Evidence for Extensive Duplication and Subfunctionalization of FCRL6 in Armadillo (Dasypus novemcinctus)
Abstract
:1. Introduction
2. Results
2.1. Genomic Synteny Analysis of FCRL6 in Mammals
2.2. Phylogenetic and Evolutionary Analysis of FCRL6 in D. novemcinctus
2.3. Protein Structure Analysis
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehrhardt, G.R.A.; Cooper, M.D. Immunoregulatory Roles for Fc Receptor-Like Molecules. In Negative Co-Receptors and Ligands; Ahmed, R., Honjo, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 89–104. [Google Scholar]
- Davis, R.S.; Dennis, G., Jr.; Odom, M.R.; Gibson, A.W.; Kimberly, R.P.; Burrows, P.D.; Cooper, M.D. Fc receptor homologs: Newest members of a remarkably diverse Fc receptor gene family. Immunol. Rev. 2002, 190, 123–136. [Google Scholar] [CrossRef]
- Davis, R.S. Fc receptor-like molecules. Annu. Rev. Immunol. 2007, 25, 525–560. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.S. FCRL regulation in innate-like B cells. Ann. N. Y. Acad. Sci. 2015, 1362, 110–116. [Google Scholar] [CrossRef]
- Akula, S.; Mohammadamin, S.; Hellman, L. Fc Receptors for Immunoglobulins and Their Appearance during Vertebrate Evolution. PLoS ONE 2014, 9, e96903. [Google Scholar] [CrossRef] [Green Version]
- Haage, V.; Semtner, M.; Vidal, R.O.; Hernandez, D.P.; Pong, W.W.; Chen, Z.; Hambardzumyan, D.; Magrini, V.; Ly, A.; Walker, J.; et al. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol. Commun. 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, S.; Kraus, Z.; Dement-Brown, J.; Alabi, O.; Starost, K.; Tolnay, M. Human Fc receptor-like 3 inhibits regulatory T cell function and binds secretory IgA. Cell Rep. 2020, 30, 1292–1299.e3. [Google Scholar] [CrossRef]
- Liu, Y.; Goroshko, S.; Leung, L.Y.; Dong, S.; Khan, S.; Campisi, P.; Propst, E.J.; Wolter, N.E.; Grunebaum, E.; Ehrhardt, G.R. FCRL4 Is an Fc Receptor for Systemic IgA, but Not Mucosal Secretory IgA. J. Immunol. 2020, 205, 533. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.J.; Fuchs, A.; Colonna, M. Cutting edge: Human FcRL4 and FcRL5 are receptors for IgA and IgG. J. Immunol. 2012, 188, 4741–4745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, A.; Damdinsuren, B.; Ise, T.; Dement-Brown, J.; Li, H.; Nagata, S.; Tolnay, M. Human Fc receptor–like 5 binds intact IgG via mechanisms distinct from those of Fc receptors. J. Immunol. 2013, 190, 5739–5746. [Google Scholar] [CrossRef] [Green Version]
- Schreeder, D.M.; Cannon, J.P.; Wu, J.; Li, R.; Shakhmatov, M.A.; Davis, R.S. Cutting Edge: FcR-Like 6 Is an MHC Class II Receptor. J. Immunol. 2010, 185, 23. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.S. Roles for the FCRL6 Immunoreceptor in Tumor Immunology. Front. Immunol. 2020, 11, 575175. [Google Scholar] [CrossRef]
- Li, X.; Gibson, A.W.; Kimberly, R.P. Human FcR polymorphism and disease. In Fc Receptors; Daeron, M., Nimmerjahn, F., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 275–302. [Google Scholar]
- Chistiakov, D.A.; Chistiakov, A.P. Is FCRL3 a New General Autoimmunity Gene? Hum. Immunol. 2007, 68, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Kulemzin, S.V.; Zamoshnikova, A.Y.; Yurchenko, M.Y.; Vitak, N.Y.; Najakshin, A.M.; Fayngerts, S.A.; Chikaev, N.A.; Reshetnikova, E.S.; Kashirina, N.M.; Peclo, M.M.; et al. FCRL6 receptor: Expression and associated proteins. Immunol. Lett. 2011, 134, 174–182. [Google Scholar] [CrossRef]
- Davis, R.S.; Ehrhardt, G.R.; Leu, C.M.; Hirano, M.; Cooper, M.D. An extended family of Fc receptor relatives. Eur. J. Immunol. 2005, 35, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Siewe, B.; Nipper, A.J.; Sohn, H.; Stapleton, J.T.; Landay, A. FcRL4 Expression Identifies a Pro-inflammatory B Cell Subset in Viremic HIV-Infected Subjects. Front. Immunol. 2017, 8, 1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.J.; Won, W.J.; Becker, E.J.; Easlick, J.L.; Tabengwa, E.M.; Li, R.; Shakhmatov, M.; Honjo, K.; Burrows, P.D.; Davis, R.S. Emerging Roles for the FCRL Family Members in Lymphocyte Biology and Disease. In Fc Receptors; Daeron, M., Nimmerjahn, F., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 29–50. [Google Scholar]
- Schreeder, D.M.; Pan, J.; Li, F.J.; Vivier, E.; Davis, R.S. FCRL6 distinguishes mature cytotoxic lymphocytes and is upregulated in patients with B-cell chronic lymphocytic leukemia. Eur. J. Immunol. 2008, 38, 3159–3166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, T.J.; Presti, R.M.; Tassi, I.; Overton, E.T.; Cella, M.; Colonna, M. FcRL6, a new ITIM-bearing receptor on cytolytic cells, is broadly expressed by lymphocytes following HIV-1 infection. Blood 2007, 109, 3786–3793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelrod, M.L.; Cook, R.S.; Johnson, D.B.; Balko, J.M. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clin. Cancer Res. 2019, 25, 2392–2402. [Google Scholar] [CrossRef]
- Johnson, D.; Estrada, M.V.; Salgado, R.; Sanchez, V.; Doxie, D.B.; Opalenik, S.R.; Vilgelm, A.E.; Feld, E.; Johnson, A.S.; Greenplate, A.R.; et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat. Commun. 2016, 7, 10582. [Google Scholar] [CrossRef] [Green Version]
- Roemer, M.G.; Redd, R.A.; Cader, F.Z.; Pak, C.J.; Abdelrahman, S.; Ouyang, J.; Sasse, S.; Younes, A.; Fanale, M.; Santoro, A.; et al. Major histocompatibility complex class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J. Clin. Oncol. 2018, 36, 942. [Google Scholar] [CrossRef]
- Callahan, M.J.; Nagymanyoki, Z.; Bonome, T.; Johnson, M.E.; Litkouhi, B.; Sullivan, E.H.; Hirsch, M.S.; Matulonis, U.A.; Liu, J.; Birrer, M.J.; et al. Increased HLA-DMB expression in the tumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin. Cancer Res. 2008, 14, 7667–7673. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B.; Nixon, M.J.; Wang, Y.; Wang, D.Y.; Castellanos, E.; Estrada, M.V.; Ericsson-Gonzalez, P.I.; Cote, C.H.; Salgado, R.; Sanchez, V.; et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight 2018, 3, e120360. [Google Scholar] [CrossRef] [Green Version]
- Barlow, J. Xenarthrans and pholidotes. In Orders and Families of Recent Mammals of the World; John Wiley & Sons, Inc.: New York, NY, USA, 1984; pp. 219–239. [Google Scholar]
- Wilson, D.; Reeder, D. The checklist of mammal names. In Mammal Species of the World; Johns Hopkins University Press: Baltimore, MD, USA, 2005. [Google Scholar]
- Shapiro, B.; Graham, R.W.; Letts, B. A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas 2015, 44, 14–23. [Google Scholar] [CrossRef]
- Rose, K.D. The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades; JHU Press: Baltimore, MD, USA, 2005. [Google Scholar]
- Delsuc, F.; Catzeflis, F.M.; Stanhope, M.J.; Douzery, E.J. The evolution of armadillos, anteaters and sloths depicted by nuclear and mitochondrial phylogenies: Implications for the status of the enigmatic fossil Eurotamandua. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 1605–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, K.; Gaudin, T. Xenarthra and Pholidota (armadillos, anteaters, sloths and pangolins). In eLS; John Wiley & Sons, Inc.: New York, NY, USA; Hoboken, NJ, USA, 2010. [Google Scholar]
- Parker, S.P. Grzimek’s Encyclopedia of Mammals; McGraw-Hill: New York, NY, USA, 1990; Volume 3. [Google Scholar]
- McBee, K.; Baker, R.J. Dasypus novemcinctus. Mamm. Species 1982, 162, 1–9. [Google Scholar] [CrossRef]
- Marshall, L.G.; Webb, S.D.; Sepkoski, J.J.; Raup, D.M. Mammalian Evolution and the Great American Interchange. Science 1982, 215, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Abba, A.M.; Superina, M. The 2009/2010 armadillo red list assessment. Edentata 2010, 11, 135–184. [Google Scholar] [CrossRef] [Green Version]
- Loughry, W.J.; Superina, M.; McDonough, C.M.; Abba, A.M. Research on armadillos: A review and prospectus. J. Mammal. 2015, 96, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Möller-Krull, M.; Delsuc, F.; Churakov, G.; Marker, C.; Superina, M.; Brosius, J.; Douzery, E.J.; Schmitz, J. Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths). Mol. Biol. Evol. 2007, 24, 2573–2582. [Google Scholar] [CrossRef]
- Vizcaíno, S.; Milne, N. Structure and function in armadillo limbs (Mammalia: Xenarthra: Dasypodidae). J. Zool. 2002, 257, 117–127. [Google Scholar] [CrossRef]
- Simonson, S.; Barnett, D.; Stohlgren, T. The Invasive Species Survey: A Report on the Invasion of the National Wildlife Refuge System; National Institute of Invasive Species Science Technical Report: Fort Collins, CO, USA, 2004.
- Oliveira, I.V.P.D.M.; Deps, P.D.; Antunes, J.M.A.D.P. Armadillos and leprosy: From infection to biological model. Rev. Inst. Med. Trop. São Paulo 2019, 61, e44. [Google Scholar] [CrossRef]
- Scollard, D.M.; Adams, L.B.; Gillis, T.P.; Krahenbuhl, J.L.; Truman, R.W.; Williams, D.L. The continuing challenges of leprosy. Clin. Microbiol. Rev. 2006, 19, 338–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matos, M.C.; Pinheiro, A.; Melo-Ferreira, J.; Davis, R.S.; Esteves, P.J. Evolution of Fc Receptor-Like Scavenger in Mammals. Front. Immunol. 2021, 11, 590280. [Google Scholar] [CrossRef]
- Gíslason, M.H.; Nielsen, H.; Almagro Armenteros, J.J.; Johansen, A.R. Prediction of GPI-anchored proteins with pointer neural networks. Curr. Res. Biotechnol. 2021, 3, 6–13. [Google Scholar] [CrossRef]
- Thumuluri, V.; Almagro Armenteros, J.J.; Johansen, A.R.; Nielsen, H.; Winther, O. DeepLoc 2.0: Multi-label subcellular localization prediction using protein language models. Nucleic Acids Res. 2022, 50, W228–W234. [Google Scholar] [CrossRef]
- Vély, F.; Vivier, E. Conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and noninhibitory/activatory counterparts. J. Immunol. 1997, 159, 2075–2077. [Google Scholar] [CrossRef]
- Ravetch, J.V.; Lanier, L.L. Immune Inhibitory Receptors. Science 2000, 290, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Honjo, K.; Won, W.-J.; King, R.G.; Ianov, L.; Crossman, D.K.; Easlick, J.L.; Shakhmatov, M.A.; Khass, M.; Vale, A.M.; Stephan, R.P.; et al. Fc Receptor-Like 6 (FCRL6) discloses progenitor B cell heterogeneity that correlates with pre-BCR dependent and independent pathways of natural antibody selection. Front. Immunol. 2020, 11, 82. [Google Scholar] [CrossRef]
- Wong, A.; Vallender, E.J.; Heretis, K.; Ilkin, Y.; Lahn, B.T.; Martin, C.L.; Ledbetter, D.H. Diverse fates of paralogs following segmental duplication of telomeric genes. Genomics 2004, 84, 239–247. [Google Scholar] [CrossRef]
- Diniz, L.; Costa, E.; Oliveira, P. Clinical disorders in armadillos (Dasypodidae, Edentata) in captivity. J. Vet. Med. Ser. B 1997, 44, 577–582. [Google Scholar] [CrossRef]
- Hagge, D.A.; Ray, N.A.; Krahenbuhl, J.L.; Adams, L.B. An In Vitro Model for the Lepromatous Leprosy Granuloma: Fate of Mycobacterium leprae from Target Macrophages after Interaction with Normal and Activated Effector Macrophages. J. Immunol. 2004, 172, 7771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploemacher, T.; Faber, W.R.; Menke, H.; Rutten, V.; Pieters, T. Reservoirs and transmission routes of leprosy; A systematic review. PLoS Negl. Trop. Dis. 2020, 14, e0008276. [Google Scholar] [CrossRef] [PubMed]
- Kaleab, B.; Ottenoff, T.; Converse, P.; Halapi, E.; Tadesse, G.; Rottenberg, M.; Kiessling, R. Mycobacterial-induced cytotoxic T cells as well as nonspecific killer cells derived from healthy individuals and leprosy patients. Eur. J. Immunol. 1990, 20, 2651–2659. [Google Scholar] [CrossRef]
- Pinheiro, A.; Águeda-Pinto, A.; Melo-Ferreira, J.; Neves, F.; Abrantes, J.; Esteves, P.J. Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups. BMC Evol. Biol. 2019, 19, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series; Information Retrieval Ltd.: London, UK, 1999; pp. c1979–c2000. [Google Scholar]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017, 46, D493–D496. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2020, 49, D458–D460. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
Species | FCRL6 | ||||
---|---|---|---|---|---|
Armadillo | A | C | D | E | F |
Human | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
House mouse | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
Brown rat | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
Dog | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
European rabbit | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
Cattle | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
Cat | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
Malayan pangolin | ----------------------- | ----------------------- | ----------------------- | ----------------------- | |
Chinese pangolin | ----------------------- | ----------------------- | ----------------------- | ----------------------- |
Proposed Nomenclature | Gene Symbol | DNA Accession Number | Protein Accession Number |
---|---|---|---|
A | LOC101434982 | XM023588041.1 | XP_023443809.1 |
B (pseudogenized) | LOC105745885 | ------------------------- | ------------------------- |
C | ENSDNOG00000034278 | ENSDNOT00000037015.1 | ENSDNOP00000030820 |
D | LOC105745887 | XM023588042.1 | XP_023443810.1 |
E | LOC101436671 | XM023588037.1 | XP_023443805.1 |
F | LOC101437529 | XM012524200.1 | XP_012379654.1 |
Group | Mean Distance |
---|---|
D1 | 0.124 |
D2 | 0.246 |
D3 | 0.145 |
Location | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Isoform | Cytoplasm | Nucleus | Extracellular | Cell Membrane | Mitochondrion | Plastid | Endoplasmic Reticulum | Lysosome/ Vacuole | Golgi Apparatus | Peroxisome |
A | 0.3008 | 0.1125 | 0.1564 | 0.8483 | 0.0402 | 0.0032 | 0.2972 | 0.3723 | 0.3315 | 0.1876 |
C | 0.2555 | 0.1032 | 0.2319 | 0.8221 | 0.0621 | 0.0065 | 0.4657 | 0.2457 | 0.3461 | 0.1602 |
D | 0.2764 | 0.0838 | 0.1796 | 0.8735 | 0.0482 | 0.0018 | 0.3150 | 0.3218 | 0.3190 | 0.1497 |
E | 0.2943 | 0.0979 | 0.1463 | 0.8273 | 0.0380 | 0.0018 | 0.3075 | 0.3133 | 0.3356 | 0.1138 |
F | 0.2563 | 0.0838 | 0.1672 | 0.8512 | 0.0272 | 0.0030 | 0.2597 | 0.3118 | 0.3098 | 0.1463 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, M.C.; Pinheiro, A.; Davis, R.S.; Esteves, P.J. Evidence for Extensive Duplication and Subfunctionalization of FCRL6 in Armadillo (Dasypus novemcinctus). Int. J. Mol. Sci. 2023, 24, 4531. https://doi.org/10.3390/ijms24054531
Matos MC, Pinheiro A, Davis RS, Esteves PJ. Evidence for Extensive Duplication and Subfunctionalization of FCRL6 in Armadillo (Dasypus novemcinctus). International Journal of Molecular Sciences. 2023; 24(5):4531. https://doi.org/10.3390/ijms24054531
Chicago/Turabian StyleMatos, Maria Carolina, Ana Pinheiro, Randall S. Davis, and Pedro J. Esteves. 2023. "Evidence for Extensive Duplication and Subfunctionalization of FCRL6 in Armadillo (Dasypus novemcinctus)" International Journal of Molecular Sciences 24, no. 5: 4531. https://doi.org/10.3390/ijms24054531
APA StyleMatos, M. C., Pinheiro, A., Davis, R. S., & Esteves, P. J. (2023). Evidence for Extensive Duplication and Subfunctionalization of FCRL6 in Armadillo (Dasypus novemcinctus). International Journal of Molecular Sciences, 24(5), 4531. https://doi.org/10.3390/ijms24054531