbCD40 (humanized S2C6 with enhanced FcγR binding) | IgG1 with S239D-I332E mutations | Tumor therapy | ADCC, ADCP, CDC | Antitumoral in xenogeneic tumor models | [75] | ||
Mitazalima ADC-1013 JNJ-64457107 (phage display improved B44) | IgG1 | Tumor therapy | Agonistic on DCs, ADCC | No | Antitumoral in xenogeneic tumor models 0.4 mg/kg intratumoral 0.075 mg/kg iv | [76,77] | |
Bleselumab ASKP1240 341 4D11 | Fully human IgG4 | Blocking | Transplantation | No | Kidney transplant recipients up to 500 mg | [54] | |
341-IgG2 | IgG2 variant of Bleselumab | Blocking | Tumor therapy | Yes | IgG2 variant of Bleselumab act as an agonist | [71] | |
BI 655064 | Blocking | 120 mg well tolerated | [78] | ||||
ChiLob7/4 | IgG1 | ADCC, CDC, agonistic activity | Cross-linked than agonistic | MTD: 2–3 mg/kg | [79,80] | ||
SGN-14 | mIgG1 | Non blocking | Tumor therapy | Synergisitic with soluble CD40L | [81] | ||
Dacetuzumab, SGN-40 (humanized SGN-14) | IgG1 | Non blocking | Tumor therapy | ADCC, ADCP | Partial agonisitic | 8 mg/kg modest activity and acceptable toxicity in DLBCL patients | [82,83,84] |
ch5D12, mu5D12 | mIgG2b | Blocking a | (with human FcγRII cells) | [85] | |||
PG102 | Less immunogeneic form of ch5D12 | Blocking | Poor | No | Antagonizes CD40L-induced CD40 signaling but degrades TRAF proteins | [86] | |
3A8 | mIgG2b | Non Blocking but inhibitory a | (with human FcγRII cells) no/partial agonism with B-cells | No | Prolongs islet allograft survival in rhesus macaques | [85,87] | |
5C11 | mIgG1 | Tumor therapy | DC maturation | [88] | |||
B44 | IgG1 | Non blocking | Agonisitic on B-cells | [89] | |||
3G3 | Inhibit MLR | [90] | |||||
G28.5 | mIgG1 | artly Blocking | Agonistic on B-cells (with human FcγRII cells) | [91,92,93,94] | |||
Chi220 BMS-224819 | IgG1 | Blocking | Transplantation | Agonisitic on B-cells | B-cell depletion in vivo | [95,96] | |
626.1 | mIgG1 | Agonistic on B-cells | Fab2 agonistic on B-cells | [97,98] | |||
MAB89 | mIgG1 | Blocking | Agonistic on B-cells | [91,99] | |||
17.40 | mIgM | Blocking | Agonistic on B-cells | Synergize with MAB89 and S2C6 but not sCD40L | [91] | ||
3C6 | mIgG2b | Blocking a | (with human FcγRII cells) | No | [85] | ||
S2C6 | mIgG1 | Partly blocking | Agonistic on B-cells | Enhanced by anti-mIgG | [91,100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, I.; Zaitseva, O.; Wajant, H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int. J. Mol. Sci. 2022, 23, 12869. https://doi.org/10.3390/ijms232112869
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. International Journal of Molecular Sciences. 2022; 23(21):12869. https://doi.org/10.3390/ijms232112869
Chicago/Turabian StyleLang, Isabell, Olena Zaitseva, and Harald Wajant. 2022. "FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies" International Journal of Molecular Sciences 23, no. 21: 12869. https://doi.org/10.3390/ijms232112869
APA StyleLang, I., Zaitseva, O., & Wajant, H. (2022). FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. International Journal of Molecular Sciences, 23(21), 12869. https://doi.org/10.3390/ijms232112869