Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search of the Literature
2.2. Study Selection
2.3. Eligibility Criteria
- Full article in English
- Experimental studies conducted in vivo
- Studies investigating stem cell related neuronal regeneration techniques after SCI
- Articles not in English
- Literature reviews, systematic reviews, meta-analysis
- Articles published before 2008
- Studies conducting only in vitro experiments
- Studies focusing on PNS injury
- Studies focusing on techniques not related to stem cells
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Study Synthesis
4. Discussion
4.1. Stem Cells and Scaffolds Strategies
4.2. Combinatory Strategies
4.3. Usefulness of Enzyme Strategy and Role of Neurotrophic Factors
4.4. Limits of Stem Cell-Based Therapy
4.5. Alternative Methods to Promote Repair and Regeneration of Nerve Tissue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karsy, M.; Hawryluk, G. Modern Medical Management of Spinal Cord Injury. Curr. Neurol. Neurosci. Rep. 2019, 19, 65. [Google Scholar] [CrossRef]
- Wyndaele, M.; Wyndaele, J.J. Incidence, Prevalence and Epidemiology of Spinal Cord Injury: What Learns a Worldwide Literature Survey? Spinal Cord 2006, 44, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcdonald, J.W.; Mcdonald, J.W.; Sadowsky, C. Spinal-Cord Injury; Elsevier: Amsterdam, The Netherlands, 2002; Volume 359. [Google Scholar]
- Eli, I.; Lerner, D.P.; Ghogawala, Z. Acute Traumatic Spinal Cord Injury. Neurol. Clin. 2021, 39, 471–488. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Wei, Z.; Yao, X.; Shi, G.; Cheng, X.; Zhou, X.; Zhou, H.; Ning, G.; Kong, X.; Feng, S. Microenvironment Imbalance of Spinal Cord Injury. Cell Transplant. 2018, 27, 853–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerardi, R.M.; Giammalva, G.R.; Basile, L.; Gulì, C.; Pino, M.A.; Messina, D.; Umana, G.E.; Graziano, F.; di Bonaventura, R.; Sturiale, C.L.; et al. White Cord Syndrome after Cervical or Thoracic Spinal Cord Decompression. Hemodynamic Complication or Mechanical Damage? An Underestimated Nosographic Entity. World Neurosurg. 2022, 164, 243–250. [Google Scholar] [CrossRef]
- Ahuja, C.S.; Nori, S.; Tetreault, L.; Wilson, J.; Kwon, B.; Harrop, J.; Choi, D.; Fehlings, M.G. Traumatic Spinal Cord Injury—Repair and Regeneration. Clin. Neurosurg. 2017, 80, S22–S90. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xiao, Z.; Chen, B.; Dai, J. The Neuronal Differentiation Microenvironment Is Essential for Spinal Cord Injury Repair. Organogenesis 2017, 13, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh, A.; Karimi-Abdolrezaee, S. Microenvironmental Regulation of Oligodendrocyte Replacement and Remyelination in Spinal Cord Injury. J. Physiol. 2016, 594, 3539–3552. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, L.H.S.; Fehlings, M.G. Epidemiology, Demographics, and Pathophysiology of Acute Spinal Cord Injury. Spine 2001, 26, S2–S12. [Google Scholar] [CrossRef]
- Ditunno, J.F.; Little, J.W.; Tessler, A.; Burns, A.S. Spinal Shock Revisited: A Four-Phase Model. Spinal Cord 2004, 42, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Rowland, J.W.; Hawryluk, G.W.J.; Kwon, B.; Fehlings, M.G. Current Status of Acute Spinal Cord Injury Pathophysiology and Emerging Therapies: Promise on the Horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptiste, D.C.; Fehlings, M.G. Pharmacological Approaches to Repair the Injured Spinal Cord. J. Neurotrauma 2006, 23, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Farokhi, M.; Mottaghitalab, F.; Saeb, M.R.; Shojaei, S.; Zarrin, N.K.; Thomas, S.; Ramakrishna, S. Conductive Biomaterials as Substrates for Neural Stem Cells Differentiation towards Neuronal Lineage Cells. Macromol. Biosci. 2020, 21, e2000123. [Google Scholar] [CrossRef] [PubMed]
- Momenzadeh, S.; Jami, M.S. Remyelination in PNS and CNS: Current and Upcoming Cellular and Molecular Strategies to Treat Disabling Neuropathies. Mol. Biol. Rep. 2021, 48, 8097–8110. [Google Scholar] [CrossRef]
- Modrak, M.; Talukder, M.A.H.; Gurgenashvili, K.; Noble, M.; Elfar, J.C. Peripheral Nerve Injury and Myelination: Potential Therapeutic Strategies. J. Neurosci. Res. 2020, 98, 780–795. [Google Scholar] [CrossRef]
- Abe, N.; Cavalli, V. Nerve Injury Signaling. Curr. Opin. Neurobiol. 2008, 18, 276–283. [Google Scholar] [CrossRef]
- Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; Quintes, S.; Chabrol, E.; Banerjee, A.; Woodhoo, A.; Jenkins, B.; Rahman, M.; Turmaine, M.; et al. C-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration. Neuron 2012, 75, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cao, K.; Sun, X.; Chen, Y.; Duan, Z.; Sun, L.; Guo, L.; Bai, P.; Sun, D.; Fan, J.; et al. Macrophages in Spinal Cord Injury: Phenotypic and Functional Change from Exposure to Myelin Debris. Glia 2015, 63, 635–651. [Google Scholar] [CrossRef]
- do Carmo Cunha, J.; de Freitas Azevedo Levy, B.; de Luca, B.A.; de Andrade, M.S.R.; Gomide, V.C.; Chadi, G. Responses of Reactive Astrocytes Containing S100? Protein and Fibroblast Growth Factor-2 in the Border and in the Adjacent Preserved Tissue after a Contusion Injury of the Spinal Cord in Rats: Implications for Wound Repair and Neuroregeneration. Wound Repair Regen. 2007, 15, 134–146. [Google Scholar] [CrossRef]
- Gensel, J.C.; Zhang, B. Macrophage Activation and Its Role in Repair and Pathology after Spinal Cord Injury. Brain Res. 2015, 1619, 1–11. [Google Scholar] [CrossRef]
- Fan, H.; Tang, H.-B.; Chen, Z.; Wang, H.-Q.; Zhang, L.; Jiang, Y.; Li, T.; Yang, C.-F.; Wang, X.-Y.; Li, X.; et al. Inhibiting HMGB1-RAGE Axis Prevents pro-Inflammatory Macrophages/Microglia Polarization and Affords Neuroprotection after Spinal Cord Injury. J. Neuroinflamm. 2020, 17, 295. [Google Scholar] [CrossRef]
- Lukacova, N.; Kisucka, A.; Kiss Bimbova, K.; Bacova, M.; Ileninova, M.; Kuruc, T.; Galik, J. Glial-Neuronal Interactions in Pathogenesis and Treatment of Spinal Cord Injury. Int. J. Mol. Sci. 2021, 22, 13577. [Google Scholar] [CrossRef] [PubMed]
- Burda, J.E.; Sofroniew, M.V. Reactive Gliosis and the Multicellular Response to CNS Damage and Disease. Neuron 2014, 81, 229–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtine, G.; Sofroniew, M.V. Spinal Cord Repair: Advances in Biology and Technology. Nat. Med. 2019, 25, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Brennan, F.H.; Li, Y.; Wang, C.; Ma, A.; Guo, Q.; Li, Y.; Pukos, N.; Campbell, W.A.; Witcher, K.G.; Guan, Z.; et al. Microglia Coordinate Cellular Interactions during Spinal Cord Repair in Mice. Nat. Commun. 2022, 13, 4096. [Google Scholar] [CrossRef]
- Junqueira Alves, C.; Dariolli, R.; Haydak, J.; Kang, S.; Hannah, T.; Wiener, R.J.; DeFronzo, S.; Tejero, R.; Gusella, G.L.; Ramakrishnan, A.; et al. Plexin-B2 Orchestrates Collective Stem Cell Dynamics via Actomyosin Contractility, Cytoskeletal Tension and Adhesion. Nat. Commun. 2021, 12, 6019. [Google Scholar] [CrossRef]
- Zhou, X.; Wahane, S.; Friedl, M.-S.; Kluge, M.; Friedel, C.C.; Avrampou, K.; Zachariou, V.; Guo, L.; Zhang, B.; He, X.; et al. Microglia and Macrophages Promote Corralling, Wound Compaction and Recovery after Spinal Cord Injury via Plexin-B2. Nat. Neurosci. 2020, 23, 337–350. [Google Scholar] [CrossRef]
- Li, Y.; Kang, S.; Halawani, D.; Wang, Y.; Junqueira Alves, C.; Ramakrishnan, A.; Estill, M.; Shen, L.; Li, F.; He, X.; et al. Macrophages Facilitate Peripheral Nerve Regeneration by Organizing Regeneration Tracks through Plexin-B2. Genes Dev. 2022, 36, 133–148. [Google Scholar] [CrossRef]
- Hamid, O.A.; Eltaher, H.M.; Sottile, V.; Yang, J. 3D Bioprinting of a Stem Cell-Laden, Multi-Material Tubular Composite: An Approach for Spinal Cord Repair. Mater. Sci. Eng. C 2020, 120, 111707. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ciciriello, A.J.; Smith, D.R.; Munsell, M.K.; Boyd, S.J.; Shea, L.D.; Dumont, C.M. IL-10 Lentivirus-Laden Hydrogel Tubes Increase Spinal Progenitor Survival and Neuronal Differentiation after Spinal Cord Injury. Biotechnol. Bioeng. 2021, 118, 2609–2625. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.M.; le Liu, L.; Zhang, J.F.; Lu, J.W.; Li, Q. Promotion of Neuronal Regeneration by Using Self-Polymerized Dendritic Polypeptide Scaffold for Spinal Cord Tissue Engineering. J. Mater. Sci. Mater. Med. 2017, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.Z.; Zhang, G.W.; Xu, J.G.; Chen, S.; Wang, H.; Cao, L.L.; Liang, B.; Lian, X.F. Multichannel Polymer Scaffold Seeded with Activated Schwann Cells and Bone Mesenchymal Stem Cells Improves Axonal Regeneration and Functional Recovery after Rat Spinal Cord Injury. Acta Pharm. Sin. 2017, 38, 623–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Führmann, T.; Anandakumaran, P.N.; Payne, S.L.; Pakulska, M.M.; Varga, B.V.; Nagy, A.; Tator, C.; Shoichet, M.S. Combined Delivery of Chondroitinase ABC and Human Induced Pluripotent Stem Cell-Derived Neuroepithelial Cells Promote Tissue Repair in an Animal Model of Spinal Cord Injury. Biomed. Mater. 2017, 13, 024103. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Shi, G.; Fan, B.; Cheng, X.; Zhang, X.; Wang, X.; Liu, S.; Hao, Y.; Wei, Z.; Wang, L.; et al. Polycaprolactone Electrospun Fiber Scaffold Loaded with IPSCs-NSCs and ASCs as a Novel Tissue Engineering Scaffold for the Treatment of Spinal Cord Injury. Int. J. Nanomed. 2018, 13, 6265–6277. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Chu, L.; Jia, X.; Lin, L.; Cheng, S. Myelin Basic Protein Enhances Axonal Regeneration from Neural Progenitor Cells. Cell Biosci. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, H.; Fang, C.; Yang, Y.; Xia, X.; Yang, B.; Lin, Y.; Li, G.; Bian, L. Microscopic Local Stiffening in a Supramolecular Hydrogel Network Expedites Stem Cell Mechanosensing in 3D and Bone Regeneration. Mater. Horiz. 2021, 8, 1722–1734. [Google Scholar] [CrossRef]
- Hwang, K.; Jung, K.; Kim, I.S.; Kim, M.; Han, J.; Lim, J.; Shin, J.E.; Jang, J.H.; Park, K.I. Glial Cell Line-Derived Neurotrophic Factor-Overexpressing Human Neural Stem/Progenitor Cells Enhance Therapeutic Efficiency in Rat with Traumatic Spinal Cord Injury. Exp. Neurobiol. 2019, 28, 679–696. [Google Scholar] [CrossRef] [Green Version]
- Farrag, M.; Leipzig, N.D. Subcutaneous Maturation of Neural Stem Cell-Loaded Hydrogels Forms Region-Specific Neuroepithelium. Cells 2018, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.N.; Matyas, J.J.; Welchko, R.M.; Goldsmith, A.D.; Zeiler, S.E.; Hochgeschwender, U.; Lu, M.; Nan, Z.; Rossignol, J.; Dunbar, G.L. SDF-1 Overexpression by Mesenchymal Stem Cells Enhances GAP-43-Positive Axonal Growth Following Spinal Cord Injury. Restor. Neurol. Neurosci. 2017, 35, 395–411. [Google Scholar] [CrossRef]
- Nori, S.; Khazaei, M.; Ahuja, C.S.; Yokota, K.; Ahlfors, J.E.; Liu, Y.; Wang, J.; Shibata, S.; Chio, J.; Hettiaratchi, M.H.; et al. Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury. Stem Cell Rep. 2018, 11, 1433–1448. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Yu, Z.; Zhang, N.; Chang, Y.; Zhang, Y.; Zhang, L.; Zhou, S.; Zhang, C.; Feng, G.; Huang, F. Modified Acellular Nerve-Delivering PMSCs Improve Functional Recovery in Rats after Complete Spinal Cord Transection. Biomater. Sci. 2017, 5, 2480–2492. [Google Scholar] [CrossRef]
- Baklaushev, V.P.; Bogush, V.G.; Kalsin, V.A.; Sovetnikov, N.N.; Samoilova, E.M.; Revkova, V.A.; Sidoruk, K.V.; Konoplyannikov, M.A.; Timashev, P.S.; Kotova, S.L.; et al. Tissue Engineered Neural Constructs Composed of Neural Precursor Cells, Recombinant Spidroin and PRP for Neural Tissue Regeneration. Sci. Rep. 2019, 9, 3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babaloo, H.; Ebrahimi-Barough, S.; Derakhshan, M.A.; Yazdankhah, M.; Lotfibakhshaiesh, N.; Soleimani, M.; Joghataei, M.T.; Ai, J. PCL/Gelatin Nanofibrous Scaffolds with Human Endometrial Stem Cells/Schwann Cells Facilitate Axon Regeneration in Spinal Cord Injury. J. Cell. Physiol. 2019, 234, 11060–11069. [Google Scholar] [CrossRef] [PubMed]
- Kourgiantaki, A.; Tzeranis, D.S.; Karali, K.; Georgelou, K.; Bampoula, E.; Psilodimitrakopoulos, S.; Yannas, I.V.; Stratakis, E.; Sidiropoulou, K.; Charalampopoulos, I.; et al. Neural Stem Cell Delivery via Porous Collagen Scaffolds Promotes Neuronal Differentiation and Locomotion Recovery in Spinal Cord Injury. NPJ Regen. Med. 2020, 5, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Salarinia, R.; Hosseini, M.; Mohamadi, Y.; Ghorbani, A.; Alamdari, D.H.; Mafinezhad, A.; Sadeghnia, H. Combined Use of Platelet-Rich Plasma and Adipose Tissue-Derived Mesenchymal Stem Cells Shows a Synergistic Effect in Experimental Spinal Cord Injury. J. Chem. Neuroanat. 2020, 110, 101870. [Google Scholar] [CrossRef]
- Tsai, M.J.; Liou, D.Y.; Lin, Y.R.; Weng, C.F.; Huang, M.C.; Huang, W.C.; Tseng, F.W.; Cheng, H. Attenuating Spinal Cord Injury by Conditioned Medium from Bone Marrow Mesenchymal Stem Cells. J. Clin. Med. 2018, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Liu, C.; Chen, X.; Zou, Y.; Zhou, Z.; Lin, C.; Tan, G.; Zhou, L.; Ning, C.; Wang, Q. Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. ACS Appl. Mater. Interfaces 2018, 10, 17742–17755. [Google Scholar] [CrossRef]
- Yang, B.; Wei, K.; Loebel, C.; Zhang, K.; Feng, Q.; Li, R.; Wong, S.H.D.; Xu, X.; Lau, C.; Chen, X.; et al. Enhanced Mechanosensing of Cells in Synthetic 3D Matrix with Controlled Biophysical Dynamics. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Zheng, Y.; Yuan, W.; Liu, H.; Huang, S.; Bian, L.; Guo, R. Injectable Supramolecular Gelatin Hydrogel Loading of Resveratrol and Histatin-1 for Burn Wound Therapy. Biomater. Sci. 2020, 8, 4810–4820. [Google Scholar] [CrossRef]
- Chaudhuri, O.; Cooper-White, J.; Janmey, P.A.; Mooney, D.J.; Shenoy, V.B. Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature 2020, 584, 535–546. [Google Scholar] [CrossRef]
- Silvestro, S.; Bramanti, P.; Trubiani, O.; Mazzon, E. Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. Int. J. Mol. Sci. 2020, 21, 659. [Google Scholar] [CrossRef] [Green Version]
- Coutts, M.; Keirstead, H.S. Stem Cells for the Treatment of Spinal Cord Injury. Exp. Neurol. 2008, 209, 368–377. [Google Scholar] [CrossRef]
- Reubinoff, B.E.; Itsykson, P.; Turetsky, T.; Pera, M.F.; Reinhartz, E.; Itzik, A.; Ben-Hur, T. Neural Progenitors from Human Embryonic Stem Cells. Nat. Biotechnol. 2001, 19, 1134–1140. [Google Scholar] [CrossRef]
- Habwe, V.Q. Posttransplantation Quality of Life: More than Graft Function. Am. J. Kidney Dis. 2006, 47, S98–S110. [Google Scholar] [CrossRef]
- Hofstetter, C.P.; Holmström, N.A.V.; Lilja, J.A.; Schweinhardt, P.; Hao, J.; Spenger, C.; Wiesenfeld-Hallin, Z.; Kurpad, S.N.; Frisén, J.; Olson, L. Allodynia Limits the Usefulness of Intraspinal Neural Stem Cell Grafts; Directed Differentiation Improves Outcome. Nat. Neurosci. 2005, 8, 346–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, J.; Torres-Espín, A.; Navarro, X. Adult Stem Cell Transplants for Spinal Cord Injury Repair: Current State in Preclinical Research. Curr. Stem Cell Res. Ther. 2011, 6, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Lai, B.Q.; Che, M.T.; Du, B.L.; Zeng, X.; Ma, Y.H.; Feng, B.; Qiu, X.C.; Zhang, K.; Liu, S.; Shen, H.Y.; et al. Transplantation of Tissue Engineering Neural Network and Formation of Neuronal Relay into the Transected Rat Spinal Cord. Biomaterials 2016, 109, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Fu, C.; Xiong, F.; He, C.; Wei, Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant. 2021, 30, 0963689721989266. [Google Scholar] [CrossRef]
- Gabel, B.C.; Curtis, E.I.; Marsala, M.; Ciacci, J.D. A Review of Stem Cell Therapy for Spinal Cord Injury: Large Animal Models and the Frontier in Humans. World Neurosurg. 2017, 98, 438–443. [Google Scholar] [CrossRef]
- Zhong, D.; Cao, Y.; Li, C.-J.; Li, M.; Rong, Z.-J.; Jiang, L.; Guo, Z.; Lu, H.-B.; Hu, J.-Z. Neural Stem Cell-Derived Exosomes Facilitate Spinal Cord Functional Recovery after Injury by Promoting Angiogenesis. Exp. Biol. Med. 2020, 245, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Caron, I.; Rossi, F.; Papa, S.; Aloe, R.; Sculco, M.; Mauri, E.; Sacchetti, A.; Erba, E.; Panini, N.; Parazzi, V.; et al. A New Three Dimensional Biomimetic Hydrogel to Deliver Factors Secreted by Human Mesenchymal Stem Cells in Spinal Cord Injury. Biomaterials 2016, 75, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Che, M.T.; Zhang, K.; Qin, L.N.; Zhang, Y.T.; Chen, R.Q.; Rong, L.M.; Liu, S.; Ding, Y.; Shen, H.Y.; et al. Graft of the NT-3 Persistent Delivery Gelatin Sponge Scaffold Promotes Axon Regeneration, Attenuates Inflammation, and Induces Cell Migration in Rat and Canine with Spinal Cord Injury. Biomaterials 2016, 83, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, Y.; Park, D.; Abdul-Muneer, P.M.; Li, H.; Xu, B.; Sharma, K.; Smith, G.M.; Selzer, M.E.; Li, S. The Effect of Systemic PTEN Antagonist Peptides on Axon Growth and Functional Recovery after Spinal Cord Injury. Biomaterials 2014, 35, 4610–4626. [Google Scholar] [CrossRef] [Green Version]
- Tuinstra, H.M.; Margul, D.J.; Goodman, A.G.; Boehler, R.M.; Holland, S.J.; Zelivyanskaya, M.L.; Cummings, B.J.; Anderson, A.J.; Shea, L.D. Long-Term Characterization of Axon Regeneration and Matrix Changes Using Multiple Channel Bridges for Spinal Cord Regeneration. Tissue Eng. Part A 2014, 20, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.M.; Kubilius, M.B.; Holland, S.J.; Seidlits, S.K.; Boehler, R.M.; Anderson, A.J.; Cummings, B.J.; Shea, L.D. Channel Density and Porosity of Degradable Bridging Scaffolds on Axon Growth after Spinal Injury. Biomaterials 2013, 34, 2213–2220. [Google Scholar] [CrossRef] [Green Version]
- Pawar, K.; Cummings, B.J.; Thomas, A.; Shea, L.D.; Levine, A.; Pfaff, S.; Anderson, A.J. Biomaterial Bridges Enable Regeneration and Re-Entry of Corticospinal Tract Axons into the Caudal Spinal Cord after SCI: Association with Recovery of Forelimb Function. Biomaterials 2015, 65, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.M.; Seidlits, S.K.; Goodman, A.G.; Kukushliev, T.V.; Hassani, D.M.; Cummings, B.J.; Anderson, A.J.; Shea, L.D. Sonic Hedgehog and Neurotrophin-3 Increase Oligodendrocyte Numbers and Myelination after Spinal Cord Injury. Integr. Biol. 2014, 6, 694–705. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Yuan, W.; Ding, L.; Shi, M.; Luo, L.; Wan, Y.; Oh, J.; Zhou, Y.; Bian, L.; Deng, D.Y.B. Cell-Adaptable Dynamic Hydrogel Reinforced with Stem Cells Improves the Functional Repair of Spinal Cord Injury by Alleviating Neuroinflammation. Biomaterials 2021, 279, 121190. [Google Scholar] [CrossRef]
- Kim, Y.; Jo, S.H.; Kim, W.H.; Kweon, O.K. Antioxidant and Anti-Inflammatory Effects of Intravenously Injected Adipose Derived Mesenchymal Stem Cells in Dogs with Acute Spinal Cord Injury. Stem Cell Res. Ther. 2015, 6, 1–10. [Google Scholar] [CrossRef]
- Gao, S.; Guo, X.; Zhao, S.; Jin, Y.; Zhou, F.; Yuan, P.; Cao, L.; Wang, J.; Qiu, Y.; Sun, C.; et al. Differentiation of Human Adipose-Derived Stem Cells into Neuron/Motoneuron-like Cells for Cell Replacement Therapy of Spinal Cord Injury. Cell Death Dis. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bydon, M.; Dietz, A.B.; Goncalves, S.; Moinuddin, F.M.; Alvi, M.A.; Goyal, A.; Yolcu, Y.; Hunt, C.L.; Garlanger, K.L.; del Fabro, A.S.; et al. CELLTOP Clinical Trial: First Report From a Phase 1 Trial of Autologous Adipose Tissue–Derived Mesenchymal Stem Cells in the Treatment of Paralysis Due to Traumatic Spinal Cord Injury. Mayo Clin. Proc. 2020, 95, 406–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippidou, P.; Dasen, J.S. Hox Genes: Choreographers in Neural Development, Architects of Circuit Organization. Neuron 2013, 80, 12–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.G.; Stice, S.S. Development and Differentiation of Neural Rosettes Derived From Human Embryonic Stem Cells. Stem Cell Rev. 2006, 2, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Zeng, Y.S.; Wu, J.L.; Li, Y.; Teng, Y.D. Cograft of Neural Stem Cells and Schwann Cells Overexpressing TrkC and Neurotrophin-3 Respectively after Rat Spinal Cord Transection. Biomaterials 2011, 32, 7454–7468. [Google Scholar] [CrossRef]
- Kang, K.N.; Kim, D.Y.; Yoon, S.M.; Lee, J.Y.; Lee, B.N.; Kwon, J.S.; Seo, H.W.; Lee, I.W.; Shin, H.C.; Kim, Y.M.; et al. Tissue Engineered Regeneration of Completely Transected Spinal Cord Using Human Mesenchymal Stem Cells. Biomaterials 2012, 33, 4828–4835. [Google Scholar] [CrossRef]
- Teng, Y.D.; Lavik, E.B.; Qu, X.; Park, K.I.; Ourednik, J.; Zurakowski, D.; Langer, R.; Snyder, E.Y. Functional Recovery Following Traumatic Spinal Cord Injury Mediated by a Unique Polymer Scaffold Seeded with Neural Stem Cells. Proc. Natl. Acad. Sci. USA 2002, 99, 3024–3029. [Google Scholar] [CrossRef] [Green Version]
- Höke, A.; Cheng, C.; Zochodne, D.W. Expression of Glial Cell Line-Derived Neurotrophic Factor Family of Growth Factors in Peripheral Nerve Injury in Rats. Neuroreport 2000, 11, 1651–1654. [Google Scholar] [CrossRef]
- Alexandre Rasouli, B.; Bhatia, N.; Suryadevara, S.; Cahill, K.; Gupta, R. Transplantation of Preconditioned Schwann Cells in Peripheral Nerve Grafts after Contusion in the Adult Spinal Cord. Improvement of Recovery in a Rat Model. J. Bone Jt. Surg. Am. 2006, 88, 2400–2410. [Google Scholar] [CrossRef] [PubMed]
- Dinh, P.; Bhatia, N.; Rasouli, A.; Suryadevara, S.; Cahill, K.; Gupta, R. Transplantation of Preconditioned Schwann Cells Following Hemisection Spinal Cord Injury. Spine 2007, 32, 943–949. [Google Scholar] [CrossRef]
- Park, K.I.; Liu, S.; Flax, J.D.; Nissim, S.; Stieg, P.E.; Snyder, E.Y. Transplantation of Neural Progenitor and Stern Cells: Developmental Insights May Suggest New Therapies for Spinal Cord and Other CNS Dysfunction. J. Neurotrauma 1999, 16, 675–687. [Google Scholar] [CrossRef]
- Lu, P.; Wang, Y.; Graham, L.; McHale, K.; Gao, M.; Wu, D.; Brock, J.; Blesch, A.; Rosenzweig, E.S.; Havton, L.A.; et al. Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell 2012, 150, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Matsuoka, I.; Wetmore, C.; Olson, L.; Thoenen, H. Enhanced Synthesis of Brain-Derived Neurotrophic Factor in the Lesioned Peripheral Nerve: Different Mechanisms Are Responsible for the Regulation of BDNF and NGF MRNA. J. Cell Biol. 1992, 119, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammarberg, H.; Piehl, F.; Cullheim, S.; Fjell, J.; Hökfelt, T.; Fried, K. GDNF MRNA in Schwann Cells and DRG Satellite Cells after Chronic Sciatic Nerve Injury. Neuroreport 1996, 7, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Lu, P.; Cai, Y.; Wang, Y.; Hong, L.; Ren, H.; Heng, B.C.; Liu, H.; Zhou, J.; et al. Local Delivery of FTY720 in PCL Membrane Improves SCI Functional Recovery by Reducing Reactive Astrogliosis. Biomaterials 2015, 62, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, C.; Li, H.; Yan, P.; Lu, X.; Wirthlin, L.; Xu, X.M. Glial Cell Line-Derived Neurotrophic Factor-Enriched Bridging Transplants Promote Propriospinal Axonal Regeneration and Enhance Myelination after Spinal Cord Injury. Exp. Neurol. 2003, 183, 379–393. [Google Scholar] [CrossRef]
- Mills, C.D.; Allchorne, A.J.; Griffin, R.S.; Woolf, C.J.; Costigan, M. GDNF Selectively Promotes Regeneration of Injury-Primed Sensory Neurons in the Lesioned Spinal Cord. Mol. Cell. Neurosci. 2007, 36, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Didangelos, A.; Iberl, M.; Vinsland, E.; Bartus, K.; Bradbury, E.J. Regulation of IL-10 by Chondroitinase ABC Promotes a Distinct Immune Response Following Spinal Cord Injury. J. Neurosci. 2014, 34, 16424–16432. [Google Scholar] [CrossRef] [Green Version]
- Bartus, K.; James, N.D.; Didangelos, A.; Bosch, K.D.; Verhaagen, J.; Yáñez-Muñoz, R.J.; Rogers, J.H.; Schneider, B.L.; Muir, E.M.; Bradbury, E.J. Large-Scale Chondroitin Sulfate Proteoglycan Digestion with Chondroitinase Gene Therapy Leads to Reduced Pathology and Modulates Macrophage Phenotype Following Spinal Cord Contusion Injury. J. Neurosci. 2014, 34, 4822–4836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi-Abdolrezaee, S.; Eftekharpour, E.; Wang, J.; Schut, D.; Fehlings, M.G. Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord. J. Neurosci. 2010, 30, 1657–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, A.J.; Haus, D.L.; Hooshmand, M.J.; Perez, H.; Sontag, C.J.; Cummings, B.J. Achieving Stable Human Stem Cell Engraftment and Survival in the CNS: Is the Future of Regenerative Medicine Immunodeficient? Regen. Med. 2011, 6, 367–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, S.; Yasuda, A.; Iwai, H.; Takano, M.; Kobayashi, Y.; Nori, S.; Tsuji, O.; Fujiyoshi, K.; Ebise, H.; Toyama, Y.; et al. Time-Dependent Changes in the Microenvironment of Injured Spinal Cord Affects the Therapeutic Potential of Neural Stem Cell Transplantation for Spinal Cord Injury. Mol. Brain 2013, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libro, R.; Bramanti, P.; Mazzon, E. The Combined Strategy of Mesenchymal Stem Cells and Tissue-Engineered Scaffolds for Spinal Cord Injury Regeneration (Review). Exp. Ther. Med. 2017, 14, 3355–3368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.; Peterson, C.; Yilmaz, E.; Halalmeh, D.R.; Moisi, M. Current Advancements in the Management of Spinal Cord Injury: A Comprehensive Review of Literature. Surg. Neurol. Int. 2020, 11, 2. [Google Scholar] [CrossRef]
- Flack, J.; Sharma, K.; Xie, J. Delving into the Recent Advancements of Spinal Cord Injury Treatment: A Review of Recent Progress. Neural. Regen. Res. 2022, 17, 283. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhu, W.; Zhang, X.; He, C.; Liu, X.; Xin, Q.; Chen, K.; Wang, H. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. Biomed. Res. Int. 2022, 2022, 1–20. [Google Scholar] [CrossRef]
- Shen, H.; Chen, X.; Li, X.; Jia, K.; Xiao, Z.; Dai, J. Transplantation of Adult Spinal Cord Grafts into Spinal Cord Transected Rats Improves Their Locomotor Function. Sci. China Life Sci. 2019, 62, 725–733. [Google Scholar] [CrossRef]
- Elkwood, A.I.; Holland, N.R.; Arbes, S.M.; Rose, M.I.; Kaufman, M.R.; Ashinoff, R.L.; Parikh, M.A.; Patel, T.R. Nerve Allograft Transplantation for Functional Restoration of the Upper Extremity: Case Series. J. Spinal Cord Med. 2011, 34, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Funk, R.H.W. Endogenous Electric Fields as Guiding Cue for Cell Migration. Front. Physiol. 2015, 6, 143. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Li, Y.; Chen, J.; Zhou, H.; Tan, S. Electrical Stimulation Elicits Neural Stem Cells Activation: New Perspectives in CNS Repair. Front. Hum. Neurosci. 2015, 9, 586. [Google Scholar] [CrossRef]
- Li, J.J.; Liu, H.; Zhu, Y.; Yan, L.; Liu, R.; Wang, G.; Wang, B.; Zhao, B. Animal Models for Treating Spinal Cord Injury Using Biomaterials-Based Tissue Engineering Strategies. Tissue Eng. Part B Rev. 2022, 28, 79–100. [Google Scholar] [CrossRef]
- Tyler, J.Y.; Xu, X.-M.; Cheng, J.-X. Nanomedicine for Treating Spinal Cord Injury. Nanoscale 2013, 5, 8821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.H.; Agrawal, N.K.; Griffin, J.M.; Schmidt, C.E. Recent Advances in Nanotherapeutic Strategies for Spinal Cord Injury Repair. Adv. Drug Deliv. Rev. 2019, 148, 38–59. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Shen, N.; Cheng, Z.; Chen, Y.; Ding, H.; Yuan, J.; Zhao, K.; Zhang, Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-ΚB Signaling Pathway. Front. Bioeng. Biotechnol. 2022, 9, 813169. [Google Scholar] [CrossRef] [PubMed]
- Abbas, W.A.; Ibrahim, M.E.; El-Naggar, M.; Abass, W.A.; Abdullah, I.H.; Awad, B.I.; Allam, N.K. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomater. Sci. Eng. 2020, 6, 6490–6509. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Kim, C.-Y.; Miao, Q.; Ren, X. Fusogen-Assisted Rapid Reconstitution of Anatomophysiologic Continuity of the Transected Spinal Cord. Surgery 2016, 160, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Abdou, S.A.; Henderson, P.W. Fusogens: Chemical Agents That Can Rapidly Restore Function After Nerve Injury. J. Surg. Res. 2019, 233, 36–40. [Google Scholar] [CrossRef]
- Ghergherehchi, C.L.; Mikesh, M.; Sengelaub, D.R.; Jackson, D.M.; Smith, T.; Nguyen, J.; Shores, J.T.; Bittner, G.D. Polyethylene Glycol (PEG) and Other Bioactive Solutions with Neurorrhaphy for Rapid and Dramatic Repair of Peripheral Nerve Lesions by PEG-Fusion. J. Neurosci. Methods 2019, 314, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ghergherehchi, C.; Shores, J.; Alderete, J.; Weitzel, E.; Bittner, G. Methylene Blue Enhances Polyethylene Glycol-Fusion Repair of Completely Severed Rat Sciatic Nerves. Neural. Regen. Res. 2021, 16, 2056. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhang, W.; Qin, J.; Mo, J.; Chen, Y.; Han, J.; Feng, X.; Feng, S.; Liang, H.; Cen, L.; et al. Partial Restoration of Spinal Cord Neural Continuity via Vascular Pedicle Hemisected Spinal Cord Transplantation Using Spinal Cord Fusion Technique. CNS Neurosci. Ther. 2022, 28, 1205–1217. [Google Scholar] [CrossRef]
- Lu, X.; Perera, T.H.; Aria, A.B.; Smith Callahan, L.A. Polyethylene Glycol in Spinal Cord Injury Repair: A Critical Review. J. Exp. Pharm. 2018, 10, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, S.; Zhang, W.; Liu, H.; Wang, X.; Guan, X.; Zhang, M.; Zhang, J.; Wu, Q.; Xue, Y.; Wang, D.; et al. Transplantation of a Vascularized Pedicle of Hemisected Spinal Cord to Establish Spinal Cord Continuity after Removal of a Segment of the Thoracic Spinal Cord: A Proof-of-principle Study in Dogs. CNS Neurosci. Ther. 2021, 27, 1182–1197. [Google Scholar] [CrossRef]
- Richter, A.W.; Åkerblom, E. Antibodies against Polyethylene Glycol Produced in Animals by Immunization with Monomethoxy Polyethylene Glycol Modified Proteins. Int. Arch. Allergy Immunol. 1983, 70, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Ichihara, M.; Yoshioka, Y.; Ishida, T.; Nakagawa, S.; Kiwada, H. Intravenous Administration of Polyethylene Glycol-Coated (PEGylated) Proteins and PEGylated Adenovirus Elicits an Anti-PEG Immunoglobulin M Response. Biol. Pharm. Bull. 2012, 35, 1336–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptiste, D.C.; Austin, J.W.; Zhao, W.; Nahirny, A.; Sugita, S.; Fehlings, M.G. Systemic Polyethylene Glycol Promotes Neurological Recovery and Tissue Sparing in Rats After Cervical Spinal Cord Injury. J. Neuropathol. Exp. Neurol. 2009, 68, 661–676. [Google Scholar] [CrossRef] [PubMed]
N° | Author | Year | Country | Study Design | Evidence Obtained |
---|---|---|---|---|---|
1 | Ciciriello et al. [32] | 2018 | USA | Prospective experimental study on in vivo rats model | NSC from E14 mice on multichannel PLG scaffold increases density of axons and myelin regeneration and leads to a more rapid and functional recovery |
2 | Wan et al. [33] | 2017 | China | Prospective experimental study on in vivo rats model | NSC are cytocompatible with selfpolymerize dendritic polypeptide scaffold |
3 | Yang et al. [34] | 2017 | China | Prospective experimental study on in vivo rats model | Co-transplantation of ASCs and MSCs in a multichannel polymer scaffold leads to a better recovery after SCI |
4 | Führmann et al. [35] | 2018 | Canada | Prospective experimental study on in vivo rats model | chABC influence the injury environment such that neuronal differentiation or survival is favored. No functional repair was observed |
5 | Zhou et al. [36] | 2018 | China | Prospective experimental study on in vivo rats model | ASCs and (or) iPS-NSCs grow well on PCL scaffolds. Transplantation reduced the volume of the lesion cavity and improved the locomotor recovery of rats |
6 | Yan et al. [37] | 2021 | China | Prospective experimental study on in vivo rats model | Mbp supports axonal regeneration from mammalian NPCs through the novel 7Mbp/L1cam/Pparγ signaling pathway |
7 | Yuan et al. [38] | 2021 | China | Prospective experimental study on in vivo rats model | Cell-adaptable neurogenic (CaNeu) hydrogel as a delivery vehicle for ADSCs enhances axonal growth and leads to improved motor recovery in rats, also establishing an anti-inflammatory microenvironment |
8 | Hwang et al. [39] | 2019 | South Korea | Prospective experimental study on in vivo rats model | Glial cell line-derived neurotrophic factor (GDNF) augments the therapeutic effects of Neural stem/progenitor cells (NSPCs) in SCI |
9 | Farrag et al. [40] | 2018 | USA | Prospective experimental study on in vivo rats model | Encapsulated rat aNSCs in hydrogels implanted in the backs of rats in the cervical, thoracic, and lumbar region, expressed region-specific Hox genes corresponding to their region of implantation |
10 | Stewart et al. [41] | 2017 | USA | Prospective experimental study on in vivo rats model | Overexpression of SDF-1 by MSCs can enhance the migration of NSCs in vitro. Although only modest functional improvements were observed following transplantation of SDF-1-MSCs in vivo |
11 | Nori et al. [42] | 2018 | Canada | Prospective experimental study on in vivo rats model | Reprogrammed human NPCs biased toward an oligodendrogenic fate (oNPCs) in combination with sustained delivery of ChABC using an affinity release strategy in a cross-linked methylcellulose biomaterial leads to a better recovery in chronically injured spinal cords |
12 | Tian et al. [43] | 2017 | China | Prospective experimental study on in vivo rats model | Engineered nerve complex using acellular scaffolds to deliver placenta-derived stem cells (PMSCs) into the injury gap, showed enhanced regeneration, structurally and functionally. |
13 | Baklaushev et al. [44] | 2019 | Russia | Prospective experimental study on 2 exemplars of Macacus rhesus | A two-component matrix SPRPix, based on platelet-rich plasma (PRP) and an anisotropic complex scaffold of recombinant spidroins and polycaprolactone (rSS-PCL) induced a dramatically stimulated proliferation and neuronal differentiation of the drNPCs matrix in the NHP brain and spinal cord. |
14 | Babaloo et al. [45] | 2019 | Iran | Prospective experimental study on in vivo rats model | Animals implanted with PCL/gelatin scaffolds seeded with co-hEnSC demonstrated the most progressive recovery of hindlimb functions in comparison to the control group |
15 | Kourgiantaki et al. [46] | 2020 | Greece | Prospective experimental study on in vivo rats model | Grafts based on porous collagen-based scaffolds (PCSs), can deliver and protect embryonic NSCs at SCI sites, leading to significant improvement in locomotion recovery |
16 | Salarinia et al. [47] | 2020 | Iran | Prospective experimental study on in vivo rats model | Axon regeneration increased, cell apoptosis decreased and locomotor function improved when PRP and AD-MSCs were applied together, in comparison to when either AD-MSCs or PRP were used alone |
17 | Tsai et al. [48] | 2018 | Taiwan | Prospective experimental study on in vivo rats model | Systemic administration of conditioned medium from MSCs (MSCcm) induce a long-lasting neuroprotective effect on SCI rats and may provide an environment more conducive to corticospinal axonal regrowth after spinal cord injury |
18 | Fan et al. [49] | 2018 | China | Prospective experimental study on in vivo rats model | Gelatin methacrylate (GelMA) hydrogel with iPSC-derived NSCs (iNSCs) significantly promoted functional recovery |
19 | Zahir et al. [50] | 2008 | Canada | Prospective experimental study on in vivo rats model | NSPCs seeded in chitosan tubes survive well, differentiate, and allow axonal regeneration through the tubular construct in a severe, complete spinal cord transection injury model |
20 | Xia et al. [51] | 2013 | China | Prospective experimental study on in vivo rats model | Co-transplantation of NSCs with SCs seeded within a directional PLGA scaffold has a beneficial function in cell survival, differentiation, axonal regeneration and myelination, and motor function recovery. However, regenerated axons have a limited contribution to motor function recovery |
21 | Ribeiro-Samy et al. [52] | 2013 | Portugal | Prospective experimental study on in vivo rats model | PHB-HV scaffolds reveal their ability to support the culture of CNS-derived cells and mesenchymal-like stem cells from different sources, also showing they are well tolerated by the host tissue, and do not negatively impact left hindlimb locomotor function recovery |
22 | S. Wilems et al. [53] | 2015 | USA | Prospective experimental study on in vivo rats model | A multifactorial approach, with scaffolds containing pMNs, but not anti-inhibitory molecules, showed survival, differentiation into neuronal cell types, axonal extension in the transplant area, and the ability to integrate into host tissue. However, the combination of pMNs with sustained-delivery of anti-inhibitory molecules led to reduced cell survival and increased macrophage infiltration |
23 | H. All et al. [54] | 2015 | USA | Prospective experimental study on in vivo rats model | Transplanted IPS-derived OPs resulted in a significant increase in the number of myelinated axons in animals that received a transplantation 24 h after a moderate contusive spinal cord injury |
24 | Young Hong et al. [55] | 2014 | South Korea | Prospective experimental study on in vivo rats model | iNSCs transplantation effectively reduced the inflammatory response and apoptosis in the injured area. Furthermore, it also promoted the active regeneration of the endogenous recipient environment in the absence of tumor formation |
25 | Lee et al. [56] | 2014 | China | Prospective experimental study on in vivo rats model | Exogenous melatonin administration combined with physical exercise increases histological and behavioral recovery. Additionally, this dual treatment appears to increase nestin-positive eNSPCs, driving effective reconstructed neuronal differentiation |
26 | Lai et al. [57] | 2014 | China | Prospective experimental study on in vivo rats model | Transplantation of the GS scaffold promotes exogenous NSC-derived myelinating cells and SCs to form myelin in the injury/transplantation area of the spinal cord |
27 | Wang et al. [58] | 2010 | China | Prospective experimental study on in vivo rats model | Co-transplantation of NSCs and OECs might have a synergistic effect on promoting neural regeneration and improving the recovery of locomotive function |
Stem Cell Typology | Advantages | Disadvantages |
---|---|---|
BM-MSCs | Secrete neurotrophic factors Promote axonal regeneration Reduce astroglial scarring density and inflammatory reaction Reduce BSCB leakage Regulate autophagy Alleviate neuropathic pain | The effects of individual cell transplantation are enhanced by co-transplantation with cells from other sources (SCs, OECs) Little therapeutic effect (timing of MSC transplantation) |
U-MSCs | Readily available Inhibit glial scar and decrease reactive astrocytes Attenuate ischemic compromise of the spinal cord Improve muscle tension, bladder function, and urine control | Co-transplantation may complement and synergize to improve single-cell therapies (U-MSCs, hNSCs) |
AD-MSCs | Protect neurons Promote cell survival and tissue repair Suppress immune activity and secrete anti-inflammatory factors Activate angiogenesis Reduce the formation of cavities | No site lesion reduction Lack of standard protocols for cell generation No clear cell characteristics No clear underlying mechanism |
NSCs and NPCs | Increase neuroprotective cytokines and improve cell proliferation Increase myelination Modulate the inflammatory response Promote respiratory recovery | Modified NSCs may exhibit better therapeutic efficacy than naïve cells Functional recovery was limited |
ESCs | Enable axons to pass CSPG Support nodal architecture Attenuate neuropathic pain | Undifferentiated form is rarely used due to the risk of tumorigenicity May result in tumor formation May be genetic changes during the cell culture process |
iPSCs | Improve neurotrophic factor secretion Promote axonal sprouting and remyelination Promote synapse formation Inhibit glial scar formation Reduce lesion size | Different transplantation regions may lead to different effects (intraspinal implantation vs. intrathecal implantation) May result in tumor formation Limitations with graft survival or time to transplant Prohibitively high cost–benefit for developing treatments No standard protocols for collecting cells, for safe and effective routes of administration in clinical treatment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonosi, L.; Silven, M.P.; Biancardino, A.A.; Sciortino, A.; Giammalva, G.R.; Scerrati, A.; Sturiale, C.L.; Albanese, A.; Tumbiolo, S.; Visocchi, M.; et al. Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 12996. https://doi.org/10.3390/ijms232112996
Bonosi L, Silven MP, Biancardino AA, Sciortino A, Giammalva GR, Scerrati A, Sturiale CL, Albanese A, Tumbiolo S, Visocchi M, et al. Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review. International Journal of Molecular Sciences. 2022; 23(21):12996. https://doi.org/10.3390/ijms232112996
Chicago/Turabian StyleBonosi, Lapo, Manikon Poullay Silven, Antonio Alessandro Biancardino, Andrea Sciortino, Giuseppe Roberto Giammalva, Alba Scerrati, Carmelo Lucio Sturiale, Alessio Albanese, Silvana Tumbiolo, Massimiliano Visocchi, and et al. 2022. "Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review" International Journal of Molecular Sciences 23, no. 21: 12996. https://doi.org/10.3390/ijms232112996
APA StyleBonosi, L., Silven, M. P., Biancardino, A. A., Sciortino, A., Giammalva, G. R., Scerrati, A., Sturiale, C. L., Albanese, A., Tumbiolo, S., Visocchi, M., Iacopino, D. G., & Maugeri, R. (2022). Stem Cell Strategies in Promoting Neuronal Regeneration after Spinal Cord Injury: A Systematic Review. International Journal of Molecular Sciences, 23(21), 12996. https://doi.org/10.3390/ijms232112996