Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R–Ankrd1–P53 Signaling Pathway
Abstract
:1. Introduction
2. Results
2.1. Quantitative Analysis of Characteristic Components in Storax
2.2. Effect of Storax on Cardiac Electrophysiology and Cardiac Function in Isoproterenol Hydrochloride (ISO)-Induced AMI Rats
2.2.1. Effect on the Electrocardiogram in AMI Rats
2.2.2. Effect on Cardiac Function in AMI Rats
2.3. Storax Improved Myocardial Injury and Fibrosis in ISO-Induced AMI Rats
2.4. Storax Inhibited the Expression of Type I and III Collagen in ISO-Induced AMI Rats
2.5. Storax Inhibited Cardiomyocyte Apoptosis in ISO-Induced AMI Rats
2.6. Storax Reduced ISO-Induced Cardiomyocyte Apoptosis in AMI Rats by Inhibiting AT1R– Ankrd1–P53 Pathway
3. Discussion
4. Materials and Methods
4.1. Experimental Drugs and Reagents
4.2. Chemical Profile Analysis of Storax
4.3. Animals and Experimental Design
- (1)
- Control group: equal volume of saline was given to all in the same administration;
- (2)
- Model group: ISO (sc) + equal volume of saline (i.g);
- (3)
- Vehicle group: ISO (sc) + equivalent 2% Tween solvent (i.g);
- (4)
- Bisoprolol group: ISO (sc) + 2.5 mg/kg bisoprolol (i.g, dissolved in saline, at a clinically equivalent dose of 2.5 mg/kg/d);
- (5)
- 0.1 g/kg storax group: ISO (sc) + 0.1 g/kg/d storax (i.g);
- (6)
- 0.2 g/kg storax group: ISO (sc) + 0.2 g/kg/d storax (i.g);
- (7)
- 0.4 g/kg storax group: ISO (sc) + 0.4 g/kg/d storax (i.g).
4.4. Cardiac Electrophysiology and Cardiac-Function-Related Information Collection
4.4.1. Dynamic Monitoring of Electrocardiogram
4.4.2. Dynamic Monitoring of Echocardiography
4.4.3. Measurement of Hemodynamics
4.5. Measurement of Myocardial Injury Biomarkers
4.6. Myocardial Tissue and Myocardial Fiber Morphology Observation
4.6.1. Myocardial Histopathological Examination
4.6.2. Immunofluorescence Detection
4.6.3. TUNEL Staining
4.7. WB Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Ou, W.; Liang, Y.; Qin, Y.; Wu, W.; Xie, M.; Zhang, Y.; Zhang, Y.; Ji, L.; Yu, H.; Li, T. Hypoxic acclimation improves cardiac redox homeostasis and protects heart against ischemia-reperfusion injury through upregulation of O-GlcNAcylation. Redox Biol. 2021, 43, 101994. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Boris, A.F.; Zhu, Y.; Gan, H.; Hu, X.; Xue, Y.; Xiang, Z.; Sasmita, B.R.; Liu, G.; Luo, S.; et al. Incidence, Clinical Characteristics and Short-Term Prognosis in Patients with Cardiogenic Shock and Various Left Ventricular Ejection Fractions After Acute Myocardial Infarction. Am. J. Cardiol. 2022, 167, 20–26. [Google Scholar] [CrossRef]
- Gao, X.Y.; Li, W.P.; He, Y.; Zhang, X.J.; Di, B.B.; Li, H.W. The mechanism of ischemia/reperfusion injury in acute myocardial infarction and the progress of drug prevention and treatment. J. Clin. Exp. Med. 2019, 18, 2237–2241. (In Chinese) [Google Scholar] [CrossRef]
- Goetzman, E.; Gong, Z.; Rajasundaram, D.; Muzumdar, I.; Goodchild, T.; Lefer, D.; Muzumdar, R. Serum Metabolomics Reveals Distinct Profiles during Ischemia and Reperfusion in a Porcine Model of Myocardial Ischemia-Reperfusion. Int. J. Mol. Sci. 2022, 23, 6711. [Google Scholar] [CrossRef]
- Jiao, J.; He, S.; Wang, Y.; Lu, Y.; Gu, M.; Li, D.; Tang, T.; Nie, S.; Zhang, M.; Lv, B.; et al. Regulatory B cells improve ventricular remodeling after myocardial infarction by modulating monocyte migration. Basic Res. Cardiol. 2021, 116, 46. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhang, X.X.; Li, R.; Gu, N. Guanxin V protects against ventricular remodeling after acute myocardial infarction through the interaction of TGF-β1 and Vimentin. Phytomedicine 2022, 95, 153866. [Google Scholar] [CrossRef]
- Spatz, E.S.; Wang, Y.; Beckman, A.L.; Wu, X.; Lu, Y.; Du, X.; Li, J.; Xu, X.; Davidson, P.M.; Masoudi, F.A.; et al. Traditional Chinese Medicine for Acute Myocardial Infarction in Western Medicine Hospitals in China. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004190. [Google Scholar] [CrossRef]
- State Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China. 2020, Part Ⅰ; China Pharmaceutical Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- United States Pharmacopeial Convention. United States Pharmacopoeia; United States Pharmacopeial: Rockville, MD, USA, 2017. [Google Scholar]
- Zhang, J.; Liang, M.Z. Research progress on the intervention mechanism of traditional Chinese medicine on ventricular remodeling after acute myocardial infarction. Guid. J. Tradit. Chin. Med. Pharm. 2021, 27, 128–132, 137. (In Chinese) [Google Scholar] [CrossRef]
- Chen, N.; Wang, J.; Fan, Y.M.; Ma, X.; Guo, X.Q.; Dong, T.W.; Ma, R.; Xie, Q. Effects of Styrax on myocardial ischemia in rats. Chin. Tradit. Pat. Med. 2019, 41, 533–538. (In Chinese) [Google Scholar] [CrossRef]
- Mu, F.; Li, R.; Zhang, H.; Wang, F.; Li, F.; Zhao, M.; Ding, Y.; Xi, M.; Wen, A. Metabonomics study on the effects of traditional Chinese medicine storax for treating heart blood stasis syndrome of coronary heart disease in rats. Chin. J. New Drugs 2019, 28, 620–627. (In Chinese) [Google Scholar]
- Xu, Z.; Lu, D.; Yuan, J.; Ren, M.; Ma, R.; Xie, Q.; Li, Y.; Li, J.; Wang, J. Storax, A Promising Botanical Medicine for Treating Cardio-Cerebrovascular Diseases: A Review. Front Pharm. 2021, 12, 785598. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.B.; Qin, F.; Morgan, R.J.; Chambers, J.M.; Croteau, D.; Siwik, D.A.; Hobai, I.; Panagia, M.; Luptak, I.; Bachschmid, M.; et al. Redox-Resistant SERCA [Sarco(endo)plasmic Reticulum Calcium ATPase] Attenuates Oxidant-Stimulated Mitochondrial Calcium and Apoptosis in Cardiac Myocytes and Pressure Overload-Induced Myocardial Failure in Mice. Circulation 2020, 142, 2459–2469. [Google Scholar] [CrossRef] [PubMed]
- Beusekamp, J.C.; Tromp, J.; Cleland, J.G.F.; Givertz, M.M.; Metra, M.; O’Connor, C.M.; Teerlink, J.R.; Ponikowski, P.; Ouwerkerk, W.; Van Veldhuisen, D.J.; et al. Hyperkalemia and Treatment with RAAS Inhibitors During Acute Heart Failure Hospitalizations and Their Association with Mortality. JACC Heart Fail. 2019, 7, 970–979. [Google Scholar] [CrossRef]
- Spoladore, R.; Falasconi, G.; Fiore, G.; Di Maio, S.; Preda, A.; Slavich, M.; Margonato, A.; Fragasso, G. Cardiac fibrosis: Emerging agents in preclinical and clinical development. Expert Opin. Investig. Drugs 2021, 30, 153–166. [Google Scholar] [CrossRef]
- Niu, L.; Jia, Y.; Wu, M.; Liu, H.; Feng, Y.; Hu, Y.; Zhang, X.; Gao, D.; Xu, F.; Huang, G. Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT(1) R. J. Cell. Physiol. 2020, 235, 8345–8357. [Google Scholar] [CrossRef]
- Ling, S.S.M.; Chen, Y.T.; Wang, J.; Richards, A.M.; Liew, O.W. Ankyrin Repeat Domain 1 Protein: A Functionally Pleiotropic Protein with Cardiac Biomarker Potential. Int. J. Mol. Sci. 2017, 18, 1362. [Google Scholar] [CrossRef] [Green Version]
- Murphy, N.P.; Lubbers, E.R.; Mohler, P.J. Advancing our understanding of AnkRD1 in cardiac development and disease. Cardiovasc. Res. 2020, 116, 1402–1404. [Google Scholar] [CrossRef]
- Kempton, A.; Cefalu, M.; Justice, C.; Baich, T.; Derbala, M.; Canan, B.; Janssen, P.M.L.; Mohler, P.J.; Smith, S.A. Altered regulation of cardiac ankyrin repeat protein in heart failure. Heliyon 2018, 4, e00514. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Meng, H.; Wang, Q.; Shao, M.; Lu, W.; Chen, X.; Jiang, Y.; Li, C.; Wang, Y.; Tu, P. Baoyuan decoction ameliorates apoptosis via AT1-CARP signaling pathway in H9C2 cells and heart failure post-acute myocardial infarction rats. J. Ethnopharmacol. 2020, 252, 112536. [Google Scholar] [CrossRef]
- Shen, L.; Chen, C.; Wei, X.; Li, X.; Luo, G.; Zhang, J.; Bin, J.; Huang, X.; Cao, S.; Li, G.; et al. Overexpression of ankyrin repeat domain 1 enhances cardiomyocyte apoptosis by promoting p53 activation and mitochondrial dysfunction in rodents. Clin. Sci. 2015, 128, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Ma, J.; Tang, J.; Liu, Y.; Zheng, Q.; Chen, S.; Gao, E.; Ren, J.; Yang, L.; Yang, J. Irisin attenuates myocardial ischemia/reperfusion-induced cardiac dysfunction by regulating ER-mitochondria interaction through a mitochondrial ubiquitin ligase-dependent mechanism. Clin. Transl. Med. 2020, 10, e166. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, L.; Li, X.; Chen, F.; Li, Y.; Ma, X.; Yu, F. MicroRNA-1 and Circulating Microvesicles Mediate the Protective Effects of Dantonic in Acute Myocardial Infarction Rat Models. Front. Physiol. 2018, 9, 664. [Google Scholar] [CrossRef]
- Zegard, A.; Okafor, O.; de Bono, J.; Kalla, M.; Lencioni, M.; Marshall, H.; Hudsmith, L.; Qiu, T.; Steeds, R.; Stegemann, B.; et al. Myocardial Fibrosis as a Predictor of Sudden Death in Patients with Coronary Artery Disease. J. Am. Coll. Cardiol. 2021, 77, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhu, X.; Zhang, X.; Jia, X.; Liu, J.; Wang, X.; Xiao, Y.; Xiao, Z.; Liu, T.; Dong, Y. The application of proteomics and metabolomics to reveal the molecular mechanism of Nutmeg-5 in ameliorating cardiac fibrosis following myocardial infarction. Phytomedicine 2022, 105, 154382. [Google Scholar] [CrossRef] [PubMed]
- Snider, J.C.; Riley, L.A.; Mallory, N.T.; Bersi, M.R.; Umbarkar, P.; Gautam, R.; Zhang, Q.; Mahadevan-Jansen, A.; Hatzopoulos, A.K.; Maroteaux, L.; et al. Targeting 5-HT(2B) Receptor Signaling Prevents Border Zone Expansion and Improves Microstructural Remodeling After Myocardial Infarction. Circulation 2021, 143, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Liu, F.M.; Rao, W.L.; Yuan, G.Y.; Fan, Z.Y.; Zhang, L.; Fu, F.; Kou, J.P.; Yu, B.Y.; Li, F. Aminoacylase-1 plays a key role in myocardial fibrosis and the therapeutic effects of 20(S)-ginsenoside Rg3 in mouse heart failure. Acta Pharmacol. Sin. 2022, 43, 2003–2015. [Google Scholar] [CrossRef]
- Luan, F.; Rao, Z.; Peng, L.; Lei, Z.; Zeng, J.; Peng, X.; Yang, R.; Liu, R.; Zeng, N. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. Phytomedicine 2022, 100, 154047. [Google Scholar] [CrossRef]
- Marwick, T.H.; Shah, S.J.; Thomas, J.D. Myocardial Strain in the Assessment of Patients With Heart Failure: A Review. JAMA Cardiol. 2019, 4, 287–294. [Google Scholar] [CrossRef]
- Thomas, L.; Marwick, T.H.; Popescu, B.A.; Donal, E.; Badano, L.P. Left Atrial Structure and Function, and Left Ventricular Diastolic Dysfunction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1961–1977. [Google Scholar] [CrossRef]
- Yang, L.T.; Michelena, H.I.; Scott, C.G.; Enriquez-Sarano, M.; Pislaru, S.V.; Schaff, H.V.; Pellikka, P.A. Outcomes in Chronic Hemodynamically Significant Aortic Regurgitation and Limitations of Current Guidelines. J. Am. Coll. Cardiol. 2019, 73, 1741–1752. [Google Scholar] [CrossRef] [PubMed]
- Maznyczka, A.M.; McCartney, P.J.; Oldroyd, K.G.; Lindsay, M.; McEntegart, M.; Eteiba, H.; Rocchiccioli, J.P.; Good, R.; Shaukat, A.; Robertson, K.; et al. Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction. Circ. Cardiovasc. Interv. 2021, 14, e009529. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cai, S.X.; He, Q.; Zhang, H.; Friedberg, D.; Wang, F.; Redington, A.N. Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Res. Cardiol. 2018, 113, 36. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, B.; Yang, X.; Zhang, C.; Jiao, Y.; Li, P.; Liu, Y.; Li, Z.; Qiao, B.; Bond Lau, W.; et al. S100a8/a9 Signaling Causes Mitochondrial Dysfunction and Cardiomyocyte Death in Response to Ischemic/Reperfusion Injury. Circulation 2019, 140, 751–764. [Google Scholar] [CrossRef]
- Chauvel, C.; Novoloaca, A.; Veyre, P.; Reynier, F.; Becker, J. Evaluation of integrative clustering methods for the analysis of multi-omics data. Brief. Bioinform. 2020, 21, 541–552. [Google Scholar] [CrossRef]
- Sakaguchi, T.T.; Takefuji, M.; Wettschureck, N.; Hamaguchi, T.; Amano, M.; Kato, K.; Tsuda, T.; Eguchi, S.; Ishihama, S.; Mori, Y.; et al. Protein Kinase N Promotes Stress-Induced Cardiac Dysfunction Through Phosphorylation of Myocardin-Related Transcription Factor A and Disruption of Its Interaction with Actin. Circulation 2019, 140, 1737–1752. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, X.X.; Li, J.Z.; Qiang, H.F.; Wang, Y.; Li, G. Pretreatment of cardiac progenitor cells with bradykinin attenuates H2O2-induced cell apoptosis and improves cardiac function in rats by regulating autophagy. Stem Cell Res. Ther. 2021, 12, 437. [Google Scholar] [CrossRef]
- Ren, Z.; Yang, K.; Zhao, M.; Liu, W.; Zhang, X.; Chi, J.; Shi, Z.; Zhang, X.; Fu, Y.; Liu, Y.; et al. Calcium-Sensing Receptor on Neutrophil Promotes Myocardial Apoptosis and Fibrosis After Acute Myocardial Infarction via NLRP3 Inflammasome Activation. Can. J. Cardiol. 2020, 36, 893–905. [Google Scholar] [CrossRef]
- Chen, Q.; Yin, Q.; Song, J.; Liu, C.; Chen, H.; Li, S. Identification of monocyte-associated genes as predictive biomarkers of heart failure after acute myocardial infarction. BMC Med. Genomics. 2021, 14, 44. [Google Scholar] [CrossRef]
- Da Silva, F.; Jian Motamedi, F.; Weerasinghe Arachchige, L.C.; Tison, A.; Bradford, S.T.; Lefebvre, J.; Dolle, P.; Ghyselinck, N.B.; Wagner, K.D.; Schedl, A. Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction. eLife 2021, 10, e68280. [Google Scholar] [CrossRef]
- Nechiporuk, T.; Kurtz, S.E.; Nikolova, O.; Liu, T.; Jones, C.L.; D’Alessandro, A.; Culp-Hill, R.; d’Almeida, A.; Joshi, S.K.; Rosenberg, M.; et al. The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discov. 2019, 9, 910–925. [Google Scholar] [CrossRef] [PubMed]
- Bedoui, S.; Herold, M.J.; Strasser, A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat. Rev. Mol. Cell Biol. 2020, 21, 678–695. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gou, D. Relationship between Dose and Effects of Suhexiang against Myocardial Ischemia of Model Rats. Acta Chin. Med. 2019, 34, 2157–2163. (In Chinese) [Google Scholar]
- Meyers, T.A.; Heitzman, J.A.; Krebsbach, A.M.; Aufdembrink, L.M.; Hughes, R.; Bartolomucci, A.; Townsend, D. Acute AT(1)R blockade prevents isoproterenol-induced injury in mdx hearts. J. Mol. Cell. Cardiol. 2019, 128, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhong, S.; Zheng, F.; Zhang, Y.; Gao, F.; Xu, H.; Cai, X.; Lan, J.; Huang, D.; Shi, G. Angiotensin II confers resistance to apoptosis in cardiac myofibroblasts through the AT1/ERK1/2/RSK1 pathway. IUBMB Life 2019, 71, 261–276. [Google Scholar] [CrossRef]
- Meng, H.; Du, Z.; Lu, W.; Wang, Q.; Sun, X.; Jiang, Y.; Wang, Y.; Li, C.; Tu, P. Baoyuan decoction (BYD) attenuates cardiac hypertrophy through ANKRD1-ERK/GATA4 pathway in heart failure after acute myocardial infarction. Phytomedicine 2021, 89, 153617. [Google Scholar] [CrossRef]
- Zafar, A.; Wang, W.; Liu, G.; Xian, W.; McKeon, F.; Zhou, J.; Zhang, R. Targeting the p53-MDM2 pathway for neuroblastoma therapy: Rays of hope. Cancer Lett. 2021, 496, 16–29. [Google Scholar] [CrossRef]
- Li, W.F.; Alfason, L.; Huang, C.; Tang, Y.; Qiu, L.; Miyagishi, M.; Wu, S.R.; Kasim, V. p52-ZER6: A determinant of tumor cell sensitivity to MDM2-p53 binding inhibitors. Acta Pharmacol. Sin. 2022. [Google Scholar] [CrossRef]
- Ali, S.S.; Mohamed, S.F.A.; Rozalei, N.H.; Boon, Y.W.; Zainalabidin, S. Anti-fibrotic Actions of Roselle Extract in Rat Model of Myocardial Infarction. Cardiovasc. Toxicol. 2019, 19, 72–81. [Google Scholar] [CrossRef]
- Zhou, M.; Li, D.; Li, L.; Zhao, P.; Yue, S.; Li, X.; Du, Y.; Fan, X.; Zhang, M. Post-stroke treatment of storax improves long-term outcomes of stroke in rats. J. Ethnopharmacol. 2021, 280, 114467. [Google Scholar] [CrossRef]
- Wang, J.J.; Chen, F.Y. Model of Acute Myocardial Infarction Induced by Isoproterenol in Rats. World Latest Med. Inf. (Electron. Version) 2019, 19. (In Chinese) [Google Scholar] [CrossRef]
Protein | Primary Antibody | Concentration |
---|---|---|
AT1R | Anti-AT1R, GB112004, Servicebio | 1:1000 |
Ankrd1 | Anti-CARP, AF0677, Affinity | 1:1000 |
P53 | Anti-P53, 2524S, CST | 1:1000 |
P-p53 (Ser15) | Anti-P-p53 (Ser15), AF3075, Affinity | 1:1000 |
Mdm2 | Anti-Mdm2, AF0208, Affinity | 1:1000 |
Bax | Anti-Bax, T40051, Abmart | 1:1000 |
Bcl-2 | Anti-Bcl-2, T40056, Abmart | 1:1000 |
Cleaved Caspase-3 | Cleaved Caspase-3, AF7022, Affinity | 1:1000 |
GAPDH | Anti-GAPDH, AF7021, Affinity | 1:5000 |
β-tubulin | Anti-β-tubulin, AF7011, Affinity | 1:5000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Lu, D.; Yuan, J.; Wang, L.; Wang, J.; Lei, Z.; Liu, S.; Wu, J.; Wang, J.; Huang, L. Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R–Ankrd1–P53 Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 13161. https://doi.org/10.3390/ijms232113161
Xu Z, Lu D, Yuan J, Wang L, Wang J, Lei Z, Liu S, Wu J, Wang J, Huang L. Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R–Ankrd1–P53 Signaling Pathway. International Journal of Molecular Sciences. 2022; 23(21):13161. https://doi.org/10.3390/ijms232113161
Chicago/Turabian StyleXu, Zhuo, Danni Lu, Jianmei Yuan, Liying Wang, Jiajun Wang, Ziqin Lei, Si Liu, Junjie Wu, Jian Wang, and Lihua Huang. 2022. "Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R–Ankrd1–P53 Signaling Pathway" International Journal of Molecular Sciences 23, no. 21: 13161. https://doi.org/10.3390/ijms232113161
APA StyleXu, Z., Lu, D., Yuan, J., Wang, L., Wang, J., Lei, Z., Liu, S., Wu, J., Wang, J., & Huang, L. (2022). Storax Attenuates Cardiac Fibrosis following Acute Myocardial Infarction in Rats via Suppression of AT1R–Ankrd1–P53 Signaling Pathway. International Journal of Molecular Sciences, 23(21), 13161. https://doi.org/10.3390/ijms232113161