Drimane Sesquiterpene Alcohols with Activity against Candida Yeast Obtained by Biotransformation with Cladosporium antarcticum
Abstract
:1. Introduction
2. Results
2.1. Identification of Yeast Samples by MALDI-TOF-MS
2.2. Isolation of Cladosporium antarcticum
2.3. Biotransformation of Drimendiol and Epidrimendiol
2.4. Anti-Candida Activity
2.5. In Silico Studies
3. Discussion
4. Material and Methods
4.1. Candida Yeast
4.2. Proteome Fingerprinting MALDI-TOF MS
4.3. Isolation of Cladosporium antarcticum from Antarctic Sediments
4.4. General Chemical Information
4.5. Reduction of Polygodial and Isotadeonal with Sodium Borohydride
4.6. Biotransformation
4.7. Structural Analysis of Drimane Sesquiterpenoids
4.8. Antifungal Assay
4.9. Molecular Simulation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lamoth, F.; Kontoyiannis, D.P. The Candida auris Alert: Facts and Perspectives. J. Infect. Dis. 2018, 217, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Robles-Kelly, C. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action. Pestic. Biochem. Physiol. 2017, 141, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Paz, C. Antifungal Effects of Drimane Sesquiterpenoids Isolated from Drimys winteri against Gaeumannomyces graminis var. tritici. Appl. Environ. Microbiol. 2020, 86, e01834-20. [Google Scholar] [CrossRef]
- Lee, S.H. In vitro antifungal susceptibilities of Candida albicans and other fungal pathogens to polygodial, a sesquiterpene dialdehyde. Planta Med. 1999, 65, 204–208. [Google Scholar] [CrossRef]
- Fujita, K.; Kubo, I. Multifunctional action of antifungal polygodial against Saccharomyces cerevisiae: Involvement of pyrrole formation on cell surface in antifungal action. Bioorg. Med. Chem. 2005, 13, 6742–6747. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I. Combination Effect of Miconazole with Polygodial against Candida albicans. Open J. Med. Microbiol. 2011, 1, 7–11. [Google Scholar] [CrossRef]
- Kubo, I. Antifungal mechanism of polygodial. J. Agric. Food Chem. 2001, 49, 1607–1611. [Google Scholar] [CrossRef]
- Kubo, I.; Himejima, M. Anethole, a synergist of polygodial against filamentous microorganisms. J. Agric. Food Chem. 1991, 39, 2290–2292. [Google Scholar] [CrossRef]
- Iwasaki, Y. Miogadial and miogatrial with alpha,beta-unsaturated 1,4-dialdehyde moieties–Novel and potent TRPA1 agonists. Life Sci. 2009, 85, 60–69. [Google Scholar] [CrossRef]
- Paz, C. Polygodial, a drimane sesquiterpenoid dialdehyde purified from Drimys winteri, inhibits voltage-gated sodium channels. Nat. Prod. Res. 2022, 1–6. [Google Scholar] [CrossRef]
- Bombaça, A.C.S. Trypanocidal Activity of Natural Sesquiterpenoids Involves Mitochondrial Dysfunction, ROS Production and Autophagic Phenotype in Trypanosoma cruzi. Molecules 2018, 23, 2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, C. Assessment of insecticidal responses of extracts and compounds of Drimys winteri, Lobelia tupa, Viola portalesia and Vestia foetida against the granary weevil Sitophilus granarius. Ind. Crops Prod. 2018, 122, 232–238. [Google Scholar] [CrossRef]
- Marin, V. Oxidation of Isodrimeninol with PCC Yields Drimane Derivatives with Activity against Candida Yeast by Inhibition of Lanosterol 14-Alpha Demethylase. Biomolecules 2020, 10, 1101. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- Khumalo, G.P. Antimicrobial activity of volatile and non-volatile isolated compounds and extracts from the bark and leaves of Warburgia salutaris (Canellaceae) against skin and respiratory pathogens. S. Afr. J. Bot. 2019, 122, 547–550. [Google Scholar] [CrossRef]
- Kipanga, P.N. Biofilm inhibiting properties of compounds from the leaves of Warburgia ugandensis Sprague subsp ugandensis against Candida and staphylococcal biofilms. J. Ethnopharmacol. 2020, 248, 112352. [Google Scholar] [CrossRef] [PubMed]
- Mathie, K. Structure-Pungency Relationships and TRP Channel Activation of Drimane Sesquiterpenes in Tasmanian Pepper (Tasmannia lanceolata). J. Agric. Food Chem. 2017, 65, 5700–5712. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, Y.; Sekita, M. Biotransformation of Bicyclic Sesqui- and Diterpene 1,2-dials and Their Derivatives by the Fungus, Aspergillus niger. Nat. Prod. Commun. 2018, 13, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Santos, C. The Chilean Network of Microbial Culture Collections: Establishment and Operation. Boletín Micológico 2016, 31, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Silva, V. Invasive fungal infections in Chile: A multicenter study of fungal prevalence and susceptibility during a 1-year period. Med. Mycol. 2004, 42, 333–339. [Google Scholar] [CrossRef]
- Gonçalves, V.N. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol. 2015, 38, 1143–1152. [Google Scholar] [CrossRef]
- Durán, P. Occurrence of Soil Fungi in Antarctic Pristine Environments. Front. Bioeng. Biotechnol. 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monk, B.C. Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc. Natl. Acad. Sci. USA 2014, 111, 3865–3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anandakrishnan, R.; Aguilar, B. H++3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res. 2012, 40, W537–W541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanwell, M.D. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Gan, J.; Xiao, Z.X.; Cao, Y. FitDock: Protein–ligand docking by template fitting. Brief. Bioinform. 2022, 23, bbac087. [Google Scholar] [CrossRef]
- Case, D.A. AMBER 2021; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- Miller, B.R. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar]
Code | Identification | Log (Score) * |
---|---|---|
8 | Candida albicans | 2.180 |
6 | Candida krusei | 2.610 |
3 | Candida parapsilosis | 2.200 |
Position | 1H-NMR Chemical Shift δ (ppm), J (Hz) | ||
---|---|---|---|
Compound 1 | Compound 2 | Compound 3 | |
1 | 1.81, m 1.45, ov | 1.29, ov 2.03, ov | 1.47, ov 1.87, ov |
2 | 1.53, 2H, ov | 1.62, 2H, ov | 1.47, ov 1.58, dt, J = 13.8, 3.0 |
3 | 1.45, ov 1.26, ov | 3.22, m | 1.18, td, J = 14.3, 3.4 1.38, m |
5 | 1.72, dd, J = 12.3, 4.8 | 1.22, ov | 1.82, dd, J = 12.0, 5.2 |
6 | 2.14, m 1.95, m | 2.03, 2H, ov | 1.95, d, J = 13.0 2.02, ov |
7 | 5.89, d, J = 5.3 | 5.74, m | 5.84, dd, J = 5.2, 2.0 |
9 | - | 2.05, ov | - |
11 | 3.75, 2H, ov | 3.63, t, J = 8.6 3.87, d, J = 10.7 | 4.17, 2H, s |
12 | 3.41, d, J = 12.4 4.14, d, J = 12.4 | 3.90, ov 4.29, ov | 3.68, 2H, ov |
13 | 0.81, s | 0.80, s | 0.93, s |
14 | 0.92, s | 0.87, s | 0.94, s |
15 | 0.90, s | 0.99, s | 0.88, s |
Carbon Number | 13C-NMR Chemical Shift δ (ppm) | ||
---|---|---|---|
Compound 1 | Compound 2 | Compound 3 | |
1 | 31.0 | 38.5 | 32.0 |
2 | 18.7 | 27.5 | 19.3 |
3 | 41.6 | 78.7 | 42.6 |
4 | 33.1 | 39.6 | 33.5 |
5 | 42.4 | 50.3 | 43.0 |
6 | 24.2 | 24.0 | 24.7 |
7 | 132.0 | 125.6 | 130.0 |
8 | 138.1 | 139.3 | 140.4 |
9 | 75.7 | 55.8 | 76.1 |
10 | 40.6 | 36.4 | 41.2 |
11 | 62.7 | 60.2 | 65.7 |
12 | 67.0 | 66.3 | 63.5 |
13 | 15.4 | 15.1 | 16.2 |
14 | 22.4 | 16.0 | 22.7 |
15 | 33.5 | 28.7 | 33.9 |
Compound | Yeast Type | ||
---|---|---|---|
C. parapsilosis | C. krusei | C. albicans | |
Drimendiol | 25.0 | 30.0 | 50.0 |
Epidrimendiol | 25.0 | 12.5 | 15.0 |
1 | 12.5 | 25.0 | 25.0 |
2 | 12.5 | 15.0 | 15.0 |
3 | 12.5 | 25.0 | 50.0 |
Fluconazole | 12.5 | 3.13 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez, N.; Marín, V.; Jiménez, V.A.; Silva, V.; Leyton, O.; Cabrera-Pardo, J.R.; Schmidt, B.; Heydenreich, M.; Burgos, V.; Duran, P.; et al. Drimane Sesquiterpene Alcohols with Activity against Candida Yeast Obtained by Biotransformation with Cladosporium antarcticum. Int. J. Mol. Sci. 2022, 23, 12995. https://doi.org/10.3390/ijms232112995
Cortez N, Marín V, Jiménez VA, Silva V, Leyton O, Cabrera-Pardo JR, Schmidt B, Heydenreich M, Burgos V, Duran P, et al. Drimane Sesquiterpene Alcohols with Activity against Candida Yeast Obtained by Biotransformation with Cladosporium antarcticum. International Journal of Molecular Sciences. 2022; 23(21):12995. https://doi.org/10.3390/ijms232112995
Chicago/Turabian StyleCortez, Nicole, Víctor Marín, Verónica A. Jiménez, Víctor Silva, Oscar Leyton, Jaime R. Cabrera-Pardo, Bernd Schmidt, Matthias Heydenreich, Viviana Burgos, Paola Duran, and et al. 2022. "Drimane Sesquiterpene Alcohols with Activity against Candida Yeast Obtained by Biotransformation with Cladosporium antarcticum" International Journal of Molecular Sciences 23, no. 21: 12995. https://doi.org/10.3390/ijms232112995
APA StyleCortez, N., Marín, V., Jiménez, V. A., Silva, V., Leyton, O., Cabrera-Pardo, J. R., Schmidt, B., Heydenreich, M., Burgos, V., Duran, P., & Paz, C. (2022). Drimane Sesquiterpene Alcohols with Activity against Candida Yeast Obtained by Biotransformation with Cladosporium antarcticum. International Journal of Molecular Sciences, 23(21), 12995. https://doi.org/10.3390/ijms232112995