Cytotoxic and Bactericidal Effects of Inhalable Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticles with Traces of Zinc Oxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Blank, CIP and ZnO-Loaded PEtOx NPs
2.2. X-ray Photoelectron Spectroscopy (XPS) Analysis of ZnO-Loaded PEtOx NPs
2.3. Bactericidal Effects of Blank PEtOx NPs and CIP-Loaded PEtOx NPs
2.4. Combined Effect of CIP-ZnO-Loaded PEtOx NPs
2.5. Cellular Viability by Lactate Dehydrogenase (LDH) Assay
2.6. Proinflammatory Effects
2.7. Attenuated-Total Refection-Fourier Transform Infrared (ATR-FTIR) of the Digestion Studies
2.7.1. PEtOx Polymer Digestion
2.7.2. PEtOx NPs Digestion
2.8. Morphology Studies by Scanning Electron Microscopy (SEM)
2.9. UV–Vis Spectroscopy
2.10. Limitations of this Work
- The amount of free drug could not be detected in the supernatant of the centrifuged solution owing to the very low level of ZnO that was used to formulate the NPs. Therefore, the XPS analysis only detected the Zn associated with the NPs (surface and embedded). Further investigations using higher concentrations of ZnO are warranted.
- In this preliminary study, the pharmacokinetics study was not conducted to determine the fate of the undigested polymer in lung fluids. Further study is needed to have a complete understating of the fate of the undigested PEtOx polymer.
3. Materials and Methods
3.1. Materials
3.2. Preparation of Blank and CIP-Loaded PEtOx NPs
3.3. Preparation of CIP-ZnO-Loaded PEtOx NPs
3.4. Detection of Zn by XPS
3.5. Particle Size and Size Distribution of Blank and CIP-Loaded PEtOx NPs
3.6. Bacterial Culture
3.7. Bactericidal Assay
3.8. Cell Culture
3.9. Evaluation of Cellular Viability by LDH Assay
3.10. IL-8 Release
3.11. In Vitro Digestibility Study
3.12. ATR-FTIR
3.13. Morphology Analysis by SEM
3.14. UV–Vis Spectroscopy
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahashur, A. Management of lower respiratory tract infection in outpatient settings: Focus on clarithromycin. Lung India Off. Organ Indian Chest Soc. 2018, 35, 143. [Google Scholar] [CrossRef] [PubMed]
- Meisner, S. Current management of lower respiratory tract infections. Prescriber 2006, 17, 48–58. [Google Scholar] [CrossRef]
- Newman, S.P. Drug delivery to the lungs: Challenges and opportunities. Ther. Deliv. 2017, 8, 647–661. [Google Scholar] [CrossRef]
- Moreno-Sastre, M.; Pastor, M.; Salomon, C.J.; Esquisabel, A.; Pedraz, J.L. Pulmonary drug delivery: A review on nanocarriers for antibacterial chemotherapy. J. Antimicrob. Chemother. 2015, 70, 2945–2955. [Google Scholar] [CrossRef] [Green Version]
- Deborah, C.; John, P.; Allan, P.; Paul, B.; Peter, A.; Alen, W. Ciprofloxacin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic use. Drugs 1988, 35, 373–447. [Google Scholar]
- Torge, A.; Wagner, S.; Chaves, P.S.; Oliveira, E.G.; Guterres, S.S.; Pohlmann, A.R.; Titz, A.; Schneider, M.; Beck, R.C. Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int. J. Pharm. 2017, 527, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Stass, H.; Nagelschmitz, J.; Willmann, S.; Delesen, H.; Gupta, A.; Baumann, S. Inhalation of a Dry Powder Ciprofloxacin Formulation in Healthy Subjects: A Phase I Study. Clin. Drug Investig. 2013, 33, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Ong, H.X.; Cipolla, D.; Gonda, I.; Traini, D.; Bebawy, M.; Agus, H.; Young, P.M. Inhaled Liposomal Ciprofloxacin Nanoparticles Control the Release of Antibiotic at the Bronchial Epithelia. In Proceedings of the Respiratory Drug Delivery; Virginia Commonwealth University: Richmond, VA, USA, 2012; pp. 1–4. [Google Scholar]
- Lin, Y.; Chang, R.Y.K.; Britton, W.J.; Morales, S.; Kutter, E.; Chan, H.-K. Synergy of nebulized phage PEV20 and ciprofloxacin combination against Pseudomonas aeruginosa. Int. J. Pharm. 2018, 551, 158–165. [Google Scholar] [CrossRef]
- Du, J.; El-Sherbiny, I.M.; Smyth, H.D. Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery. Am. Assoc. Pharm. Sci. PharmSciTech. 2014, 15, 1535–1544. [Google Scholar] [CrossRef] [Green Version]
- Abdelfattah, M.I.; Nasry, S.A.; Mostafa, A.A. Characterization and cytotoxicity analysis of a ciprofloxacin loaded chitosan/bioglass scaffold on cultured human periodontal ligament stem cells: A preliminary report. Open Access Maced. J. Med. Sci. 2016, 4, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Günday Türeli, N.; Torge, A.; Juntke, J.; Schwarz, B.C.; Schneider-Daum, N.; Türeli, A.E.; Lehr, C.-M.; Schneider, M. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur. J. Pharm. Biopharm. 2017, 117, 363–371. [Google Scholar] [CrossRef]
- Forbes, B.; Ehrhardt, C. Human respiratory epithelial cell culture for drug delivery applications. Eur. J. Pharm. Biopharm. 2005, 60, 193–205. [Google Scholar] [CrossRef]
- Singh, S.P.; Arya, S.K.; Pandey, P.; Malhotra, B.D.; Saha, S.; Sreenivas, K.; Gupta, V. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Appl. Phys. Lett. 2007, 91, 063901. [Google Scholar] [CrossRef]
- Ghasemi, F.; Jalal, R. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2016, 6, 118–122. [Google Scholar] [CrossRef]
- Banoee, M.; Seif, S.; Nazari, Z.E.; Jafari-Fesharaki, P.; Shahverdi, H.R.; Moballegh, A.; Moghaddam, K.M.; Shahverdi, A.R. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 93, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Patra, P.; Mitra, S.; Debnath, N.; Pramanik, P.; Goswami, A. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria. Bull. Mater. Sci. 2014, 37, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, F.; Munawar, T.; Nadeem, M.S.; Rehman, M.N.u.; Riaz, M.; Iqbal, F. Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys. 2021, 263, 124372. [Google Scholar] [CrossRef]
- Munawar, T.; Mukhtar, F.; Nadeem, M.S.; Mahmood, K.; Hasan, M.; Hussain, A.; Ali, A.; Arshad, M.I.; Iqbal, F. Novel direct dual-Z-scheme ZnO-Er2O3-Nd2O3@reduced graphene oxide heterostructured nanocomposite: Synthesis, characterization and superior antibacterial and photocatalytic activity. Mater. Chem. Phys. 2020, 253, 123249. [Google Scholar] [CrossRef]
- Saqib, S.; Nazeer, A.; Ali, M.; Zaman, W.; Younas, M.; Shahzad, A.; Nisar, M. Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application. BioMetals 2022, 35, 967–985. [Google Scholar] [CrossRef]
- de Souza, R.C.; Haberbeck, L.U.; Riella, H.G.; Ribeiro, D.H.B.; Carciofi, B.A.M. Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Braz. J. Chem. Eng. 2019, 36, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shao, J.; Wang, Y.; Li, J.; Liu, H.; Wang, A.; Hui, A.; Chen, S. Antimicrobial Activity of Zinc Oxide-Graphene Quantum Dot Nanocomposites: Enhanced Adsorption on Bacterial Cells by Cationic Capping Polymers. ACS Sustain. Chem. Eng. 2019, 7, 16264–16273. [Google Scholar] [CrossRef]
- Stankovic, A.; Sezen, M.; Milenkovic, M.; Kaisarevic, S.; Andric, N.; Stevanovic, M. PLGA/Nano-ZnO composite particles for use in biomedical applications: Preparation, characterization, and antimicrobial activity. J. Nanomater. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Osman, R.; Kan, P.L.; Awad, G.; Mortada, N.; Abd-Elhameed, E.-S.; Alpar, O. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity. Int. J. Pharm. 2013, 449, 44–58. [Google Scholar] [CrossRef]
- de Jesús Valle, M.; González, J.G.; López, F.G.; Navarro, A.S. Pulmonary disposition of vancomycin nebulized as lipid vesicles in rats. J. Antibiot. 2013, 66, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, Z.; Khuller, G. Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin. Drug Deliv. 2008, 5, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Moebus, K.; Siepmann, J.; Bodmeier, R. Novel preparation techniques for alginate–poloxamer microparticles controlling protein release on mucosal surfaces. Eur. J. Pharm. Sci. 2012, 45, 358–366. [Google Scholar] [CrossRef]
- Pandey, R.; Sharma, A.; Zahoor, A.; Sharma, S.; Khuller, G.; Prasad, B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob. Chemother. 2003, 52, 981–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivedi, R.; Redente, E.F.; Thakur, A.; Riches, D.W.; Kompella, U.B. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice. Nanotechnology 2012, 23, 505101. [Google Scholar] [CrossRef]
- Thomas, C.; Rawat, A.; Hope-Weeks, L.; Ahsan, F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm. 2011, 8, 405–415. [Google Scholar] [CrossRef]
- Nguyen, J.; Steele, T.W.; Merkel, O.; Reul, R.; Kissel, T. Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J. Control. Release 2008, 132, 243–251. [Google Scholar] [CrossRef]
- Rytting, E.; Bur, M.; Cartier, R.; Bouyssou, T.; Wang, X.; Krüger, M.; Lehr, C.-M.; Kissel, T. In vitro and in vivo performance of biocompatible negatively-charged salbutamol-loaded nanoparticles. J. Control. Release 2010, 141, 101–107. [Google Scholar] [CrossRef]
- Bivas-Benita, M.; Lin, M.Y.; Bal, S.M.; van Meijgaarden, K.E.; Franken, K.L.; Friggen, A.H.; Junginger, H.E.; Borchard, G.; Klein, M.R.; Ottenhoff, T.H. Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA–PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 2009, 27, 4010–4017. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Dmour, I.; Taha, M.O. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon 2019, 5, e01684. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Wang, H.; Maqbool, F.; Ferro, V. In Vitro Enzymatic Digestibility of Glutaraldehyde-Crosslinked Chitosan Nanoparticles in Lysozyme Solution and Their Applicability in Pulmonary Drug Delivery. Molecules 2019, 24, 1271. [Google Scholar] [CrossRef] [Green Version]
- Poth, N.; Seiffart, V.; Gross, G.; Menze, H.; Dempwolf, W. Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomolecules 2015, 5, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sherbiny, I.M.; Smyth, H.D.C. Novel cryomilled physically cross-linked biodegradable hydrogel microparticles as carriers for inhalation therapy. J. Microencapsul. 2010, 27, 657–668. [Google Scholar] [CrossRef]
- Verheul, R.J.; Amidi, M.; van Steenbergen, M.J.; van Riet, E.; Jiskoot, W.; Hennink, W.E. Influence of the degree of acetylation on the enzymatic degradation and in vitro biological properties of trimethylated chitosans. Biomaterials 2009, 30, 3129–3135. [Google Scholar] [CrossRef] [PubMed]
- Grenha, A.; Al-Qadi, S.; Seijo, B.; Remunan-Lopez, C. The potential of chitosan for pulmonary drug delivery. J. Drug Deliv. Sci. Technol. 2010, 20, 33–43. [Google Scholar] [CrossRef]
- Lima-Sousa, R.; Alves, C.G.; Melo, B.L.; Moreira, A.F.; Mendonca, A.G.; Correia, I.J.; de Melo-Diogo, D. Poly(2-ethyl-2-oxazoline) functionalized reduced graphene oxide: Optimization of the reduction process using dopamine and application in cancer photothermal therapy. Mater. Sci. Eng. C 2021, 130, 112468. [Google Scholar] [CrossRef] [PubMed]
- Hoogenboom, R. Poly(2-oxazoline)s: A Polymer Class with Numerous Potential Applications. Angew. Chem. Int. Ed. 2009, 48, 7978–7994. [Google Scholar] [CrossRef]
- Sabuj, M.Z.R.; Dargaville, T.R.; Nissen, L.; Islam, N. Inhaled ciprofloxacin-loaded poly(2-ethyl-2-oxazoline) nanoparticles from dry powder inhaler formulation for the potential treatment of lower respiratory tract infections. PLOS ONE 2021, 16, e0261720. [Google Scholar] [CrossRef] [PubMed]
- Sabuj, M.Z.R.; Rashid, M.A.; Dargaville, T.R.; Islam, N. Stability of Inhaled Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticle Dry Powder Inhaler Formulation in High Stressed Conditions. Pharmaceuticals 2022, 15, 1223. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.-C.; Wang, C.-C. Surface crystal feature-dependent photoactivity of ZnO–ZnS composite rods via hydrothermal sulfidation. RSC Adv. 2018, 8, 5063–5070. [Google Scholar] [CrossRef] [Green Version]
- Costa, B.A.; Abuçafy, M.P.; Barbosa, T.W.L.; da Silva, B.L.; Fulindi, R.B.; Isquibola, G.; da Costa, P.I.; Chiavacci, L.A. ZnO@ZIF-8 Nanoparticles as Nanocarrier of Ciprofloxacin for Antimicrobial Activity. Pharmaceutics 2023, 15, 259. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, X.; Tan, S.; Bandara, H.; Fu, Y.; Liu, S.; Smyth, H.D. Externally controlled triggered-release of drug from PLGA micro and nanoparticles. PLOS ONE 2014, 9, e114271. [Google Scholar] [CrossRef] [Green Version]
- Abilova, G.K.; Kaldybekov, D.B.; Irmukhametova, G.S.; Kazybayeva, D.S.; Iskakbayeva, Z.A.; Kudaibergenov, S.E.; Khutoryanskiy, V.V. Chitosan/poly(2-ethyl-2-oxazoline) films with ciprofloxacin for application in vaginal drug delivery. Materials 2020, 13, 1709. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-a minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef]
- Sobhani, Z.; Samani, S.M.; Montaseri, H.; Khezri, E. Nanoparticles of chitosan loaded ciprofloxacin: Fabrication and antimicrobial activity. Adv. Pharm. Bull. 2017, 7, 427. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.-I.; Na, H.-S.; Seo, D.-H.; Kim, D.-G.; Lee, H.-C.; Jang, M.-K.; Na, S.-K.; Roh, S.-H.; Kim, S.-I.; Nah, J.-W. Ciprofloxacin-encapsulated poly (DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. Int. J. Pharm. 2008, 352, 317–323. [Google Scholar] [CrossRef]
- Gulyuz, S.; Ozkose, U.; Kocak, P.; Telci, D.; Yilmaz, O.; Tasdelen, M. In-vitro cytotoxic activities of poly (2-ethyl-2-oxazoline)-based amphiphilic block copolymers prepared by CuAAC click chemistry. Express Polym. Lett. 2018, 12, 146–158. [Google Scholar] [CrossRef]
- Muhsin, M.D.A.; George, G.; Beagley, K.; Ferro, V.; Armitage, C.; Islam, N. Synthesis and Toxicological Evaluation of a Chitosan-l-Leucine Conjugate for Pulmonary Drug Delivery Applications. Biomacromolecules 2014, 15, 3596–3607. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V. Macrophages: The potent immunoregulatory innate immune cells. In Macrophage Activation-Biology and Disease; Books on Demand: Norderstedt, Germany, 2019; pp. 1–30. [Google Scholar]
- Leikauf, G.D.; Kim, S.-H.; Jang, A.-S. Mechanisms of ultrafine particle-induced respiratory health effects. Exp. Mol. Med. 2020, 52, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Murgia, X.; de Souza Carvalho, C.; Lehr, C.-M. Overcoming the pulmonary barrier: New insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 2014, 6, 157–169. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, X.; Wang, B.; Xu, G.; Qin, Z.; Wang, J.; Wu, L.; Ju, X.; Bose, D.D.; Qiu, F.; et al. Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death Dis. 2017, 8, e2954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, B.C.; Zhao, X.; Xiong, S.; Ng, K.W.; Boey, F.Y.; Loo, J.S. Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem. Toxicol. 2010, 48, 1762–1766. [Google Scholar] [CrossRef]
- Lim, D.-J.; Thompson, H.M.; Walz, C.R.; Ayinala, S.; Skinner, D.; Zhang, S.; Grayson, J.W.; Cho, D.-Y.; Woodworth, B.A. Azithromycin and ciprofloxacin inhibit interleukin-8 secretion without disrupting human sinonasal epithelial integrity in vitro. Int. Forum Allergy Rhinol. 2021, 11, 136–143. [Google Scholar] [CrossRef]
- Cesta, M.C.; Zippoli, M.; Marsiglia, C.; Gavioli, E.M.; Mantelli, F.; Allegretti, M.; Balk, R. The role of interleukin-8 in lung inflammation and injury: Implications for the management of covid-19 and hyperinflammatory acute respiratory distress syndrome. Front. Pharmacol. 2021, 12, 3931. [Google Scholar] [CrossRef]
- Putra, N.E.; Tigrine, A.; Aksakal, S.; de la Rosa, V.R.; Taheri, P.; Fratila-Apachitei, L.E.; Mol, J.M.C.; Zhou, J.; Zadpoor, A.A. Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron. Biomater. Adv. 2022, 133, 112617. [Google Scholar] [CrossRef]
- Wahyono, T.; Astuti, D.A.; Wiryawan, I.K.G.; Sugoro, I.; Jayanegara, A. Fourier Transform Mid-Infrared (FTIR) Spectroscopy to Identify Tannin Compounds in The Panicle of Sorghum Mutant Lines. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 042045. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Xu, T.; Xu, K.; Du, B.; Li, Y. Biodegradable reduction and pH dual-sensitive polymer micelles based on poly (2-ethyl-2-oxazoline) for efficient delivery of curcumin. RSC Adv. 2020, 10, 25435–25445. [Google Scholar] [CrossRef]
- Hoogenboom, R.; Schlaad, H. Bioinspired poly(2-oxazoline)s. Polymers 2011, 3, 467–488. [Google Scholar] [CrossRef] [Green Version]
- Shimpi, J.R.; Sidhaye, D.S.; Prasad, B.L.V. Digestive Ripening: A Fine Chemical Machining Process on the Nanoscale. Langmuir 2017, 33, 9491–9507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raynal, B.; Lenormand, P.; Baron, B.; Hoos, S.; England, P. Quality assessment and optimization of purified protein samples: Why and how? Microb. Cell Factories 2014, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imoto, T.; Andrews, L.J.; Banerjee, S.K.; Shrake, A.; Forster, L.S.; Rupley, J. Optical properties of lysozyme. pH and saccharide binding difference spectra. J. Biol. Chem. 1975, 250, 8275–8282. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Moghaddam, M.R.A.; Arami, M. A comparative study on removal of four types of acid azo dyes using electrocoagulation process. Environ. Eng. Manag. J. (EEMJ) 2014, 13, 557–564. [Google Scholar]
- Davies, C.B.; Harrison, M.D.; Huygens, F. Pseudomonas aeruginosa Trent and zinc homeostasis. FEMS Microbiol. Lett. 2017, 364, 1–6. [Google Scholar] [CrossRef]
- Scott, F.W.; Pitt, T.L. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J. Med. Microbiol. 2004, 53, 609–615. [Google Scholar] [CrossRef]
- Mathew, A.; Vaquette, C.; Hashimi, S.; Rathnayake, I.; Huygens, F.; Hutmacher, D.W.; Ivanovski, S. Antimicrobial and Immunomodulatory Surface-Functionalized Electrospun Membranes for Bone Regeneration. Adv. Healthc. Mater. 2017, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hasanin, M.; Elbahnasawy, M.A.; Shehabeldine, A.M.; Hashem, A.H. Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. BioMetals 2021, 34, 1313–1328. [Google Scholar] [CrossRef]
- Institute, C.a.L.S. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Tenth Edition; Institute, C.a.L.S.: Wayner, PA, USA, 2015. [Google Scholar]
- Didier, J.-P.; Villet, R.; Huggler, E.; Lew, D.P.; Hooper, D.C.; Kelley, W.L.; Vaudaux, P. Impact of ciprofloxacin exposure on Staphylococcus aureus genomic alterations linked with emergence of rifampin resistance. Antimicrob. Agents Chemother. 2011, 55, 1946–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomholt, J.A.; Kilian, M. Ciprofloxacin susceptibility of Pseudomonas aeruginosa isolates from keratitis. Br. J. Ophthalmol. 2003, 87, 1238–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarique, A.A.; Logan, J.; Thomas, E.; Holt, P.G.; Sly, P.D.; Fantino, E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol. 2015, 53, 676–688. [Google Scholar] [CrossRef] [PubMed]
- Tarique, A.A.; Sly, P.D.; Holt, P.G.; Bosco, A.; Ware, R.S.; Logan, J.; Bell, S.C.; Wainwright, C.E.; Fantino, E. CFTR-dependent defect in alternatively-activated macrophages in cystic fibrosis. J. Cyst. Fibros. 2017, 16, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaja, S.; Payne, A.J.; Naumchuk, Y.; Koulen, P. Quantification of lactate dehydrogenase for cell viability testing using cell lines and primary cultured astrocytes. Curr. Protoc. Toxicol. 2017, 72, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabuj, M.Z.R.; Huygens, F.; Spann, K.M.; Tarique, A.A.; Dargaville, T.R.; Will, G.; Wahab, M.A.; Islam, N. Cytotoxic and Bactericidal Effects of Inhalable Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticles with Traces of Zinc Oxide. Int. J. Mol. Sci. 2023, 24, 4532. https://doi.org/10.3390/ijms24054532
Sabuj MZR, Huygens F, Spann KM, Tarique AA, Dargaville TR, Will G, Wahab MA, Islam N. Cytotoxic and Bactericidal Effects of Inhalable Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticles with Traces of Zinc Oxide. International Journal of Molecular Sciences. 2023; 24(5):4532. https://doi.org/10.3390/ijms24054532
Chicago/Turabian StyleSabuj, Mohammad Zaidur Rahman, Flavia Huygens, Kirsten M. Spann, Abdullah A. Tarique, Tim R. Dargaville, Geoffrey Will, Md Abdul Wahab, and Nazrul Islam. 2023. "Cytotoxic and Bactericidal Effects of Inhalable Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticles with Traces of Zinc Oxide" International Journal of Molecular Sciences 24, no. 5: 4532. https://doi.org/10.3390/ijms24054532
APA StyleSabuj, M. Z. R., Huygens, F., Spann, K. M., Tarique, A. A., Dargaville, T. R., Will, G., Wahab, M. A., & Islam, N. (2023). Cytotoxic and Bactericidal Effects of Inhalable Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticles with Traces of Zinc Oxide. International Journal of Molecular Sciences, 24(5), 4532. https://doi.org/10.3390/ijms24054532